EFFECTS OF SURFACE CHARGE DENSITY AND DISTRIBUTION ON THE NANOCHANNEL ELECTRO-OsmOTIC FLOW

Bohumir Jelinek
Postdoctoral Fellow
CAVS, Mississippi State University

Sergio Felicelli
Professor, Mechanical Engineering
CAVS, Mississippi State University

Paul F. Mlakar, John F. Peters
Senior Research Scientists
GSL, U.S. Army ERDC Vicksburg, MS
Other project

Development of MEAM potential for Al-Si-Mg-Cu-Fe alloys
B. Jelinek, S. Groh, A. Moitra, M. Horstemeyer, J. Houze, S-G. Kim, G. Wagner, M. Baskes
http://arxiv.org/abs/1107.0544

Scripts to reproduce some of the potential tests
http://code.google.com/p/ase-atomistic-potential-tests
using Atomistic Simulation Environment (ASE)
https://wiki.fysik.dtu.dk/ase
motivation for using ASE - talk at the NIST 2011 workshop
http://www.ctcms.nist.gov/potentials/activities.html

CAVS cyberinfrastructure site https://ccg.hpc.msstate.edu
Fixed Si channel walls, innermost layer charged negatively
Dimensions of a solute region 4.66x4.22x3.49 nm, PBC x,y.
108 Na+, 38 Cl-, 2144 SPC/E H\textsubscript{2}O molecules (not shown)

Velocity profiles

![Velocity profiles graph](image)
Velocity predicted from charge density

Stokes equation:

\[
\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)
\]

Blue:
inverse power viscosity

\[
\eta(z) = \left[1 - \left(\frac{z}{h} \right)^2 \right]^{-p} \eta_{\text{exp}}
\]

Red:
constant viscosity

Black circles:
Molecular Dynamics
Velocity predicted from charge density

\[F_d(z) = e \left[c_{Na^+}(z) - c_{Cl^-}(z) \right] E_{ext} \]
Velocity predicted from charge density

Stokes equation:

\[
\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)
\]

\[
F_d(z) = e \left[c_{Na^+}(z) - c_{Cl^-}(z) \right] E_{ext}
\]
Velocity predicted from charge density

Stokes equation:

\[
\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)
\]

Dark blue line: velocity prediction from MD charge density

Velocity predicted from charge density

Stokes equation:

$$\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$

Dark blue line: velocity prediction from MD charge density, assumes constant viscosity

Viscosity estimation

Stokes equation:

$$\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$
Viscosity estimation

Stokes equation:

\[\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z) \]

Integrated:

\[\eta(z) |_{z=z_0} = \frac{-\int_0^{z_0} F_d(z) \, dz}{\left. \frac{du_x(z)}{dz} \right|_{z=z_0}} \]
Viscosity estimation

Stokes equation:

\[
\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)
\]

Integrated:

\[
\eta(z) \big|_{z=z_0} = \frac{-\int_0^{z_0} F_d(z) \, dz}{\frac{du_x(z)}{dz} \bigg|_{z=z_0}}
\]

Velocity approximation:

\[
u_{x\text{fit}}(z) = \sum_{n=0}^{7} a_n \cos \left(n\pi \frac{z}{h} \right)
\]

Viscosity estimation

Stokes equation:

\[\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z) \]

Integrated:

\[\eta(z)\big|_{z=z_0} = - \int_0^{z_0} F_d(z) \, dz \]

Velocity approximation:

\[u_{x,\text{fit}}(z) = \sum_{n=0}^{7} a_n \cos \left(n\pi \frac{z}{h} \right) \]

\[u_{\text{fit}}(y) = u_m \exp \left[\frac{(y - y_m)^4}{y_1^4} \right] + \sum_{n=0}^{11} a_n \cos \frac{\pi y n}{L} \]
Viscosity estimation

Stokes equation:

$$\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$
Viscosity estimation

Stokes equation:

$$\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)$$

Blue: inverse power viscosity

$$\eta(z) = \left[1 - \left(\frac{z}{h} \right)^{2} \right]^{-P} \eta_{exp}$$
Velocity predicted from charge density

Stokes equation:

$$\frac{d}{dz} \left[\eta(z) \frac{d u_x(z)}{d z} \right] = -F_d(z)$$

Blue:
inverse power viscosity

$$\eta(z) = \left[1 - \left(\frac{z}{h} \right)^2 \right]^{-p} \eta_{exp}$$
Velocity predicted from charge density

Stokes equation:

\[
\frac{d}{dz} \left[\eta(z) \frac{du_x(z)}{dz} \right] = -F_d(z)
\]

Blue:
inverse power viscosity

\[
\eta(z) = \left[1 - \left(\frac{z}{h} \right)^2 \right]^{-p} \eta_{\text{exp}}
\]

Red:
constant viscosity
Zeta potentials vs. surf. charge density for uniform partial surface charge

Zeta potential is proportional to the water velocity in the channel center. Assumptions:

\[\zeta = \frac{u_x (z_{\text{center}}) \eta}{\varepsilon_0 \varepsilon_r E_x} \]

MD Zeta potential:

Zeta potential is proportional to the water velocity in the channel center.

Assumes \(u_x \) is linear in \(E_x \).
Zeta potentials vs. surf. charge density for discrete partial surface charge

Zeta potential is proportional to the water velocity in the channel center. Assumes u_x is linear in E_x.

$\zeta = \frac{u_x(z_{center})\eta}{\varepsilon_0\varepsilon_r E_x}$
Conclusions

Studied factors significantly affecting nanochannel electro-osmotic flow by MD simulations

Obtained velocity profiles, ionic concentrations, and viscosity profiles

Demonstrated an improved prediction of velocity profile from charge density with non-constant viscosity

Revealed the dependence of the flow on surface charge density, distribution, and ionic concentrations