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In the context of data mining and knowledge discovery, a large dataset of vapor-grown carbon nanofiber
(VGCNF)/vinyl ester (VE) nanocomposites was thoroughly analyzed and classified using support vector
machines (SVMs) into ten classes of desired mechanical properties. These classes are high true ultimate
strength, high true yield strength, high engineering elastic modulus, high engineering ultimate strength,
high flexural modulus, high flexural strength, high impact strength, high storage modulus, high loss
modulus, and high tan delta. Resubstitution and 3-folds cross validation techniques were applied and dif-
ferent sets of confusion matrices were used to compare and analyze the classifier’s resulting classification
performance. The designed SVMs model is resourceful for materials scientists and engineers, because it
can be used to qualitatively assess different nanocomposite mechanical responses associated with
different combinations of the formulation, processing, and environmental conditions. In addition, the
lead time required to develop VGCNF/VE nanocomposites for particular engineering application will be
significantly reduced using the designed SVMs classifier. This work specifically present a framework
for a fast and reliable classification of a large material dataset with respect to desired mechanical prop-
erties, and can be used for all materials within the context of materials science and engineering.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The support vector machines (SVMs) methodology [1] is consid-
ered a widely used technique by the artificial intelligence commu-
nity. It can be employed to design classifiers using datasets of
different sizes and dimensions and from different knowledge
domains. SVMs can be used for both supervised and unsupervised
learning methodologies [1]. Supervised learning can be imple-
mented using a relatively small number of data vectors (points).
However, some prior knowledge of the problem is needed to assist
the SVMs model in generalizing to unknown data vectors and thus
predicting the correct quantity. Unsupervised learning typically
requires a large number of data vectors within a particular dataset
to adequately discover the relationship between the dataset’s
dimensions and to model the problem appropriately without
over-training (over-fitting) the model [1]. The development of
SVMs involves theory first, then implementation and experiments
take place whereas other classifiers, like ANN follow a heuristic
path, with applications and extensive experimentation preceding
theory [1]. A significant advantage of SVMs is that other classifiers
like ANN can suffer from multiple local minima whereas the solu-
tion to an SVM is global and unique. Two more advantages of SVMs
are that that have a simple geometric interpretation and give a
sparse solution. Unlike other techniques, the computational com-
plexity of SVMs does not depend on the dimensionality of the input
space. In addition, ANNs for example use empirical risk minimiza-
tion, whereas SVMs use structural risk minimization [1]. The rea-
son that SVMs often outperform other classifiers in practice,
especially ANNs, is that they are less prone to overfitting [1].

SVMs classifiers generally perform poorly on highly unbalanced
datasets because they are designed to generalize from sample data
and output the simplest hypothesis that best fits the data, based on
the principle of Occam’s razor. This principle is embedded in the
inductive bias of many machine learning algorithms including
decision trees, which favor shorter trees over longer ones [2]. With

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2014.12.029&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2014.12.029
mailto:abuomar@cavs.msstate.edu
http://dx.doi.org/10.1016/j.commatsci.2014.12.029
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


O. Abuomar et al. / Computational Materials Science 99 (2015) 316–325 317
unbalanced data, the simplest hypothesis is often the one that
classifies almost all instances as negative or all instances as posi-
tive. In addition, highly unbalanced datasets will have a negative
effect on the designed classifier by making it too sensitive to noise
and more prone to learn an erroneous hypothesis [2].

These problems are encountered on highly unbalanced datasets.
According of what has mentioned in literature, an imbalance of 100
samples of one class to 1 sample of another class exists in fraud
detection domains, even approaching 100,000 samples of one class
to 1 sample of another class in other applications [2].

SVMs can also classify linearly and nonlinearly separable data
into two or more classes [1]. SVMs have recently been employed
as an application of data mining and knowledge discovery tech-
niques in the context of materials science and engineering to facil-
itate the discovery of new knowledge [3–6]. For example, materials
scientists can use SVMs to interpret experimental data. This activity
can not only accelerate research, but also aid in the development of
new materials with desired mechanical properties. In short, data
mining approaches are being fueled by dynamic growth in the
information technology sector and is driving the interest in SVMs,
machine learning, information retrieval, and other knowledge rep-
resentation in different engineering disciplines [7]. Abuomar et al.
[8] applied an artificial neural network (ANN) technique to a data-
set associated with the viscoelastic response of a vapor-grown car-
bon nanofiber (VGCNF)/vinyl ester (VE) nanocomposite material
system. The ANN was trained using the resubstitution method
and the 3-fold cross validation (CV) technique to predict the
responses (i.e. storage modulus, loss modulus, and tan delta) with
the minimal mean square error [8]. Nunes et al. [9] evaluated the
efficiency and accuracy of artificial intelligence techniques to clas-
sify ultrasound signals, raw data and feature selection methods,
background echo and backscattered signals acquired at frequencies
of 4 and 5 MHz to characterize the microstructural kinetics of phase
transformations on a Nb-base alloy, thermally aged at 650 and
950 �C for 10, 100 and 200 h. Papa et al. [10] implemented SVMs,
Bayesian and Optimum-Path Forest (OPF) based classifiers, and also
the Otsu’s method for automatic characterization of particles in
metallographic images. De Albuquerque et al. [11] presented an
ANN model to automatically segment and quantify material phases
from SEM metallographic images and then the results were com-
pared to a commercial software used for quantifying material
phases from metallographic images. The results of the new ANN
model were precise, reliable and more accurate and faster than
the commercial software [11]. In addition, De Albuquerque et al.
[12,13] presented a comparative analysis between backpropagation
multilayer perceptron and self-organizing maps (SOMs) topologies
applied to segment microstructures from metallographic images as
well as they applied an ANN computational solution to segment and
quantify the constituents of metallic materials from images. As
another application of radiographic images segmentation task, an
ANN model was employed to evaluate the delamination in laminate
plates due to drilling operation [14]. Roberts et al. [15] presented a
model that classifies different materials based on their microstruc-
ture. Based on microstructural characteristics such as Haralick vari-
ables [16], the Euler parameter [15], and the fractal dimension [15],
the designed SVMs classifier identifies the appropriate class of
given material sample [15]. Swaddiwudhipong et al. [17] utilized
and implemented least squares support vector machines (LS-SVMs)
[18]. Four LS-SVMs models that simulate the relationship between
the elasto-plastic material properties and indentation load–
displacement characteristics were designed; it was determined
that the LS-SVMs technique was robust in determining the power
hardening parameters given the fact that no iterative approaches
were used [18]. Hu et al. [19] used knowledge discovery to resolve
the problem of materials science image data sharing. Different
annotations for non-structured materials science data were
developed that utilize a complete ontology-based approach with
the aid of semantic web technologies [19]. Sabin et al. [20] used a
Gaussian process framework as a statistical technique to predict
the output (i.e. the mean logarithm of grain size (D)) based on a
probability distribution function over the training dataset. This
framework was trained based on the available input variables
(i.e. Strain, temperature (�C), and annealing time (s)) and tested to
make the corresponding predictions and estimations.

In this work, a specific class of advanced engineering materials
was studied, i.e., polymer nanocomposites [21]. These materials
have multifunctional properties and are extensively being used
for fuel cell, aerospace, automotive, catalysis, biomedical, and other
engineering applications. For example, nano-enhanced polymer
composites meet the requirements of improved stiffness proper-
ties and energy absorption characteristics in automotive structural
applications [22]. They have been the subject of extensive research
recently [23,24]. Abuomar et al. [25] applied data mining and
knowledge discovery techniques in order to analyze a thermoset-
ting viscoelastic VGCNF/VE nanocomposite material system [26–
29]. These techniques included SOMs, which are sometimes
referred to as Kohonen maps [30,31] and fuzzy C-means (FCM)
clustering [32,33]. The SOMs were used to determine the VGCNF/
VE nanocomposite systems that produce the same storage and loss
modulus for the lowest cost [25]. The FCM algorithm has also been
used to discover some of the mechanical and physical patterns in
the VGCNF/VE nanocomposite behavior after using the principal
component analysis (PCA) technique to reduce the number of
dimensions in the original dataset [34].

The current knowledge of the influence of formulation, process-
ing, and environmental factors on the mechanical behavior of
VGCNF/VE nanocomposites has been expanded in this study. This
was accomplished by including a wider range of measured
mechanical properties, i.e., viscoelastic [26], compressive and ten-
sile [35], flexural [36], and impact strengths [29]. Abuomar et al.
[37] implemented this idea initially for a smaller dataset, where
SVMs technique was used to analyze and classify a VGCNF/VE
dataset, including viscoelastic data, compressive and tensile prop-
erty data, and flexural property data into three classes of desired
mechanical properties, i.e., high storage modulus, high true
ultimate strength, and high flexural modulus. This new study,
however, provides a more general and comprehensive insight into
the mechanical behavior of VGCNF/VE nanocomposites for data
mining purposes by including the VGCNF/VE impact strengths data
as well as classifying and analyzing ten desired mechanical proper-
ties instead of three. The application of data mining and knowledge
discovery techniques to a comprehensive dataset of mechanical
responses of polymer nanocomposites is unprecedented and novel.
The SVMs technique is used in this work to separate the new
VGCNF/VE nanocomposite test data into ten different desired
mechanical property classes. Thus, an unknown VGCNF/VE sample
whose configuration is not represented by the current dataset can
be easily identified, analyzed, and classified into its corresponding
VGCNF/VE mechanical class without the need to conduct expen-
sive and time-consuming experiments. Materials scientists and
engineers can use the results of this study as a guideline to effi-
ciently design or optimize a material system for a certain engineer-
ing application. The lead time required to develop a new material
system for a specific engineering application can be significantly
reduced using this study’s fast and reliable qualitative assessment.
2. Materials and methods

The majority of data samples used in this work were generated
using various statistics-based designed experiments, utilizing a
general mixed level full factorial and central composite designs
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[26–29,35,36]. Different datasets were merged into a larger one
incorporating a total of 583 data points, i.e. 240 viscoelastic, 60
flexural, 172 compression, 93 tension, and 18 impact strength data
points for VGCNF/VE nanocomposites treated at different formula-
tion and processing conditions. Therefore, the VGCNF/VE dataset
used in this study is not highly unbalanced. Each data point corre-
sponds to combinations of nine input design factors and ten output
responses. The input factors of the new VGCNF/VE dataset are cur-
ing environment (air vs. nitrogen), use or absence of a dispersing
agent, strain rate, mixing method (ultrasonication, high-shear mix-
ing, combination of both), VGCNF weight fraction, VGCNF type
(pristine vs. oxidized), high-shear mixing time, ultrasonication
time, and temperature. The output factors (i.e., measured proper-
ties) are true ultimate strength, true yield strength, engineering
elastic modulus, engineering ultimate strength, flexural modulus,
flexural strength, impact strength, storage modulus, loss modulus,
and tan delta. These nine inputs and ten output factors (classes)
correspond to the different experimental formulation and process-
ing conditions of the new merged VGCNF/VE nanocomposites
system. Therefore, the effectiveness of the SVMs technique imple-
mented in this study is that materials scientists and engineers can
select the optimal manufacturing combination of input factors that
yield the desired mechanical property responses. For example, high
loss modulus and tan delta are desired in automotive applications,
where crash situations necessitate a high energy dissipation capa-
bility exhibited by the material system.

The inputs levels and ranges are given in Table 1. This table
includes also the outputs’ ranges of high mechanical property
responses. These values were used to train and develop the SVMs
model implemented in this study.

The choice of optimal input level combinations is based on sev-
eral industrial measures, among which are minimum fabrication
cost, fastest or most time-efficient fabrication, and achievement
of highest mechanical properties for the resulting VGCNF/VE nano-
composites. Often a combination of two or more of these measures
are desired.

In order to replace some of the missing and unknown data fields
in the new dataset, different data interpolation techniques were
implemented in this work [38]. These techniques include linear
Table 1
The experimental design factors, their levels and the high ranges of the mechanical prope

Factors Level/range

Inputs 1

Curing environment Air
Use of dispersing agent Yes
Strain rate (/second) 0.0001–2537.00
Mixing method USa

VGCNF fiber loading (phrc) 0.00 – 1.00
VGCNF type Pristine
High shear mixing time (min) 0.00–100.00
Sonication time (min) 0.00–60.00
Temperature (�C) 30 �C

Outputs (Mechanical property responses)
High true ultimate strength (MPa) 223.20–255.6
High true yield strength (MPa) 180.00–198.30
High engineering elastic modulus (GPa) 3.51–4.31
High engineering ultimate strength (MPa) 68.2–84.7
High flexural modulus (GPa) 3.15–3.69
High flexural strength (MPa) 80.90–117.10
High impact strength (J/md) 13.83–18.00
High storage modulus (GPa) 2.58–2.77
High loss modulus (MPa) 164.0–207.7
High tan delta 0.14–0.31

a Ultrasonication.
b High-shear mixing.
c Parts per hundred parts of resin.
d Joule per meter.
interpolation and spline interpolation. However, spline interpola-
tion not only avoids the problem of Runge’s phenomenon [39]
but it also yields a low interpolation error regardless of the polyno-
mial degree used for the spline [38].
3. Theory/calculation

This study incorporates nine input and ten output design fac-
tors. Therefore, the dataset represents a nineteen-dimensional
(19-D) analysis case. Curing environment, use or absence of dis-
persing agent, mixing method, and VGCNF type are considered
qualitative factors, so they are represented by a numeric code for
analysis purposes. Other dimensions in the dataset are quantita-
tive. Therefore, their values were normalized using standardized
scores since the original values have different ranges.

Before applying these techniques, a brief explanation of the
SVMs operations, resubstitution, and cross validation techniques
is given in the next section.

3.1. SVMs operations

The goal of an SVMs classifier is to define a separating hyper-
plane between the points belonging to two distinct classes and
maximize the distance between these points and the hyperplane.
This maximum distance is referred to as the margin. This concept
is illustrated in Fig. 1 [1] for linearly separable data. For nonlinearly
separable data, the resulting hyperplane and margin has a
complex, nonlinear form as shown in Fig. 2 [1].

3.1.1. SVMs operations for two-class linearly separable data
The margin (m) (indicated in Fig. 1) is given by the relation:

m ¼ jgðxÞjkwk ð1Þ

where g(x) is the discriminant function used to separate and classify
the data vectors into corresponding classes and w is the weight vec-
tor used by SVMs model. The weight vector is scaled so that the
value of g(x) at the closest point to the separating hyperplane is
rty responses [26–29,35,36].

2 3 4

Nitrogen
No – –

HSb HS/US –

Oxidized – –

60 �C 90 �C 120 �C



Fig. 1. The SVMs model: the separating hyperplane along with the maximum
margin for linearly separable data [1].

Fig. 2. An example of the SVMs model for nonlinearly separable data. This case
involves the introduction of a new set of ‘‘slack’’ variables (n) [1].
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equal to 1 for class one and �1 for class two. Alternatively, in the
case of two-class SVMs model, the goal is to have a margin such
that:

m ¼ 1
kwk þ

1
kwk ¼

2
kwk ð2Þ

and this requires that:

wT xþw0 P 1 . . . for x 2 class 1

wT xþw0 6 �1 . . . for x 2 class 2
ð3Þ

where w0 is the weight bias used to specify how much the margin is
away from the origin and x is the matrix for all data points (i.e., data
vectors).

The values of support vectors k are the data points located on
the margin borders, and their values are greater than zero. Since
k values that are less than zero are not considered support vectors,
the corresponding data points belong to either class one or class
two.

The theory of SVMs states that for each data vector xi, there
must be a class indicator (say yi). The task is to find w and w0 such
that the cost function J is minimized:

Jðw;w0Þ ¼
1
2
kwk2 ð4Þ

subject to

yiðwT xþw0ÞP 1 for i ¼ 1;2; . . . ;N ð5Þ

This nonlinear optimization task can be solved using a quadratic
programming optimization algorithm whereby a quadratic func-
tion of some real-valued variables is maximized subject to linear
constraints [1].
In SVMs, the primal form of the Lagrangian function Lp can be
used:

Lpðw;w0; kÞ ¼
1
2

wT w�
XN

i¼1

ki yiðwT xi þw0Þ � 1
� �

ð6Þ

where k is the Lagrange multiplier vector (i.e., support vector) and ki

is the Lagrangian multiplier.
The Lagrangian function is subject to a set of constraints defined

by the Karush–Kuhn–Tucker (KKT) conditions [1]:

@

@w
Lðw;w0; kÞ ¼ 0 ð7Þ

@

@w0
Lðw;w0; kÞ ¼ 0 ð8Þ

ki P 0 for i ¼ 1;2; . . . ;N

ki½yiðwT xi þw0Þ � 1� for i ¼ 1;2; . . . ;N ð9Þ

If Lagrangian function is combined with Eqs. (7) and (8), the SVMs
optimization task is to minimize Lpðw;w0; kÞ, subject to the
following constraints:

w ¼
XN

i¼1

kiyixi ð10Þ

XN

i¼1

kiyi ¼ 0 ð11Þ

ki � 0

If the equalities above are substituted into Lpðw;w0; kÞ, the final
form of SVMs optimization task for the two-class linearly separable
case will be to maximize the dual form of the Lagrangian,
LDðw;w0; kÞ, with respect to k:

max LDðw;w0; kÞ ¼
XN

i¼1

ki �
1
2

XN

i¼1

XN

j¼1

kikjyiyjx
T
i xj ð12Þ

subject to the following constraints in Eq. (11).
The weight bias term can be calculated from Eq. (5). For

example, if k1 > 0, the corresponding w0 can be found from
the relation:

y1ðwT x1 þw0Þ ¼ 1 ð13Þ

Therefore,

w0 ¼
1
y1
�wT x1 ð14Þ
3.1.2. SVMs operations for two-class non-linearly separable data
A visualization of the SVMs implementation of nonlinearly sep-

arable data is illustrated in Fig. 2.
A new set of ‘‘slack’’ variables, ni; is introduced, such that:

yi½wT xþw0�P 1� ni ð15Þ

In this context, the following scenarios must be taken into
account:

� correct classification of the data points xi is obtained if ni = 0
� xi will be inside the band (inside the margin) if 0 6 ni 6 1
� xi is misclassified (the SVMs model classifies xi in a dif-

ferent class than what it actually should belong to) if
ni > 1

The closely related cost function in this case (in primal form) is
to minimize Jðw;w0; nÞ such that:
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Jðw;w0; nÞ ¼
1
2
kwk2 þ C

XN

i¼1

ni ð16Þ

subject to the constraints:

yi½wT xþw0� P 1� ni ð17Þ
ni P 0 ð18Þ

for i = 1, 2, . . . , N, where C is a positive constant that balances
between the margin size and the misclassification instances. The
choice for C also determines the number of support vectors and
the overall performance of the SVMs model.

The corresponding Lagrangian function in this case becomes:

Lðw;w0; n; k;lÞ ¼
1
2
kwk2 þ C

XN

i¼1

ni �
XN

i¼1

lini

�
XN

i¼1

ki½yiðwT xi þw0Þ � 1þ ni� ð19Þ

where k and l are the Lagrangian vectors. The corresponding KKT
conditions are:

@

@w
Lðw;w0; n; k;lÞ ¼ 0 ð20Þ

@

@ni
Lðw;w0; n; k;lÞ ¼ 0 ð21Þ

@

@w0
Lðw;w0; n; k;lÞ ¼ 0 ð22Þ

lini ¼ 0 ð23Þ
ki½yiðwT xi þw0Þ � 1þ ni� ¼ 0 ð24Þ

ki � 0

li � 0

for i ¼ 1;2; . . . ;N

The goal for the non-linearly separable case is to make the mar-
gin as large as possible, but at the same time, make the number of
data points with n > 0 as small as possible. In this case, the mis-
classification mistakes and encountering cases where there are
data points inside the margin even though the classification is cor-
rect will be avoided. Therefore, the Lagrangian function
Lðw;w0; n; k;lÞ (in primal form) can be minimized subject to the fol-
lowing constraints:

w ¼
XN

i¼1

kiyixi ð25Þ

XN

i¼1

kiyi ¼ 0 ð26Þ

C � li � ki ¼ 0
ki P 0; li P 0

ð27Þ

If the above equality constraints are substituted in the Lagrang-
ian, the final dual form format of nonlinearly separable data
LDðw;w0; n; k;lÞ is maximized with respect to k such that:

max LDðw;w0; n; k;lÞ ¼
XN

i¼1

ki �
1
2

XN

i¼1

XN

j¼1

kikjyiyjx
T
i xj ð28Þ

subject to the constraints:

0 6 ki 6 C; for i ¼ 1;2; . . . ;N ð29Þ
XN

i¼1

kiyi ¼ 0 ð30Þ
Another important aspect of SVMs development is the kernel
function, which takes the optimization problem from a lower space
to a higher space. This kernel function is a function of xi and xj,
shown above for the dual form. So, the SVMs optimization task
reduces to the minimization of Lðw;w0; n; k;lÞ with respect to k
such that:

LDðw;w0; n; k;lÞ ¼
XN

i¼1

ki �
1
2

XN

i¼1

XN

j¼1

kikjyiyjKðxi; xjÞ ð31Þ

subject to the constraints in Eqs. (22) and (23). K(xi,xj) is the kernel
function.

The following are some of the typical kernels:

� Polynomial:
Kðx; zÞ ¼ ðxT zþ 1ÞQ Q > 0 ð32Þ

where Q is the polynomial degree;
� Radial basis function (RBF):
Kðx; zÞ ¼ exp �kx� zk2

2r2

 !
ð33Þ

where r2 is the standard deviation;
� Hyperbolic Tangent:
Kðx; zÞ ¼ tanhðbxT zþ cÞ ð34Þ

where b; c are constants;
� Dot product:
Kðx; zÞ ¼ xT z ð35Þ

The following strategy can be used to assign each data point
(data vector) to the corresponding class:

gðxÞ ¼
XNS

i¼1

kiyiKðxi; xÞ þw0 > 0; then

xi 2 class 1

gðxÞ ¼
XNS

i¼1

kiyiKðxi; xÞ þw0 6 0; then

xi 2 class 2

ð36Þ

where g(x) is the discriminant function, NS is the number of support
vectors, and xi is a data vector in the dataset being optimized.

In order to tackle the problem of unbalanced VGCNF/VE dataset
(i.e. 240 viscoelastic, 60 flexural, 172 compression, 93 tension, and
18 impact strength data points), when designing the SVMs
classifier a greater penalty to misclassification errors related with
the less likely instance (impact strength data points in our case)
was assigned, rather than assigning equal error weight which
results in an undesirable classifier that assigns everything to the
majority samples (viscoelastic data points).

Another approach to solve this problem is to preprocess the
data by oversampling the majority class or undersampling the
minority class in order to create a balanced dataset [2].

However, recent studies combine both of these approaches
together to improve the performance of the SVMs classifier com-
pared to applying any one approach. Specifically, this new
approach has the following steps [2]:

1. Not undersampling the majority instances since they lead to
loss of information.

2. Using different error costs for different classes to push the
boundary of the SVMs hyperplane away from the minority
instances.



Table 2
Description of VGCNF/VE mechanical property classes characterized in the study.

Class designation Classes

C1 Specimens with high true ultimate strength
C2 Specimens with high true yield strength
C3 Specimens with high engineering elastic modulus
C4 Specimens with high engineering ultimate strength
C5 Specimens with high flexural modulus
C6 Specimens with high flexural strength
C7 Specimens with high impact strength
C8 Specimens with high storage modulus
C9 Specimens with high loss modulus
C10 Specimens with high tan delta

Fig. 3. Illustration of the early-stopping rule based on cross validation [44].
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3. Using Synthetic Minority Oversampling Technique (SMOTE) to
make the minority instances more densely distributed in order
to make the boundary better defined.

Furthermore, some studies suggest using Granular Support
Vector Machines Repetitive Undersampling algorithm (GSVMRU)
and consider it the best in terms of both effectiveness and effi-
ciency [40]. GSVM-RU is effective as it can minimize the negative
effect of information loss while maximizing the positive effect of
data cleaning in the undersampling process. GSVM-RU is efficient
by extracting much less support vectors, and hence greatly speed-
ing up SVM prediction [40].

Resubstitution and 3-fold cross validation techniques were used
after the SVMs technique to characterize the specimens that have
desired VGCNF/VE properties. Each specimen was separated into
an appropriate VGCNF/VE mechanical property class. These classes
are shown in Table 2 where C1 denotes class one, C2 denotes class
two, and so on.

3.2. Resubstitution method

In resubstitution method [41], the entire dataset is used to train
the SVMs model and the same dataset is used for testing (valida-
tion). This method is computationally efficient and ensures that
the SVMs model generalizes well to correctly classify unknown
classes based on combinations of inputs and outputs. A good gen-
eralization is achieved when the apparent error (AE) is minimized
[32]. The AE is defined as:

AE ¼ 1
N

XN

i¼1

jti � aij ð37Þ

where N is the total number of samples, ti is the targeted class of the
sample in binary classification (i.e., 1 if the sample belongs to one
class and 0 if it belongs to the other class), and ai is the actual SVMs
binary classification value (0 or 1).

Although several SVMs architectures and training algorithms
are available, the SVMs classifier for two nonlinearly separable
data is the most commonly used one and was utilized in this study
[1]. However, the designed SVMs model was implemented in ten
stages using a one-against-all (OAA) strategy [42] because this
study deals with separating the VGCNF/VE specimens into ten dif-
ferent distinct property classes. For example, in the first stage,
specimens belonging to C2–C10 were combined and compared
against specimens belonging to C1. Similarly, in the second stage,
specimens belonging to C1 and C3–C10 were combined in one class
and compared against specimens belonging to C2, and so on with
all stages. Finally, the classification information from these stages
was combined in order to determine the ten distinct property
classes. This SVMs model assumed a non-linear relationship
between the input and output variables and the corresponding
class associated with each data point.
3.3. Cross validation technique

Cross validation (CV) techniques [41] use available data to train
the SVMs classifier. First, the dataset is randomly partitioned into a
training set and a test set. The training samples are further parti-
tioned into two disjoint subsets: (1) the estimation subset, which
is used to select the SVMs, and (2) the validation subset, which is
used to test or validate the developed SVMs classifier [43]. There-
fore, several candidate SVMs classifiers are obtained and then the
‘‘best’’ one is selected [43]. Currently, there are four different CV
methods: holdout CV, early-stopping method of training, multi-
fold CV, and leave-one-out CV. The following is a brief explanation
of each of these methods; further details can be found in [44].

(1) Holdout CV: If a random number, r, is defined in the inter-
val ½0; 1�, then (1 � r)N samples are allotted to the estima-
tion subset, and the remaining rN samples are used for
validation, where N is the total number of samples. The
final SVMs model is the one yielding the minimum classifi-
cation error. However, this method is computationally
expensive.

When the complexity of the target function (mapping of input–
output and the corresponding classes) is small compared to the
sample size N, the validation performance is relatively insensitive
to the choice of r. When the target function becomes more complex
relative to the sample size N, the choice of r has a more pronounced
effect on cross-validation performance. However, a single fixed
value of r (e.g., 0.2) is nearly optimal for a wide range of target
functions.

(2) Early-stopping method of training: The training procedure
can be stopped earlier before the classification error
becomes too low in order to yield good generalization. The
best point to stop training can be determined by the periodic
‘‘estimation-followed-by-validation’’ process as shown in
Fig. 3. After some periods of training, say five epochs (i.e.,
five step iterations for all training samples), the classifica-
tion error based on validation sample is then measured.
When the validation phase is completed, the training is
resumed for another epoch(s). Finally, when the classifica-
tion error based on validation sample starts to increase,
the training process is terminated even if the classification
error for the training samples continues to decrease.

(3) Multifold CV: A disadvantage of the holdout method is that
not all samples are used for validation. Instead, in multifold
validation, the N samples are divided into K subsets. At each



Fig. 4. Illustration of the 3-fold method of cross validation on a data sample of 30 elements [43].
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fold, one subset is used for validation and the remaining
K � 1 subsets for training. This process is continued until
each subset is used for validation once. In this study, 3-fold
CV was implemented and the performance was assessed by
averaging the classification performance over all the trials.
In Fig. 4, an illustration of a 3-fold cross validation is shown.

(4) Leave-one-out CV: When the available number of samples,
N, is severely limited, an extreme form of multifold valida-
tion known as leave-one-out validation can be used. In each
trial, N � 1 samples are used for training and the one left out
can be used for testing. The process is repeated N times until
each sample is used for validation exactly once.

4. Results and discussion

The classification process starts by dividing the VGCNF/VE data
into training and test sets. These sets are applied to the developed
SVMs model. That is, materials scientists and engineers can pro-
vide any new formulations or fabrication conditions as inputs com-
binations to the SVMs model and the corresponding desired
mechanical property response(s) these combinations were classi-
fied into. An illustration of the model’s operation is given in Fig. 5.

After choosing a combination of nine inputs (processing param-
eters) and supplying this input vector to the designed SVMs classi-
fier, the model will classify the input vector into the corresponding
desired mechanical property response(s)(i.e. classes) as shown in
Table 2. In this particular example, the chosen input vector yielded
high true ultimate strength (C1) and high engineering ultimate
strength (C4).

Two techniques were used for the performance evaluation of
the SVMs classifier: the resubstitution method and the 3-fold CV.
In essence, the classifier’s ability to identify the percentage of test
Representation of an unknown
VGCNF/VE formulations or
fabrication conditions as a new feature               
(input) vector

Input vector (x) 

x1

x2

x3

: 

: 

x9

SVMs Classifier/ 
Opera�ons

Fig. 5. Representation of the SVMs model used in this study. The input vector x is proce
mechanical property response(s).
samples that belong to each of the desired mechanical property
classes, i.e., high true ultimate strength, high true yield strength,
high engineering elastic modulus, high engineering ultimate
strength, high flexural modulus, high flexural strength, high impact
strength, high storage modulus, high loss modulus, and high tan
delta was evaluated and analyzed.

In the SVMs analyses, confusion matrices (contingency tables)
[45] were used to compare and analyze the resulting classifica-
tions. Three values of C were used in this study: (i.e. 0.5, 10, and
100), and the developed SVMs model was run using three kernel
functions: a polynomial of degree two, a dot product, and a hyper-
bolic tangent kernels. As previously indicated in Section 3, the
choice for the positive constant C determines the number of sup-
port vectors and the overall performance of the SVMs model [1].

The overall classification rates and apparent error rates (or false
negative values) for the three different kernels using the resubstitu-
tion are shown in Tables 3–5, respectively where these rates are
identically equal for each value of the constant C. In this case, the
performance of the SVMs model was good and was able to
correctly classify about 99% of the VGCNF/VE specimens into ten
different distinct property classes when the dot product kernel
was used regardless of the constant C (Table 4). Although a classifi-
cation error of about 13% resulted when the dot product kernel was
used for C3, this error was considered to be acceptable as it did not
significantly affect the overall classification accuracy of the model.
The polynomial kernel (degree 2) achieved a 93% average classifica-
tion rate (Table 3). When the hyperbolic tangent kernel was imple-
mented, the classification performance was degraded down to
about 82% (Table 5). These high classification rates (in case of dot
product and polynomial kernels) are due to the fact that all samples
were used for training and testing in order to minimize the AE
(apparent error) rate. When the 3-fold CV technique was used,
Outputs (mechanical property 
responses)

C1  C2  C3  C4  C5  C6  C7  C8  C9  C10
1    -1  -1   1   -1  -1   -1  -1  -1   -1  

1 denotes high and -1 denotes low. 
In this example, the input vector was 
classified into classes 1 and 4. 

  Classified VGCNF/VE specimen

ssed through the SVMs classifier to create a mapping to the corresponding desired



Table 3
Classification information of the SVMs model when a polynomial kernel of degree 2 was implemented using the resubstitution method.

Polynomial kernel (degree 2) and C = 0.5, 10, 1000 Resubstitution method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 80% 93% 100% 100% 93% 97% 100% 87% 100% 80% 93%
Apparent error rate/false negative value 20% 7% 0% 0% 7% 3% 0% 13% 0% 20% 7%

Table 4
Classification information of the SVMs model when a dot product kernel was implemented using the resubstitution method.

Dot product kernel and C = 0.5, 10, 1000 Resubstitution method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 100% 100% 87% 100% 100% 100% 100% 100% 100% 100% 99%
Apparent error rate/false Negative value 0% 0% 13% 0% 0% 0% 0% 0% 0% 0% 1%

Table 5
Classification information of the SVMs model when a hyperbolic tangent kernel was implemented using the resubstitution method.

Hyperbolic tangent kernel and C = 0.5, 10, 1000 Resubstitution method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 63% 100% 70% 67% 80% 100% 94% 70% 77% 100% 82%
Apparent error rate/false negative value 37% 0% 30% 33% 20% 0% 6% 30% 23% 0% 18%
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the selected sizes of training and testing sets for each of the three
folds were 80 and 40 data samples, respectively.

Despite the fact that the 3-fold CV technique yields lower com-
putational cost than the resubstitution method, the classification
performance of the 3-fold CV technique was inferior to that of
the resubstitution method as the AE rates were higher than those
of the resubstitution method. This is due to the fact that the sizes
of classes 1–10 for the three folds in all stages were significantly
lower than such classes when the resubstitution method was
applied. Furthermore, unlike the resubstitution method, the same
samples were not used for training and testing in each fold, result-
ing in some additional misclassification error. Therefore, the AE
rate of the resubstitution method is actually the error rate obtained
from training data and this explains why the AE rate is low using
different kernels. Consequently, resubstitution AE rate indicates
only how good (or bad) are the results (using SVMs classifier in this
case) on the TRAINING data and it expresses some knowledge
about the algorithms used. In other words, it is used as a perfor-
mance measure of the designed SVMs classifier as it reflects the
imprecision of the training results; the lower the AER, the better
precision the classifier has. 3-fold CV method however, is used to
prevent the overlap of the test sets by first splitting data into x sub-
sets of equal size and then using each subset in turn for testing and
the remainder for training. Therefore, in CV method, The AE esti-
mates are averaged to yield an overall error, called the predictive
accuracy estimates, whereas in resubstitution method, the esti-
mated AE is the performance measure of the designed classifier.
This explains that fact that the AE rates using the CV method are
higher than that of the resubstitution method.

For example, when the resubstitution method was imple-
mented using the dot product kernel, the SVMs model was able
to identify all samples (100%) that have the highest output
mechanical properties, except for those that have the highest
engineering elastic modulus (C3) (Table 4), where it was able to
identify about 87% of samples. When the 3-fold CV was imple-
mented, the SVMs model was able to identify 100% of test samples
that have the highest tan delta value, and 0% of test samples that
have the highest loss modulus. The identification of the test spec-
imens with respect to the other mechanical property classes fell in
between these two percentages (Table 7). Even though the model
performed poorly in identifying the test samples that have the
highest loss modulus in case of the 3-fold CV when dot product
kernel was implemented, the model performed really well in iden-
tifying the samples that have the highest tan delta (100% classifica-
tion rate) and it was able to identify about 48% of test samples that
have the highest storage modulus. Given the fact that tan delta is
the ratio of loss modulus to storage modulus, the samples that
have the highest loss modulus can be determined by comparing
the test samples that have the highest tan delta value and the test
samples that have the highest storage modulus.

The overall classification rates and apparent error rates (or false
negative values) for the three different kernels using the 3-fold CV
techniques are shown in Tables 6–8. Based on these results, while
3-fold CV technique was able to correctly classify specimens into
C1, C2, and C10, mixed results were obtained when classifying
specimens into other classes. This behavior was observed to be
strongly dependent on the kernel function used. For example,
when a dot product kernel was implemented, the correct classifica-
tion rate for C5 was observed to be 95% (Table 7). This value
dropped to 52% when the hyperbolic tangent kernel was used
(Table 8). Generally, the dot product kernel performed the best,
yielding an average classification rate of about 71% (Table 7).

However, the resulting confusion matrices proved that the
SVMs classifier performed well for fold 3 samples for dot product
and degree 2 polynomial kernel functions at 99% and 95% classifi-
cation rates, respectively. In addition, reasonable classification
rates were achieved when the hyperbolic tangent kernel was
implemented for fold 3 samples at 67% and for fold 2 samples at
61% and 59%, when the polynomial (degree 2) and dot product
kernels were implemented, respectively. The classification rates
were lower for other cases. In addition, the classification results
were independent of the value of the constant C, similar to the
resubstitution method analyses.

Another observation is that the SVMs model was able to more
correctly classify specimens belonging to classes 1 and 10 than
other classes when the 3-fold CV technique was implemented in
case of polynomial and hyperbolic tangent kernels.

CV method has the advantage of producing an effectively unbi-
ased error estimate, but the estimate is highly variable. However,
in order to mitigate this, extensive experiments in literature



Table 6
Classification information of the SVMs model when a polynomial kernel of degree 2 was implemented using the 3-fold CV method.

Polynomial kernel (degree 2) and C = 0.5, 10, 1000 3-fold CV method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 100% 95% 62% 67% 95% 93% 33% 33% 0% 100% 68%
Apparent error rate/false negative value 0% 5% 38% 33% 5% 7% 67% 67% 100% 0% 32%

Table 7
Classification information of the SVMs model when a dot product kernel was implemented using the 3-fold CV method.

Dot product kernel and C = 0.5, 10, 1000 3-fold CV method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 90% 90% 83% 82% 95% 58% 63% 48% 0% 100% 71%
Apparent error rate/false negative value 10% 10% 17% 18% 5% 42% 37% 52% 100% 0% 29%

Table 8
Classification information of the SVMs model when a hyperbolic tangent was implemented using the 3-fold CV method.

Hyperbolic tangent kernel and C = 0.5, 10, 1000 3-fold CV method

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Average

Correct classification rate 75% 70% 67% 58% 52% 50% 18% 27% 0% 100% 52%
Apparent error rate/false negative value 25% 30% 33% 42% 48% 50% 82% 73% 100% 0% 48%
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[46,47] have shown that the more folds used in the CV method, the
better and more stable the predictive estimate of the designed
SVMs classifier will be.

In addition, by choosing particular input level combinations,
based on one of the industrial measures mentioned in Section 2,
the SVMs model is able to best identify a desired mechanical prop-
erty among the ten mechanical response classes. Section 5 elabo-
rates more on the usefulness of the developed SVMs model to
the VGCNF/VE manufacturing process and its mechanical perfor-
mance characterization.

5. Industrial application to the SVMs model

The resulting SVMs model can be used to effectively anticipate
the mechanical response for arbitrary input level combinations
associated with the formulation and fabrication of VGCNF/VE
nanocomposites. The presented methodology in this work can also
be generalized to include other engineering material systems. This
fast and reliable qualitative assessment of a material’s response
significantly reduces the need to perform additional extensive
and expensive experiments. In addition, complex modeling proce-
dures required to arrive at a suitable material that would meet the
design and performance criteria can be significantly eliminated
using the developed model. Furthermore, the cost estimation can
directly be correlated with the material design and performance
upfront, shortening the lead time for new material and component
design. As an example, if a high impact strength is desired for the
component made of the VGCNF/VE nanocomposite, the optimal
high shear mixing time can be determined for a given cost-effec-
tive VGCNF/VE formulation, which is likely located at one of the
untested (unknown) input level combinations. Since VGCNF/VE
formulations are often expensive and their fabrication is time-con-
suming, a range of optimal VGCNF weight fractions and mixing
times can be established over which desired properties are
obtained by using the results of the SVMs model developed in this
work. Once a suitable, cost-effective VGCNF/VE formulation with
optimal fabrication time and performance is identified to give
the desired mechanical response in one or more of the ten mechan-
ical property classes presented in this work, quantitative tests can
be performed to fully characterize it.
6. Summary and conclusions

A support vector machines (SVMs) technique was applied to a
large vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE)
nanocomposite dataset, consisting of 583 different design points:
172 compression, 93 tension, 60 flexure, 18 impact strength, and
240 viscoelastic data points. Each input level combination consisted
of nineteen feature dimensions corresponding to nine input and ten
output design factors. The nine input factors of the VGCNF/VE data-
set were curing environment (air vs. nitrogen), use or absence of a
dispersing agent, strain rate, mixing method (ultrasonication, high-
shear mixing, and combination of both), VGCNF weight fraction,
VGCNF type (pristine vs. oxidized), high-shear mixing time, sonica-
tion time, and temperature. The outputs (i.e., measured properties)
were true ultimate strength, true yield strength, engineering elastic
modulus, engineering ultimate strength, flexural modulus, flexural
strength, impact strength, storage modulus, loss modulus, and tan
delta. Using the resubstitution and the 3-fold cross validation
(CV) methods, the SVMs classifier was trained to classify each
VGCNF/VE sample into one of ten optimal property classes that rep-
resent the high values for the above-mentioned outputs. The model
was implemented in ten stages using a one-against-all strategy. A
set of confusion matrices was used to compare the sets of analyses
after exploring three kernels functions: a polynomial kernel of
degree two, a dot product kernel, and a hyperbolic tangent kernel.

In general, the SVMs model using the resubstitution method
was able to better predict the optimal property classes with a min-
imal apparent error (AE) rate using the dot product and degree two
polynomial kernels than the 3-fold CV method. Nevertheless, an
overall good classification result was obtained using the 3-fold
CV method when the dot product kernel was implemented and
also the model was able to accurately predict which data points
belonged to the high true ultimate strength, high true yield
strength, and high tan delta classes in case of the other kernel
functions (i.e., polynomial of degree two and hyperbolic tangent).
However, although 3-fold CV method yields less computational
cost, the SVMs model using this method had significant AEs for
other mechanical property classes used in this study.

Most importantly, the developed SVMs model is able to identify
the mechanical property response value resulting from a selected
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untested combination of the nine input factors mentioned in this
study. The choice of the input level combinations is commensurate
with particular optimal measure(s) considered by materials
scientists and engineers. This includes, but is not limited to, the
input level combinations that would yield the least time and cost
to fabricate the specimens, while providing the highest mechanical
properties (one or several of the mechanical property classes) of
the VGCNF/VE nanocomposites. In other words, if a given input
level combination is fed to the SVMs model, the unknown (i.e.,
untested) output mechanical response(s) can be easily determined.

The model’s ability to identify these desired mechanical prop-
erty responses based on a particular combination of input factors
will result in a faster and more reliable VGCNF/VE nanocomposites
manufacturing lead time without the need to rely on extensive and
time-consuming experiments or complex modeling and simula-
tions. The SVMs classifier applied in this study demonstrates the
usefulness of data mining and knowledge discovery techniques
in materials science and engineering. It is expected that more such
techniques will be employed within this rising field in near future.
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