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Summary

1. There is currently much interest in replacing the design-based component of conventional

distance sampling methods by a modelling approach where animal densities are related to

environmental covariates. These models allow identification of relationships between density

and covariates. One of the uses of such models is to assess the effects of some intervention on

numbers for species of conservation interest in designed distance sampling experiments.

2. In this context, we use an integrated likelihood approach for modelling sample counts,

adopting a Poisson model and allowing imperfect detectability on the sample plots. We use

the method of Royle, Dawson & Bates (2004, Ecology, 85, 1591), extended to model heteroge-

neity in detection probabilities using either multiple covariate distance sampling methods or

stratification. Moreover, we include a random effect for site in the plot abundance model to

accommodate correlation in repeat counts at a single site.

3. These developments were motivated by a large-scale experimental study to assess the

effects of establishing conservation buffers along field margins on indigo buntings in several

US states. We analyse the data using an integrated likelihood and include model selection for

both the Poisson rate of counts and detection probabilities. We assess model performance by

comparing our results with those using a two-stage approach (Buckland et al. 2009, Journal

of Agricultural, Biological, and Environmental Statistics, 14, 432) which we extended by includ-

ing a random effect for site in the plot abundance model.

4. The two methods led to the same selected models and gave similar results for parameters,

which revealed significant beneficial effects of buffers on indigo bunting densities. Densities

on buffered fields were on average 35% higher than on unbuffered fields. Using a detection

function stratified by state captured some of the heterogeneity in detection probabilities

between the nine states included in the analyses.

5. Synthesis and applications. We develop and compare two methods for analysing data from

large-scale distance sampling experiments with imbalanced repeat measures. By including a

random site effect in the plot abundance model, we relax the assumption of independent sam-

ple counts which is generally made for distance sampling methods, and we allow inference to

be drawn for the wider region that the sites represent.

Key-words: conservation buffers, designed experiments, habitat model, heterogeneity in

detection probabilities, model selection, point transect sampling, Poisson rate adjusted for

imperfect detection

Introduction

Distance sampling is a commonly used tool for assessing

wildlife populations (e.g. Buckland, Goudie & Borchers

2000; Ca~nadas & Hammond 2006; Marques et al. 2007).*Correspondence author. E-mail: cornelia@mcs.st-and.ac.uk
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Traditionally, inference on abundance relies on a model-

based component (the estimation of the detection function

to account for imperfect detection) and a design-based

component (estimation of the encounter rate in the study

area based on encounter rate estimates along the transect

lines or points, Buckland et al. 2001). The design-based

component assumes that transect lines or points are ran-

domly distributed within the study area. There is currently

much interest in replacing the design-based component of

distance sampling analysis methods by a modelling

approach, for which random line location is not assumed,

and which relates animal density to covariates such as

habitat (Hedley, Buckland & Borchers 1999; Buckland

et al. 2004; Hedley & Buckland 2004; Royle, Dawson &

Bates 2004; Johnson, Laake & Ver Hoef 2010; Sillett

et al. 2012). This allows identification of relationships

between animal densities and the covariates retained in

the best fitting model which may be of particular interest

when the objective of the study lies in establishing the sig-

nificance of an effect in a designed experiment (Buckland

et al. 2009). If, for example, the interest lies in establish-

ing whether a habitat restoration project had the desired

effect, lines or points can be laid out in restored habitat

and paired up with lines or points on nearby unrestored

control habitat of similar type. Sample counts are taken

at least once at each line or point. A two-level factor

covariate, corresponding to samples from treated or

untreated habitat, is included in the model, allowing infer-

ence on the difference in densities between treatment and

control plots.

This paper was motivated by a study in which the effect of

establishing conservation buffers along row crop field mar-

gins on indigo bunting Passerina cyanea L. density was of

interest. Over 400 survey sites, each comprising a pair of

points (one treatment and one control), were established in

farmland in several states in the USA. Treatment points

were at the edge of buffered fields, while control points were

located at the edge of nearby unbuffered fields. Each site was

surveyed between 1–4 times in each of 2 years. Observers

recorded the number of detected male birds in predefined

distance intervals. A designed distance sampling survey of

this magnitude to assess the effect of a conservation measure

is unusual if not unique.

Buckland et al. (2009) describe a two-stage model-based

approach for analysing distance sampling count data from

experimental studies. In the first stage, a detection func-

tion is fitted to the distance data, from which an offset is

estimated to account for imperfect detection within the

surveyed plot. In the second stage, the offset is incorpo-

rated in a Poisson count model. This two-stage model is

similar to the approach described by Hedley & Buckland

(2004). However, it focuses on the relationship between

animal density and covariates in the context of testing for

a treatment effect in a designed distance sampling experi-

ment. By contrast, Hedley & Buckland use these relation-

ships to make density predictions throughout the study

area. The shortcoming of this two-stage modelling

approach is that the offset, and hence the detection func-

tion from the first stage, is assumed known. Nonparamet-

ric bootstrapping is then used to quantify precision of

parameter estimates, to allow uncertainty from fitting the

detection function to propagate into the second stage.

Royle, Dawson & Bates (2004) developed an integrated

likelihood for point transect data where distances were

measured in intervals. These authors combined the covari-

ate model for the latent variable Np (true but unknown

numbers of animals at the point) with the cell probabili-

ties fi (derived from the detection function, which was

assumed to be half-normal) to model the observed counts

npi in the ith distance interval at the pth point. An advan-

tage of their approach is that all model parameters for

both the Np and the fi are estimated in one step.

We extend this integrated approach in the following

ways. We include covariates in the detection function

model, and use a stepwise method to select between mod-

els. We also include a random effect for site in the plot

abundance model. A site may include multiple lines or

points, and may have repeat counts; this approach accom-

modates any correlation in multiple counts from the same

site. By contrast, existing distance sampling methods

assume that each count is independent.

In the following we begin by describing our extended

version of the integrated likelihood of Royle, Dawson &

Bates (2004) for both line and point transects (see

Integrated likelihood approach), analyse our case study

using this integrated likelihood, and contrast results with

those using the two-stage approach (Case study: point

transect surveys of indigo buntings).

Materials and methods

INTEGRATED LIKEL IHOOD APPROACH

The likelihood function

Consider a wildlife study carried out at a number of sites, at each

of which point or line transects are placed according to some

design. Each site is surveyed at least once following a distance

sampling protocol (Buckland et al. 2001). For line transects, the

observer travels down the line and records the perpendicular dis-

tances to the line for each detection of the species of interest. For

point transects, the observer remains at the point for a fixed

amount of time and records the distances from the point to the

detections. Distances can be recorded either exactly or in inter-

vals. We assume that animals on the line or point are certain to

be detected. If all animals within a distance w of the line or point

were detected, then observed counts at the line or point would

equal the true number of animals on the plot of half-width (lines)

or radius (points) w. These counts could be modelled via a log-

link using a generalised linear mixed model (glmm) with a Pois-

son error structure (E(Njpr) = kjpr) where Njpr is the total number

of animals present within the plot of size a at visit r to line/point

p of site j. The plot size a equals 2wljpr for lines (ljpr = length of

the respective line) and pw2 for points. kjpr may then be modelled

by a linear predictor via a log-link function using:
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kjpr ¼ exp b0þbjþ
XK
k¼1

xkjprbK

 !
: eqn 1

Here, b0 represents the fixed effect intercept, bj the random

effect for site j with bj �N 0; r2b
� �

, xkjpr the observed values of the

k = 1,…,K fixed effects and bK the associated coefficients. In the

following, b0,…,bK may be summarised as b.

As detection is generally not perfect on the plot, we need a for-

mulation to allow for detectability decreasing with distance from

the line or point. Here we employ the unconditional probability

density function of observed distances f(y) = p(y)g(y) (Royle,

Dawson & Bates 2004). p(y) describes the expected distribution

of animals (whether detected or not) with distance from the line

or point, and g(y) the probability of detecting an animal given

that it is at distance y. p(y) is assumed to be known (1/w for

lines and 2y/w2 for points) and a detection function model is pro-

posed for g(y) (Buckland et al. 2001). Detection function parame-

ters are summarised as h. in the following. Our approach assumes

that distances from the line or point are recorded by distance

interval, or, if distances are recorded exactly, that these are

binned into intervals after the survey is completed.

Royle, Dawson & Bates (2004) showed that when using the

unconditional formulation for f(y) for interval distance data, the

area under f(y) between the cutpoints of the intervals ci represent

the proportions of Njpr recorded within the ith interval (as

opposed to the proportions of njpr when using the conditional f

(y) from Buckland et al. 2001) and can be obtained using:

fi ¼
Z ci

ci�1

fðyÞdy ¼
Z ci

ci�1

pðyÞgðyÞdy: eqn 2

Hence, we divide the observed counts njpr at the line (point)

into the counts made within each distance interval i and consider

these counts njpri as a Poisson random variable, njpri ~ Poisson(kjpr
fi). The integrated likelihood function, where the Poisson rate kjpr
(equation 1) is adjusted for imperfect detectability using fi (equa-

tion 2), is then defined as (modified from McCulloch & Searle

2001):

Ly;nðb;rb; hÞ ¼
YJ
j¼1

Z1
�1

YPj

p¼1

YIj
i¼1

YRj

r¼1

kjprfi
� �njpri e �kjprfið Þ

njpri!

 !
1ffiffiffiffiffiffiffiffiffiffi
2pr2b

q e
� 1

2r2
b

b2j
dbj

eqn 3

J equals the total number of sites. Pj and Rj refer to the total

number of lines (points) and visits to a line (point) for the jth

site, respectively and may vary between different sites. The outer-

most distance interval Ij is generally the same for each site. The

component inside the brackets of the right hand side of equation

(3) pertains to the Poisson likelihood of the observed counts njpri
and the component to the right of the brackets to the normal

densities of the random effect coefficients.

By maximizing this likelihood function, e.g. by using the optim

or nlm function in R, all parameters are estimated simulta-

neously. Although it is easier to maximize the log-likelihood, the

likelihood values inside the integral cannot be converted onto the

log scale before integration, so (3) becomes:

lnLy;nðb;rb; hÞ ¼

XJ
j¼1

ln

Z1
�1

YPj

p¼1

YIj
i¼1

YRj

r¼1

kjprfi
� �njpri e �kjprfið Þ

njpri!

1ffiffiffiffiffiffiffiffiffiffi
2pr2b

q e
� 1

2r2
b

b2j
dbj

2
64

3
75 eqn 4

Modelling heterogeneity in detection probabilities

Note that in the formulations above (eqn 3 and 4), detections

from all points are pooled to obtain parameter estimates for one

common f(y) assuming no heterogeneity in detection probabili-

ties between different lines (points) or different detections. Heter-

ogeneity in detection probabilities can be modelled using

stratification or multiple covariate distance sampling (MCDS)

(Buckland et al. 2001:88-92), replacing the global fi with stratum-

specific or covariate-specific fjpri in (3) and (4). The fjpri may

require further breaking down when strata or covariates differ

between detections during the same visit to a line or point (e.g.

male vs. female birds).

For post-stratification, observed distances are divided into dif-

ferent strata based on one of the available covariates. Detection

function parameters are estimated for each stratum. Stratifying

the detection function by, say, covariate state, involves fitting a

separate detection function to the detections from each state. A

more parsimonious approach is MCDS (Marques & Buckland

2003). Here, the scale parameter of the hazard-rate or half-nor-

mal key function g(y) is modelled as a function of fixed effect

covariates z : r zð Þ ¼ expðb0 þ
PQ

q¼1 zqbqÞ. The density of

observed distances conditional on the associated covariates z

becomes f(y|z). This allows us to model detection probabilities

not only as a function of increasing distance from the point or

line but also with respect to covariates affecting detection condi-

tions and detectabilities of animals.

Model selection

The function value returned by optimising equation (4) is the log-

likelihood (lnL) of the model evaluated at the maximum likeli-

hood estimates of the parameters. This can be converted into a

model selection criterion, e.g. AIC where AIC = �2lnL + 2p

(p = the number of parameters) (Akaike 1979). In cases where

the number of possible models is too large to consider, stepwise

model selection may be used where one covariate is added to or

removed from the model at a time. To obtain model-

averaged estimates for parameters of interest, a weighted average

may be taken across the models using AIC weights (Buckland,

Burnham & Augustin 1997).

Estimates of precision

Standard errors of parameter estimates are given by the square-

root of the diagonal elements of the inverse of the Hessian

matrix. The Hessian is calculated by optimisation routines such

as the optim and nlm commands in R.

CASE STUDY: POINT TRANSECT SURVEYS OF INDIGO

BUNTINGS

The data

The National CP-33 Monitoring Program coordinated by the

Mississippi State University, Department of Wildlife, Fisheries,

and Aquaculture was set up to monitor beneficial effects of her-

baceous buffers around agricultural fields on bird densities in sev-

eral Southeastern and Midwestern states (Evans et al. 2013). To

set up a monitoring scheme, a minimum of 40 CP-33 contracts
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per state were randomly selected from all CP-33 contracts. Buf-

fered treatment fields within these contracts were selected for

monitoring of several priority species. Here, we analyse data on

indigo buntings, a common passerine found throughout the east-

ern United States in the northern summer where it breeds in bru-

shy borders to deciduous woodland.

During the breeding seasons of 2006–2007, point transect sur-

veys were conducted from one point per field located in the buffer

at the edge of the field. Unbuffered control points on the edge of

fields of the same agricultural use, located 1–3 km away, were sur-

veyed concurrently to ensure similar conditions. Each pair of adja-

cent treatment and control points was considered a site, and each

site was surveyed between 1–4 times per survey year. The objective

was to evaluate whether buffers result in higher bird densities.

The indigo bunting is a sexually dimorphic species; males are

bright blue, particularly during breeding, while females are dull

brown. Males engage in territorial song during the breeding sea-

son, making them easy to detect. Hence, observers recorded all

male indigo buntings detected visually or aurally in a 10-minute

period in predetermined distance intervals (0–25, 25–50, 50–100,

100–250, 250–500, >500 m). We assume that indigo buntings dis-

tribute themselves independently of point locations. Only those

sites surveyed at least once in each of the two survey years were

included. An additional criterion was that each state included in

the analysis contained >50 detections. The 446 sites satisfying

these criteria were located in nine states.

Analysis using the integrated likelihood approach

In preliminary modelling of the detection function, estimated

detection probabilities dropped below 0�1 beyond 100 m regard-

less of model choice, and so following recommendations of

Buckland et al. (2001), we limited the analysis to the three

innermost distance intervals (0–25, 25–50 and 50–100 m). With

just three intervals, and allowing a degree of freedom for

assessing model fit, we considered only one parameter models

for the detection function. Hence model selection for the detec-

tion function was between the half-normal and hazard-rate

models, where for the latter, the shape parameter was fixed.

For the same reason, we modelled heterogeneity using three

possible stratification factors: year (2006 or 2007), type (treated

or control field) and state (9 levels). We used AIC to select

appropriate values for the fixed shape parameters for the global

or the stratified hazard-rate functions.

The expected abundances were modelled using equation (1),

with year, type, continuous Julian day and state as possible cova-

riates. In these models, the parameter of interest was the covari-

ate type. A significant type term in the plot abundance model

would indicate a difference in expected bird densities between the

paired control and treated plots. The random effects term bj was

assumed normal with bj �Nð0;r2bÞ. Analytical standard errors

(ASEs) were obtained from the Hessian matrix.

We used stepwise forward model selection as described in

the Model selection section. For each contending model, equa-

tion (4) was maximized using the optim function in R, where

the total number of sites was J = 446 and the total number of

distance intervals was Ij = 3. Rj ranged from 2 to 8 visits per

site. As each site comprised two points, one control and one

treatment, p = 1 or 2. The R code is given in Appendix S1 in

Supporting Information.

Results

During the two survey years included in this study, 2006–

2007, 2924 counts at control or treatment points of the

446 sites were made. During these counts, a total of 3785

indigo buntings were detected in the three innermost dis-

tance intervals. The data were analysed using the inte-

grated approach described in the Integrated likelihood

approach section. For comparison, the same data were

analysed with the two-stage approach described by Buck-

land et al. (2009) for which methods are detailed in the

Appendix S2 in Supporting Information. In brief, for the

two-stage approach the second stage density model condi-

tions on a first stage detection function model by incorpo-

rating the effective area (estimated from the detection

function) as an offset. To estimate uncertainty of parame-

ter estimates, a nonparametric bootstrap was conducted.

MODEL SELECTION

For the integrated approach, forward stepwise model

selection was started with the half-normal model for the

detection function and an intercept and random effect for

the plot abundance model (Table 1). Considering the glo-

bal and stratified hazard-rate models next (stratified by

Table 1. Models included in the forward stepwise model selection including the half-normal (HN) and the global and stratified hazard-

rate (HR) detection functions for the detection model and the inclusion of four covariates in the abundance model in addition to the

intercept ß0 and the random effect bj. The shape parameter of the HR function was generally fixed at 2 except for the state stratified

model where they were fixed at 2, 2�5, 2, 2�5, 2, 2, 2, 3, 2 for the nine states respectively. The column ‘Improved?’ refers to whether or

not the respective model yielded an improved AIC compared to the previous and whether or not this model should be retained

ID Detection model Abundance model Log-likelihood Parameters AIC Improved?

1 HN global ß0 + bj �7327�74 3 14661�48 NA

2 HR global ß0 + bj �7296�49 3 14598�97 yes

3 HR by year ß0 + bj �7295�73 4 14599�47 no

4 HR by type ß0 + bj �7268�85 4 14545�69 yes

5 HR by state ß0 + bj �7248�12 11 14518�24 yes

6 HR by state ß0 + bj + year �7247�77 12 14519�55 no

7 HR by state ß0 + bj + type �7205�50 12 14435�01 yes

8 HR by state ß0 + bj + type + JD �7198�99 13 14423�97 yes

9 HR by state ß0 + bj + type + JD + state �7121�78 21 14285�56 yes

© 2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society, Journal of Applied Ecology, 50, 786–793

Distance sampling: models for non-independent data 789



one of year, type or state) for the detection function indi-

cated that a state-stratified hazard-rate model gave the

lowest AIC values. With this model for the detection

function, covariates were added to the plot abundance

model one at a time and retained if inclusion lowered the

AIC value. Here, the best model by AIC included the

covariates type, Julian day and state. We did not consider

model averaging as the difference in AIC values between

the best and the second best model was 138, so that the

model-averaged estimates would be the same as the esti-

mates under the best model. The same models were

selected for the two-stage approach.

COMPARING CONTENDING MODELS FROM THE

INTEGRATED APPROACH

Parameter estimates with standard errors for each con-

tending model for the integrated approach from Table 1

are shown in Appendix S3 in Supporting Information.

Substantial differences in parameter estimates between

models were obtained by including state in the plot abun-

dance model (model 9). This resulted in an increase in

detection function parameters for seven states and a

decrease for the remaining two. Given the same trunca-

tion distance and fixed shape parameters, larger scale

parameters of a hazard-rate detection function translate

into larger estimates of fjpri (i.e. proportions of the true

number of birds Njpr that were detected) for the respective

strata. Including state in the plot abundance model also

led to a decrease in the random effect standard deviation.

The change in detection function parameters was

probably because with state in the abundance model, the

state-specific fjpri represent proportions of the estimates of

the expected Njpr that are modelled as a function of state

(as well as of type and Julian day), while before they rep-

resented proportions of estimates of the expected Njpr that

were not modelled as a function of state. In addition to a

change in point estimates for parameters, the standard

errors increased for all detection function parameters after

including state in the abundance model (model 9 com-

pared to models 5–8).

The decrease in the random effect standard deviation

for model 9 indicated that the state covariate modelled

part of the variation absorbed by the random effects coef-

ficients in the plot abundance models 1–8 (Appendix S3).

COMPARING BEST MODELS FROM THE INTEGRATED

AND TWO-STAGE APPROACH

For the best fitting model, estimates of the scale parame-

ters of the hazard-rate detection function from the inte-

grated approach ranged between 26�11 for Tennessee

(ASE = 0�04, fixed shape = 2�0, Table 2) and 57�79 for

South Carolina (ASE = 4�40, fixed shape = 3�0). They

were generally larger for the integrated approach except

for Mississippi where the estimate was slightly smaller.

The discrepancy between parameter estimates was less

than 10% in five states and up to 24% in the remaining

four.

In the following we refer to baseline expected number

of male indigo buntings within the plot area a for the val-

ues returned by the model after setting the covariates to

type = Control, Julian day = 174 (the mid-point of all

days surveyed), state = GA and incorporating a contribu-

tion of the random effects term using the mean of

logNð0; r̂2bÞ. To compare these baselines for the two

approaches, we applied the following transformation:

exp (intercept + Julian day coefficient 9 174 + 0�5 9 r̂2bÞ
using the coefficient values from Table 2 for the respective

approaches (see equations (1) and (6) for details). For the

two-stage approach the resulting value was also multiplied

by the search area of the plot (a = pw2 = 31416 m2), as

the intercept represents birds m�2 (as opposed to birds

per search area of the plot for the integrated approach).

The baseline expected numbers of male indigo buntings

per plot were 1�05 (ASE = 0�29) and 1�43 (BSE = 0�59)
(or 33�52 (ASE = 9�12) and 43�51 (BSE = 18�91) birds

km�2) for the integrated and two-stage approach, respec-

tively.

The remaining fixed effects represent proportional

changes compared to this baseline. The type coefficient

was the same for the two approaches (0�30, Table 2) with

ASE = 0�02 for the integrated approach and ASE = 0�03
and bootstrap standard error (BSE) = 0�04 for the two-

stage approach. This indicated a 35�0% increase in density

or abundance on the treated fields (exp (0�30) = 1�35).
For the remaining fixed effect coefficients in the plot

abundance model, parameter estimates were again larger

for the integrated approach. The coefficient for the con-

tinuous covariate Julian day was 0�0053 (ASE = 0�0005)
for the integrated likelihood approach and 0�0046
(ASE = 0�0017, BSE=0�0018) for the two-stage approach.

Discrepancies in estimates for the state coefficients

between the two approaches were more pronounced than

for detection function parameters, ranging between 1 and

111%. Larger coefficients again translate into proportion-

ately larger increases in abundances or densities for the

respective factor levels compared to the baseline expected

number of birds. The random effect standard deviation

was slightly larger for the integrated likelihood approach

(0�50, ASE = 0�02 vs. 0�49, BSE = 0�04).
Comparing ASEs between the two approaches, those

corresponding to detection function parameters were

smaller for the integrated approach for three states and

larger for the remaining six, whereas ASEs from the inte-

grated approach were smaller than BSEs from the two-

stage approach in five states and larger in four.

ASEs for the intercept and the coefficients for type and

Julian day in the plot abundance models were smaller for

the integrated approach than ASEs and BSEs for the two-

stage approach. For the state coefficients, ASEs from the

integrated approach were always larger than ASEs from

the two-stage approach but always smaller than BSEs.

© 2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society, Journal of Applied Ecology, 50, 786–793

790 C. S. Oedekoven et al.



Discussion

Designed experimental studies generally have an advan-

tage over purely observational studies in that they allow

inference on cause and effect of a treatment. Designed

experiments allow attribution of the change in animal

abundances directly to the treatment, while purely obser-

vational studies do not.

For the CP-33 Monitoring Program, the experimental

design comprised sites, each with a pair of survey points,

one in a buffered treatment field and one in a nearby

unbuffered control field; repeat surveys were conducted

concurrently at both points of each site. This study is pos-

sibly unique due to its scale (over 400 sites with repeat

surveys each year at each site). Analysis of such data is

complex and it is critical to attribute the causes for varia-

tions in observed counts to the correct sources by appro-

priate model specification together with objective model

selection criteria.

The aim of our case study was to determine whether

buffers improved habitat for birds which would be indi-

cated by higher abundances near buffered compared to

unbuffered fields. As detection on the plot was not per-

fect, one source of differences in observed abundances

between buffered and unbuffered fields could have been

different detection probabilities between these two strata.

Hence, we selected the best of a range of competing detec-

tion models.

Further, it was necessary to rule out that variations in

abundances could be best explained by other covariates in

the abundance model. Hence, we also included a selection

routine for the contending abundance models to objec-

tively arrive at the best fitting model. The significant type

term with a positive coefficient of 0�30 for level Treated in

the best fitting abundance model demonstrated that imple-

mentation of buffers resulted in an increase of indigo bun-

ting densities by 35%. Previous studies have shown

beneficial effects of such buffers for birds (e.g. Evans

et al. 2013). Conover, Burger & Lindner (2011) showed

that field buffers increased nesting activities along field

margins for a range of birds, including indigo buntings.

In contrast, Riddle & Moorman (2010) showed that

implementing field borders had no beneficial effect on

nesting success of indigo buntings. However, their effort

was limited to 12 hog farms and his inference limited to

breeding success. Besides the potential for additional

breeding habitat, buffers may also provide new habitat

for foraging and escape cover. While our results give evi-

Table 2. Maximum likelihood estimates (MLE), analytic (ASE) and bootstrap (BSE, two-stage approach only) standard errors for detec-

tion function and abundance/count model parameters obtained by the integrated likelihood and the two-stage approach for the respec-

tive best models. Shape parameters for the one-parameter hazard-rate detection function were fixed (see Analysis using the integrated

likelihood approach). States included are Georgia (GA), Illinois (IL), Indiana (IN), Kentucky (KY), Missouri (MO), Mississippi (MS),

Ohio (OH), South Carolina (SC) and Tennessee (TN)

Integrated likelihood Two-stage

Fixed shapeMLE ASE MLE ASE BSE

Detection model parameters

Scale State GA 45�85 9�33 37�27 7�72 8�12 2

Scale State IL 36�03 3�21 34�42 2�86 3�17 2�5
Scale State IN 27�31 2�66 24�34 2�35 4�92 2

Scale State KY 29�63 1�23 27�75 1�13 1�52 2�5
Scale State MO 41�31 3�03 37�78 3�14 2�86 2

Scale State MS 38�50 3�31 38�73 3�33 4�21 2

Scale State OH 27�15 2�16 24�59 1�97 1�94 2

Scale State SC 57�79 4�40 56�30 4�13 6�85 3

Scale State TN 26�11 0�04 21�08 1�74 3�51 2

Abundance model parameters

Random effects

Standard deviation 0�50 0�02 0�49 NA 0�04
Fixed effects

Intercept Njpri �0�99 0�28
Intercept Djpr �10�91 0�29 0�43
Type Treated 0�30 0�02 0�30 0�03 0�04
Julian Day 0�0053 0�0005 0�0046 0�0017 0�0018
State IL 1�46 0�32 1�20 0�18 0�38
State IN 1�50 0�32 1�34 0�18 0�49
State KY 2�00 0�29 1�79 0�17 0�36
State MO 0�53 0�29 0�32 0�16 0�36
State MS 1�25 0�31 0�91 0�17 0�37
State OH 1�11 0�30 0�92 0�17 0�37
State SC 0�59 0�31 0�28 0�18 0�39
State TN 2�14 0�28 2�12 0�17 0�44
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dence of larger densities of indigo buntings on buffered

fields, behavioural data would be necessary to make infer-

ence on how these birds make use of this habitat.

Furthermore, it is essential to avoid false inference due

to random variation in observed counts (in contrast e.g. to

variation in observed counts due to a response to the treat-

ment), which is more likely to occur if sites are surveyed

only once. Hence, Buckland et al. (2009) recommended

that repeat surveys be made on plots. This, however, possi-

bly introduces correlation between counts at the same site

which we accommodated by including a random effect for

site in the abundance model. This is a new technique in the

context of distance sampling analysis methods where

covariate models for abundance have generally been lim-

ited to fixed effects. If sites are few and budget limitations

allow for multiple repeats of counts at each site, site may

indeed be included as a fixed effect in the abundance

model, although inference is then restricted to the sites

surveyed. For large-scale studies, such as our case study,

this strategy would require the estimation of too many

parameters. In any case, we wish to draw inference on the

effects of field buffers generally, and not just on those field

buffers in the survey, and inclusion of a random effect for

site in the abundance model allows us to do this.

Potential correlations between counts at the same site

may be accommodated by expanding the two-stage

approach of Buckland et al. (2009) by including a random

effect for site in the count model (see Appendix S2). How-

ever, the two-stage approach conditions on the first-stage

detection model for the second-stage density model and

uncertainty from the first stage does not propagate into

the second stage. For our case study, this was evident in

artificially small analytical standard errors for state in the

count model obtained with the two-stage approach.

Underestimation of standard errors may result in retain-

ing the wrong covariates in the final model. This issue

may generally be avoided using the integrated likelihood

approach where all parameters are estimated simulta-

neously. Hence, the integrated approach with the random

effect in the plot abundance model has this additional

benefit over the two-stage approach.

We considered a collection of abundance models and

models for the detection function. One may argue that

modelling raw counts (i.e. not adjusted for imperfect

detection on the plot) in a glmm without an offset might

have been sufficient for inference on the parameter of

interest. For our case study, inference on the parameter of

interest, the type coefficient, would have remained the

same regardless of choice of model (those including type

in the plot abundance model, models 7–9, Appendix S3)

or approach (Table 2). As the best detection function did

not include the type covariate and state and type were not

correlated (absolute correlation between type and any

state coefficients was <0�01), inference on this parameter

would have also remained the same if modelling raw

counts in a glmm without any offset. However, inference

on parameter estimates for a covariate that is in both the

detection function and the abundance model may differ

substantially between the integrated and the two-stage

approach (or when comparing either of these approaches

to modelling raw counts). Dissimilarities between esti-

mates for state both in the detection function and the

abundance model likely resulted from estimating all

parameters in one step for the integrated approach as

opposed to two steps for the two-stage approach. Hence,

we emphasise again the importance of modelling heteroge-

neity in detection probabilities and obtaining parameter

estimates for both models in one step. Conceptually the

difference between the approaches is that for the inte-

grated approach, we assume that the patterns by which

animals distribute themselves in the study area (and

resulting densities) and the observation process influence

each other, while they are considered as separate pro-

cesses for the two-stage approach. We argue – along the

lines of Royle, Dawson & Bates (2004) and Johnson,

Laake & Ver Hoef (2010) – that the former case is the

more realistic assumption.

We expect designed distance sampling experiments to

become widely used for assessing effectiveness of conserva-

tion measures, and for environmental impact studies. The

use of random effects as described here allows correlations

in multiple counts from a single sampling unit to be accom-

modated, and allows inference to be extended to a wider

area for which the sites are a representative sample, thus

strengthening the ability of wildlife and natural resource

managers to evaluate the implications of changes in the

environment. We demonstrated that modelling heterogene-

ity in detection probabilities may have a strong influence on

parameters in the plot abundance model and that using a

model selection routine is necessary to determine which

parameters should be retained in the final models.
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