Image compression practices and standards for geospatial information systems

## Enrico Magli<sup>1</sup>, David Taubman<sup>2</sup>

<sup>1</sup> CERCOM – Center for Multimedia Radio Communications Dip. di Elettronica - Politecnico di Torino (Italy) e-mail: enrico.magli@polito.it

<sup>2</sup> David Taubman School of Electrical Engineering and Telecommunications The University of New South Wales Sydney, Australia d.taubman@unsw.edu.au

## Outline

#### Motivation Application scenario DAD main requirements JPEG family of standards → JPEG 2000 → JPEG-LS $\rightarrow$ File format technology → JPIP Conclusions



## **Motivation**



# Application





# Which compression ?

#### Lossless

- → widely used in the past
- → low compression, not suitable for network-based access
- → Not used for SAR

#### Lossy

- → partially avoided in the past due to the quality loss
- → now being adopted on major systems (SPOT 4/5, IKONOS)
- → maybe not very useful if lossy compression is used on-board
- Near-lossless
  - → provides a bound on the error at each pixel
  - → possible solution to the quality problem ?



## DAD requirements

#### Access to the data in a flexible way

- → variable resolutions, to optimize network access
- → random access to portions of the data
- → possibility of reordering the compressed data in various orders of importance (quality-wise, component-wise, resolution-wise,...)
- Scalability: ability of generating a bitstream that contains the information in order of importance



# DAD requirements (cont'd)

## Quality

→ for each application, quality requirements (resolution/accuracy) must be worked out

- Image compression must support high to very high qualities
  - → high coding efficiency
  - → possibility to model the coding distortion
  - → knowledge of how this distortion impacts on the applications



# DAD requirements (cont'd)

#### Integration

- → seamless access to the database, the data and all the associated information
- ⇒ File format technology must allow flexible use of data and associated metadata
  - → contain auxiliary information and precomputed image analysis results (e.g. features) in a standardized format
  - $\rightarrow$  contain links to other relevant information in the database
- Compressed domain processing
  - → allows to carry out image analysis directly on the compressed data



# JPEG 2000 family of standards

- ◆ JPEG (1992)
  - → lossy and lossless, DCT-based
- ◆ JPEG-LS (1997)
  - → Lossless and near-lossless, prediction-based
- ◆ JPEG 2000 Part 1 (2002)
  - → lossy and lossless, wavelet-based
- ◆ JPEG 2000 Part 2 (2002)
  - → Provision for 3D extensions
- ◆ JP3D (started in 2002)
  - multicomponent and volumetric images



# JPEG 2000 Part 1

#### ♦ JPEG 2000: main features

- → released in 2002
- → high coding efficiency (20% more than JPEG)
- → wavelet-based compression (also good for compressed domain processing)
- → seamless lossy-to-lossless compression
- highly scalable (in quality, resolution, component)
- → easy alteration of the progression order
- → region of interest coding
- → random access to codestream portions



## JPEG 2000 Part 2

## JPEG 2000 Part 2 (extensions)

→ supports arbitrary wavelet filters

→ supports multicomponent transformations

#### Multicomponent support:

- → Linear block transform (DCT, KLT,...)
- → 3D wavelet transform
- → predictive coding

#### Must specify inverse transform, then store 2D wavelet-compressed components



## JPEG-LS

# JPEG-LS: lossless and near-lossless compression

- → released in 1997
- → based on non-linear prediction and context-based Golomb-Rice coding
- → has low complexity
- → lossless compression is better than JPEG 2000
- → provides support for near-lossless compression
- → does not provide scalability
- → good choice for on-board compression, but not well suited to DAD



## JPEG-LS Part 2

#### ♦ JPEG-LS Part 2

→ has just been approved for publication by the ISO

#### Provides a few add-ons over Part 1

- → Arithmetic coding (multiplication-free)
- → Adaptive peak error (based on image features)
- → Scan-based peak error (allows for rate control)
- → Modified prediction for images with spase histograms



## JPEG 2000 file formats

#### ♦ JPEG file format technology

→ codestream, JP2, JPX, MJ2, JPM

#### File format: sequence of boxes, some for metadata and some for codestreams

- → it is possible to add custom boxes to enhance functionality of the file format
- → it is possible to use UUID boxes to embed vendorspecific information (e.g. URL of web page containing additional information)
- → The format of each extension must be userdefined
- → example: GeoJP2 file format



## JPIP

#### ◆ JPIP: interactive imaging protocol (http-like)

- → provides PUT and GET functions to access data from a remote system
- → provides the capability of selective access to the data (e.g. metadata, selected portions of the data)
- → can adapt the transmission mode to the bandwidth and to the client capabilities
- → can support several protocols (TCP/IP, UDP, …)
- → is tailored to JPEG 2000, but extensions to other file formats can be devised



### Open issues

- Quality
  - near-lossless is a general quality-preserving framework
  - → it may be too conservative for certain applications
  - → the effect of lossy compression is not thoroughly understood
  - → in general, we do not know much about quality issues for remote sensing images



# Open issues (cont'd)

#### Compressed domain processing

- → May be very useful for the development of an integrated DAD system
- → May lead to lower complexity image analysis techniques
- → So far, we do not have many available techniques

#### Standardization

→ We need to standardize more things, e.g. the metadata description



## Lessons learned

- Network-based access does impose constraints on image compression
- We need more insight on image quality assessment for geospatial applications
- We need more integration
  - → Compressed domain processing
  - → Metadata description

There are other relevant problems (privacy, security,...)

