HPC MSU

Publication Abstract

Molecular Characterization of the Reniform Nematode C-Type Lectin Gene Family Reveals a Likely Role in Mitigating Environmental Stresses During Plant Parasitism

Ganji, S., Jenkins, J. N., & Wubben, M. J. (2014). Molecular Characterization of the Reniform Nematode C-Type Lectin Gene Family Reveals a Likely Role in Mitigating Environmental Stresses During Plant Parasitism. Gene. Elsevier, B.V.: Science Direct. 537(2), 269-278.

Abstract

The reniform nematode, Rotylenchulus reniformis, is a damaging semi-endoparasitic pathogen of more than 300 plant species. Transcriptome sequencing of R. reniformis parasitic females revealed an enrichment for sequences homologous to C-type lectins (CTLs), an evolutionarily ancient family of Ca+ 2-dependent carbohydrate-binding proteins that are involved in the innate immune response. To gain further insight as to the potential role of CTLs in facilitating plant parasitism by R. reniformis, we performed a comprehensive assessment of the CTL gene family. 5′- and 3′-RACE experiments identified a total of 11 R. reniformis CTL transcripts (Rr-ctl-1 through Rr-ctl-11) that ranged in length from 1083 to 1194 bp and showed 9399% identity with one another. An alignment of cDNA and genomic sequences revealed three introns with the first intron residing within the 5′-untranslated region. BLAST analyses showed the closest homologs belonging to the parasitic nematodes Heligmosomoides polygyrus and Heterodera glycines. Rr-ctl-1, -2, and -3 were expressed throughout the R. reniformis life cycle; whereas, the remaining Rr-ctl genes showed life stage-specific expression. Quantitative real time RT-PCR determined that Rr-ctl transcripts were 839-fold higher in sedentary female nematodes than the next most abundant life stage. Predicted Rr-CTL peptides ranged from 301 to 338 amino acids long, possessed an N-terminal signal peptide for secretion, and contained a conserved CLECT domain, including the mannose-binding motifs EPN and EPD and the conserved WND motif that is required for binding Ca+ 2. In addition, Rr-CTL peptides harbored repeats of a novel 17-mer motif within their C-terminus that showed similarity to motifs associated with bacterial ice nucleation proteins. In situ hybridization of Rr-ctl transcripts within sedentary females showed specific accumulation within the hypodermis of the body regions exposed to the soil environment; those structures embedded within the root during parasitism did not show Rr-ctl expression. A phylogenetic analysis of the Rr-CTL CLECT domain with homologous domains from other nematode species suggested that CTLs from animal- and plant-parasitic genera may have evolved in order to play an active role in the parasitic process.