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Abstract—The latest results are presented from an ongoing study 
of the use of multi-polarized Synthetic Aperture Radar as an aid 
in screening earthen levees for weak points. Both L-band 
airborne and X-band spaceborne radars are studied, using the 
NASA UAVSAR and the German TerraSAR-X platforms. 
Feature detection and classification algorithms tested for this 
application include both radiometric and textural methods. 
Radiometric features include both the simple backscatter 
magnitudes of the HH, VV, and HV channels as well as 
decompositions such as Entropy, Anisotropy, and Alpha angle. 
Textural methods include grey-level co-occurrence matrix and 
wavelet features. Classifiers tested include Maximum Likelihood 
and Artificial Neural Networks. The study area includes 240 km 
of levees along the lower Mississippi River. Results to date are 
encouraging but still very preliminary and in need of further 
validation and testing. 

Keywords-synthetic aperture radar, levee screening, earthen 
levees 

I.  INTRODUCTION 
Earthen levees protect large areas of populated and 

cultivated land in the US from flooding. In the United States 
there are more than 150,000 kilometers of levee structures of 
varying designs and conditions. The potential loss of life and 
property associated with the catastrophic failure of levees can 
be extremely large. 

Currently, there are limited processes in place to prioritize 
the monitoring of large numbers of dam and levee structures. . 
There is a need to prioritize the monitoring of the network of 
dam and levee structures. Levee managers and federal agencies 
will benefit from any tools allowing them to assess levee health 
rapidly with robust techniques that identify, classify and 
prioritize levee vulnerabilities with lower costs than traditional 
programs not based on the use of remote sensing. This paper 
presents early results of an ongoing project studying the use of 
synthetic aperture radar (SAR) as an aid to the levee screening 
process. Sources of data include: 

(1) The NASA UAVSAR (Uninhabited Aerial Vehicle 
SAR), a fully polarimetric L-band SAR which is 
specifically designed to acquire airborne repeat 
track SAR data for differential interferometric 
measurements. This instrument is capable of sub-
meter ground sample distance. 

(2) The Gerrman TerraSAR-X satellite with its X-band 
multi-polarimetric SAR and high spatial resolution 

The longer-wavelength L-band SAR measurements can 
penetrate vegetation and even the top layer of soil, depending 
on moisture content. On that basis this wavelength was selected 
for our study under the assumption that the backscatter will 
carry information from the top layer of the soil that will be 
valuable in detecting changes in levees that will be key inputs 
to a levee vulnerability classification system. 

The TerraSAR-X satellite provides advantages of better 
temporal resolution and lower cost of data acquisitions than an 
airborne platform in general, and also high spatial resolution. 
The shorter wavelength however results in less penetration 
depth, especially in the presence of vegetation such as trees, 
shrubs and grass, thus reducing the amount of information 
about the soil present in the backscatter. However, some 
variations in the vegetation itself may be related to levee 
vulnerabilities, mitigating this disadvantage of the shorter 
wavelength option. 

Our test study area is a stretch of 240 km of levees along 
the lower Mississippi River, along the western boundary of the 
state of Mississippi. Two types of problems that occur along 
these levees which can be precursors to complete failure during 
a high water event are sand boils and slough (or slump) slides. 

Sand boils are springs that form on the land side of a levee 
which is containing a river at extremely high flood stage. 
Hydrostatic pressure generated by the column of river water 
exerts a downward force that is too great for the wall material 
of the river channel to contain, and thus water is forced through 
the wall material of the channel. [1] 

Slough slides are slope failures along a levee, which leave 
areas of the levee vulnerable to seepage and failure during high 
water events. A schematic illustration of slides and sand boils 
is shown in Fig. 1 [2]. A photograph of a typical slough slide, 
in this case one which appeared during the recent spring 2011 
flooding of the Mississippi River, is shown in Fig. 2. The 
roughness and related textural characteristics of the soil in a 
slide affect the amount and pattern of radar backscatter. The 
type of vegetation that grows in a slide area differs from the 
surrounding levee vegetation, which can also be utilized in 
detecting slides [3]. 
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Early detection of the occurrence of slides and boils could 
help levee mangers prioritize their inspection and repair efforts. 
A remote sensing based solution for their rapid detection would 
be more efficient and cost effective than frequent on-site visits. 
Furthermore, it may be possible to detect less obvious 
precursors to slides and boils by sensing characteristics of the 
surface soils and vegetation. A working hypothesis of this 
study is that such characteristics will be manifested in the 
backscatter of polarimetric radar due to its response to spatially 
variant soil moisture. For example, L band radar is known to 
penetrate dry soils up to one meter in depth, and has been used 
to map surface soil moisture. [4] Although our ultimate goal is 
classification of vulnerable levee segments, we are also testing 
the ability to map surface soil moisture patterns since such 
patterns can serve as a feature useful for the levee 
classification. Furthermore, comparing soil moisture to radar 
signatures in our study area gives us much more reference data 
to train and test on, versus limiting the study to slump slides 
and boils. 

II. DATA 

A. UAVSAR Data 
The primary remotely sensed data used in this study is from 

NASA Jet Propulsion Laboratory’s UAVSAR (Uninhabited 
Aerial Vehicle Synthetic Aperture Radar) instrument, a 
polarimetric L-band synthetic aperture radar flown on a 
Gulfstream-3 research aircraft. The salient characteristics of 
this instrument are shown in Table I. 

The UAVSAR is normally flown at an altitude of 12.5 km 
and takes an image swath 20 km wide. Our study area was 
designed to be collected in two straight-line flight segments 
structured to capture most of the river levees on both sides of 
the river. The study area is shown in Fig. 3, with a color 
composite representation of the radar data overlaid on a base 
map of the vicinity. A total of five UAVSAR data collections 
have been made: (1) June 16, 2009; (2) January 25, 2010; (3) 
April 28 2010; (4) June 7, 2011; and (5) June 22, 2011. The 
higher frequency of flights during the spring of 2011 was 
driven by the 100-year level flood event occurring at that time, 
which created a valuable opportunity for collecting data at very 
high-water levels. The flights were flown in a “racetrack” 
pattern looking toward the river from opposite directions, in 
order to achieve a range of local incidence angles along the 
levees. 

TABLE I.  UAVSAR SPECIFICATIONS [5] 

Parameter Value 
Frequency L-band 
Bandwidth 80 MHz 

Range Resolution 1.8 m  
Polarization Full quad polarization 

Quantization 12 bits 
Antenna size 0.5 m range/1.5 azimuth 

Power > 2.0 kW 
 

Although the raw ground sample distance is 1.6 by 0.6 
meters, most of our efforts use the multi-look 5 by 7 meter data 
to minimize speckle effects. 

B. Satellite Data 
In addition to UAVSAR, data from the German TerraSAR-

X satellite was acquired over portions of the same study area. 
Characteristics of this sensor are shown in Table II. Due to the 
relatively low cost (for TerraSAR-X Science Team members), 
we acquired a large number of such scenes over a great variety 
of seasons and time periods. As of now, a total of 34 TerraSAR 
scenes have been acquired. The locations and scene sizes 
relative to the UAVSAR image swath are shown in Fig. 4. 

TABLE II.  TERRASAR-X SPECIFICATIONS [6] 

Parameter Value 
Radar Carrier Frequency 9.65 GHz (X-band) 

Bandwidth 150 MHz 
Pulse Repetition 

Frequency 2 – 6.5 KHz 

Incidence Angle Range 20° - 45°   
Polarization HH, HV, VH, VV 

Nominal altitude 514 km 
Revisit time 11 days 

Power > 2.0 kW 
 

C. Ancillary and Reference Data 
Ancillary data can be used to assist the levee classification 

process in addition to the remote sensing data. This includes 
knowledge of the soil characteristics in the vicinity of the 
levees, the underlying geology of the area, and history of past 
problems and inspections of the levees. 

Reference (or “ground truth”) data is obtained for the 
purpose of training the supervised classification algorithms and 
testing and validation of results. Such data falls into two major 
categories: (1) known levee vulnerability points such as slump 
slides, seepage points, or sand boils; and (2) measured soil 
properties such as moisture content, sand/clay ratios, etc. The 
former category is collected with the assistance of the US 
Army Corps of Engineers (USACE), which maintains a good 
cumulative history of past problems and has identified 
particularly problematic sections of levees in the study area. A 
challenge in using this data is that once USACE identifies 
problems it soon repairs them, depending on their severity. 
This leaves the targets of interest in their natural (un-repaired) 
state for a limited period of time, making the number of such 
targets available during a given remote sensing data 
acquisitions relatively small. On the assumption that the soil 
properties in the vicinity of such problems may have similar 
characteristics which may be detectable in the radar signatures, 
we use some of these repaired locations in our training data, 
and plot their locations along with the unrepaired targets when 
analyzing results. 

The second category of reference data, measured soil 
properties is collected in a number of ways. We make direct 
measurements of soil moisture content (volumetric water 
content (%VWC) using handheld probes during each radar 



flight or satellite overpass. We focus these collections on 
specific areas of interest (AOIs) within the large study are, 
which include slide and boil regions. In addition we contracted 
with a company (Soil and Topography Information, LLC) that 
performs intelligent sampling collection of soil property 
measurements using vehicle-based probes that allow a large 
collection area efficiently. We measured in this manner soil 
properties over a 3-mile long section of the study area levees, 
which included our other AOIs. An example of this data is 
shown in Fig. 5. Finally, our partners at the USACE also 
collected electromagnetic conductivity (EC) soil measurements 
over an intermediate sized AOI during some of the radar 
collection times. These serve as a good proxy for direct soil 
moisture data. 

 

III. CLASSIFICATION METHODOLOGY 
Features believed to provide good potential for 

discrimination of the targets of interest were designed, 
computed, and tested. Both per-pixel and window-based 
(textural) features were examined. The candidate features were 
tested with our training data to determine separability between 
classes of interest. Fig. 6 shows the overall approach to the 
classifier design. Over 144 features are investigated, ig 
radiometric and textural features (described below). 
Classification algorithms tested include a back-propagation 
Artificial Neural Network (ANN) and the Maximum 
Likelihood classifier.  

Stepwise Linear Discriminant Analysis (S-LDA) is 
employed for feature reduction and optimization [7]. In this 
approach, various features derived from the SAR backscatter 
imagery are concatenated into a vector, and a forward-
selection, backward rejection technique is employed to prune 
away features that are “less” relevant to the classification 
problem at hand. S-LDA reduces the feature set by selecting a 
subset of all available features based on a metric that quantifies 
the class separation provided by each feature. In this study 
Bhattacharyya Distance (BD) is used as the metric for 
calculating the class separation. An LDA based feature 
“optimization” is then employed on this reduced dimensional 
subset of features identified by the forward selection, backward 
rejection search. S-LDA is hence extremely valuable in 
ensuring that the “most” relevant features are provided to the 
classifier while ensuring that the classifier is not over-burdened 
by an excessively high dimensional feature space. he 
“classifier” employed in this work to model class-specific 
information and label test data (pixels) appropriately is the 
popular maximum-likelihood classifier. This classifier assumes 
Gaussian probability distribution functions for each class, and 
uses training data to learn the mean vector and covariance 
matrix per class. This information is then employed to find the 
distance of test vectors from each class model, and a class label 
is assigned to the sample that maximizes the likelihood value of 
the test sample being in that class.  

Features included in this study are described in detail 
below. These include per-pixel intensity and related features, as 
well as features extracted within a window around each pixel – 
known as textural features.   

A. Per-pixel Features 
The polarimetric radar data contain three independent 

channels of backscatter coefficients, those for like-polarized 
(HH, VV) and cross-polarized (HV) combinations of 
transmitted and received polarizations. For each, we get 
complex values giving both magnitude and phase information. 
The magnitudes of these channels can be used as basic per-
pixel features with any classifier. For the airborne UAVSAR 
radar data we have two different views of the same levees from 
opposite directions and have used the 3 channels from each 
direction for each pixel in case there is additional information 
based on local incidence angle. 

The relationship between the complex backscatter 
coefficients can reveal details on the nature of the scattering 
mechanism of the targets, such as relative amount of surface,  
double-bounce, or volume scattering. Both supervised and 
unsupervised classification techniques are used with the 
polarimetric decomposition parameters entropy (H), anisotropy 
(A) and alpha (α) derived from the coherency matrix calculated 
for each pixel [8]. Though these features are also per-pixel and 
derived from the polarimetric channels, their closer relationship 
to physical scattering mechanisms may make them more useful 
in identifying surface anomalies such as slump slides. 

In addition, since models have been developed for 
estimating soil moisture from SAR images, we implemented 
these to determine if the resulting patterns of moisture 
estimates on the levees can be used as a classification feature. 
Oh et al. [9] developed an inversion technique to obtain surface 
roughness and dielectric constant (related to water content) 
from the co-polarization ratio p and the cross–polarization ratio 
q. The model works over limited ranges of roughness and 
moisture. The co-polarization and cross–polarization ratios are 
defined as: 

  𝑝𝑝 =  𝜎𝜎ℎℎ0 /𝜎𝜎𝑣𝑣𝑣𝑣0     𝑞𝑞 =  𝜎𝜎ℎ𝑣𝑣0 /𝜎𝜎𝑣𝑣𝑣𝑣0  
 

where  𝜎𝜎ℎℎ0  is the HH polarized backscatter coefficient, 𝜎𝜎𝑣𝑣𝑣𝑣0   the 
VV polarized backscatter coefficient, and 𝜎𝜎ℎ𝑣𝑣0   the HV 
polarized backscatter coefficient. The dielectric constant is 
obtained by the following empirical equations: [10] 
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where θ is the incidence angle in radians, Γ0 is the Fresnel 
reflectivity of the surface at nadir and εr is the real part of 
dialectic constant (the imaginary part is ignored).  

In addition to directly implementing this empirical moisture 
model, we have tested a back propagation ANN for moisture 
classification. Results of these studies are reported elsewhere 
[11].  



B. Textural Features 
In addition to the per-pixel backscatter features, a number 

of texture features are being explored which utilize the values 
from pixels in a neighborhood around each pixel being 
analyzed.  Features based on the Gray Level Co-occurrence 
Matrix (GLCM) [12] and on the discrete wavelet transform 
(DWT) [13], continue to show promising results. 

The GLCM methods use estimates of the joint probability 
distribution of pixel pairs at given distances in given directions. 
Summary statistics are then calculated on the resulting NxN co-
occurrence matrices, where N is the number of quantized gray 
levels—that is, intensity ranges for a given channel of image 
data (we use N = 256). The summary statistics can include such 
measures as mean, variance, correlation, energy, homogeneity, 
anisotropy and entropy. 

The ability of wavelet analysis to decompose an image into 
different frequency sub-bands makes it suitable for image 
classification [13] [14]. In some applications, the energy of 
each sub-band is used as a texture feature. In others, a feature 
selection analysis chooses a subset of these which prove 
effective for a given texture-based classification. Other 
parameters to be determined include the choice of mother 
wavelet function, and the neighborhood window size. 

For our application, we used wavelet features with one 
decomposition level from each of the radar polarization 
channels. We tested these features using different sliding 
window sizes (5, 7, 8, 9) and mother wavelets (Daubechies, 
Haar, Symlet, and Biorthogonal) and selected those that 
maximize the separation of the targets of interest from the 
background [15]. 

IV. RESULTS 
Results of this ongoing study, which must still be 

considered preliminary, continue to show promise. 

Some results of using the S-LDA feature selection method 
on our texture features are shown in Fig. 7. This shows the 
result of classifying a subset of our study area which contains 
two slough slides using a 2-class problem (slide or normal 
levee). The S-LDA algorithm selected the two best features for 
this example, and those were both based on the HH radar data 
channel: (1) the GLCM entropy measure from a 135 degree 
direction, and (2) the variance of the 5x5 pixel window. Many 
of the patches of pixels identified as slides do in fact 
correspond to actual slides. Most of the false positives have 
region shape characteristics that can be used to filter them out 
using morphological operators: for example, the isolated 
smaller (often single-pixel) false positives in the figure could 
easily be eliminated by requiring a minimum region size. 

Fig. 8 shows the results of one (of many) experiments using 
the back propagation ANN with both radiometric and textural 
features to predict and identify slump slides on the levees. Most 
of the known slides were detected, and some areas of the levee 
that appear to be suspect but not previously known to have 
fully developed slides were also flagged as shown. One such 
area is on the opposite side of the levee from a known slide, 
leading to speculation (not yet verified) that through-seepage 
may have occurred there. 

Fig. 9 shows a map of the decomposition entropy feature in 
a levee segment with two slides: one of which was active at the 
time of the radar flight, the other had been repaired. Not only 
does the active slide show higher entropy values than the non-
slide portions of the levee, but the repaired slide more closely 
resembles the non-slide areas in having lower entropy values. 
This feature clearly has potential for our application and will be 
investigated further along with its related polarimetric 
decomposition parameters. 

As has been stated, these results are still preliminary and 
cannot yet be rigorously assessed or validated until more 
samples are tested. Fortunately, just before this paper went to 
press a gold mine of additional sample data presented itself: the 
great flood of the spring of 2011 along the Mississippi River. 

V. FUTURE WORK 
Reports from the USACE on the great flood of spring 2011, 

a 100 year flood event, are being analyzed in conjunction with 
extra flights of the UAVSAR and extra TerraSAR-X satellite 
acquisitions corresponding to times near, during, and after the 
peak flood levels. Though the mainline levees held during this 
flood (no catastrophic failures), there were many issues with 
slump slides, through-seepage, and sand boils that had to be 
quickly repaired by the Corps. The radar signatures 
corresponding to their locations will analyzed with the 
algorithms reported on here for further training and validation. 
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Figure 4. Location of TerraSAR-X satellite SAR scenes in 
relation to the larger UAVSAR image swath. 

 
Figure 1. Illustration of levee failure mechanisms, including 

slough slides and sand boils 

 
Figure 2. Typical levee slough (or slump) slide. This one 
appeared during the major flood event in the Spring of 2011 

 
Figure 3. Study area with radar color composite image 
overlaid on base map. Radar swath is 20 km wide and total 
length is 238 km of the lower Mississippi River valley 
bordering Arkansas, Mississippi, and Lousisiana. 
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Figure 5. Example of in-situ soil properties data: soil moisture along levees 
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Figure 6. Approach to the levee feature classifier design 

 

 
Figure 7. Levee slide classification using best 2 GLCM 
features selected by S-LDA algorithm 

 
Figure 8. Results of ANN classifier prediction of slump slides on a 
section of levee, using X-band 

 
Figure 9. Color-coded mgnitude of Shannon Entropy computed 
from the L-band UAVSAR data, showing high relative value 
corresponding to an active slide, with lower values in a nearby slide 
that had been repaired before the radar acquisition 

 


