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Abstract

Randomized exponential backo↵ is a widely deployed tech-
nique for coordinating access to a shared resource. A good
backo↵ protocol should, arguably, satisfy three natural prop-
erties: (i) it should provide constant throughput, wasting as
little time as possible; (ii) it should require few failed access
attempts, minimizing the amount of wasted e↵ort; and (iii)
it should be robust, continuing to work e�ciently even if
some of the access attempts fail for spurious reasons. Un-
fortunately, exponential backo↵ has some well-known limi-
tations in two of these areas: it provides poor (sub-constant)
throughput (in the worst case), and is not robust (to adver-
sarial disruption).

The goal of this paper is to “fix” exponential backo↵ by
making it scalable, particularly focusing on the case where
processes arrive in an on-line, worst-case fashion. We present
a relatively simple backo↵ protocol, Re-Backoff, that has,
at its heart, a version of exponential backo↵. It guarantees
expected constant throughput with dynamic process arrivals
and requires only an expected polylogarithmic number of
access attempts per process.

Re-Backoff is also robust to periods where the shared

resource is unavailable for a period of time. If it is

unavailable for D time slots, Re-Backoff provides the

following guarantees. When the number of packets is a

finite n, the average expected number of access attempts

for successfully sending a packet is O(log2(n + D)). In the

infinite case, the average expected number of access attempts

for successfully sending a packet is O(log2(⌘ +D)) where ⌘

is the maximum number of processes that are ever in the

system concurrently.
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1 Introduction

Randomized exponential backo↵ [42] is used
throughout computer science to coordinate access to a
shared resource. This mechanism applies when there are
multiple processes (or devices, players, transactions, or
packets) attempting to access a single, shared resource,
but only one process can hold the resource at a time.
Randomized backo↵ is implemented in a broad range
of applications including local-area networks [42] wire-
less networks [40, 63], transactional memory [36], lock
acquisition [50], email retransmission [10, 19], conges-
tion control (e.g., TCP) [38, 45], and a variety of cloud
computing scenarios [30, 47,57].

In randomized exponential backo↵, when a process
needs the resource, it repeatedly attempts to grab it.
If two processes collide—i.e., they try to grab the
resource at the same time—then the access fails, and
each process waits for a randomly chosen amount of
time before retrying. After each collision, a process’s
expected waiting time doubles, resulting in reduced
contention and a greater probability of success.

When a process needs the resource:
• Set the time window size W = 2.
• Repeat until the resource is acquired:

� Choose a slot t in window W uniformly at
random. Try to acquire the resource at slot t.

� If the acquisition failed, then: (i) wait until the
end of W , and (ii) set W = 2W .

Figure 1: Exponential backo↵.

Given the prevalence (and elegance) of exponential
backo↵, it should not be surprising that myriad pa-
pers have studied the theoretical performance of ran-
domized backo↵. Many of these papers make queuing-
theory assumptions on the arrival of processes need-
ing the resource [12, 22, 26, 34, 48]. Others assume that
all processes arrive in a batch [21, 23, 31, 32, 62] or ad-
versarially [5, 15, 16]. What may be surprising is how
many foundational questions about randomized backo↵
remain unanswered, or only partially answered:

• Throughput: It is well known that classical exponen-
tial backo↵ achieves sub-constant throughput, in the



worst case. Is it possible for an exponential backo↵
variant to achieve constant throughput, particularly
in dynamic settings, where arbitrarily large bursts of
processes may arrive in any time step, leading to vary-
ing resource contention over time?

• Number of attempts: On average, how many attempts
does a process make before it successfully acquires
the resource? Can one modify exponential backo↵
to achieve constant throughput, while still ensuring
a few unsuccessful attempts? These questions make
sense in applications where each access attempt has
a cost. For example, in a wired network, an unsuc-
cessful transmission wastes bandwidth. In a wireless
network, an unsuccessful transmission wastes energy.
In transactional memory, a transaction rollback (i.e.,
an unsuccessful attempt) wastes CPU cycles.

• Robustness: How robust is exponential backo↵ when
the acquisition process su↵ers failures? An access
attempt could fail even when there is no collision.
Faults could arise due to hardware failures, software
bugs, or malicious behavior. For example, a shared
link may su↵er from thermal noise, or a heavily-
loaded server may crash. A wireless channel may
come under attack from jamming (see [61, 64]), or
a server may become unavailable due to a denial-of-
service attack (DoS) [37]. In transactional memory,
failures may result from best-e↵ort hardware, since
existing hardware implementations do not guarantee
success even when there are no collisions (conflicts)
between transactions.

1.1 Goal: Make Exponential Backo↵ Scalable

Randomized exponential backo↵ is “broken” in the
worst case: it lacks good throughput guarantees (see,
e.g., [5]) and is not robust to failures. While randomized
exponential backo↵ permits a relatively small number of
access attempts, the result is a subconstant throughput.

The goal of this paper is to “fix” randomized expo-
nential backo↵ to achieve good asymptotic performance.
We modify the protocol as little as possible to maintain
its simplicity, while finding a variant that (1) delivers
constant throughput, (2) requires few access attempts,
and (3) works robustly.

Since exponential backo↵ has many applications,
there are many choices of terminology. Here we call the
shared resource the “channel” and attempts to acquire
the resource “broadcasts.”1

1
We permit some slight abuses of the English language when

packets may seem to broadcast themselves.

1.2 Related Work

Exponential backo↵ is commonly studied in a network
setting, where packets arriving over time are transmit-
ted on a multiple-access channel .

Queuing models. For many years, most back-
o↵ analyses assumed statistical-queueing-theory mod-
els and focused on finding stable packet-arrival rates
(see [1,25,27,29,34,35,49]). In this context, the notion of
saturated throughput — roughly, the maximum through-
put under stable packet arrival rates — has been inves-
tigated [11,59]. In contrast, one might desire a stronger
guarantee on the worst-case throughput regardless of
the arrival rate (which is what we address here). Inter-
estingly, even with Poisson arrivals, there are better pro-
tocols than binary exponential backo↵, e.g., polynomial
backo↵ [34]. The world runs on exponential backo↵;
nonetheless, it has long been known that exponential
backo↵ is symptotically sub-optimal.

Worst-case/adversarial arrivals. More re-
cently, there has been work on adversarial queue-
ing theory, looking at the worst-case perfor-
mance [2, 5, 6, 15, 16, 20, 24, 28, 31, 62]. A common
theme is that dynamic arrivals are hard to cope with.
When all the packets begin at the same time, e�cient
protocols are possible [20, 21, 23, 31, 32, 62]. When
packets begin at di↵erent times, the problem is harder.
Dynamic arrivals has been explicitly studied in the
context of the “wake-up problem” [13, 14, 17], which
looks at how long it takes for a single transmission to
succeed when packets arrive dynamically. In contrast,
our paper focuses on achieving good bounds for a
stream of packet arrivals (no fixed stations), when all
packets must be transmitted.

Robustness to wireless interference. As the
focus on backo↵ protocols has shifted to include wireless
networks, there has been an increasing emphasis on
coping with noise and interference known as jamming.
In a surprising breakthrough, Awerbuch et al. [3] showed
that good throughput is possible with a small number
of access attempts, even if jamming causes disruption
for a constant fraction of the execution. A number of
elegant results have followed [39, 46, 51–55], with good
guarantees on throughput and access attempts.

Most of these jamming-resistant protocols do not
assume fully dynamic packet arrivals. By this, we mean
that these protocols are designed for the setting in
which there are a fixed number of “stations” that are
continually transmitting packets. In contrast, we are
interested in the fully dynamic setting, where sometimes
there are arbitrarily large bursts of packets arriving
(lots of channel contention) and other times there
are lulls with small handfuls of packets (little channel
contention).



Relationship to balanced allocations. Scalable
backo↵ is closely related to balls-and-bins games [4, 7–
9,18,43,56,60]. Bins correspond to time slots and balls
correspond to packets. The objective is for each ball
to land in its own bin; if several balls share the same
bin, they are rethrown. The flow of time gets modeled
by restrictions on when balls get thrown and where they
may land. The results in our paper are ultimately about
scalable randomized algorithms and asymptotic analysis
for dealing with bursts robustly and scalably.

1.3 Results

We devise a “(R)obust (E)�cient” backo↵ protocol,
Re-Backoff, that (1) delivers constant throughput,
(2) guarantees few failed access attempts, and (3) works
robustly. We assume no global broadcast schedule,
shared secrets, or centralized control.

Theorem 1.1. Let D be the number of slots disrupted
by the adversary. For a finite number of packets n
injected into the system, where n is fixed a priori,
but not revealed, Re-Backoff guarantees at most an
expected constant fraction of wasted slots (empty slots or
slots with collisions) and spends O(log2(n + D)) access
attempts per packet, in expectation.

Theorem 1.1 implies that Re-Backoff delivers
constant throughput for those executions where at least
a constant fraction of the slots are undisrupted:

Corollary 1.1. There exists a constant c, such that if
D  cn, then Re-Backoff achieves expected constant
throughput. A stronger property holds: Re-Backoff

attains an expected makespan (completion time of last
packet) of O(n).

In fact, the metric of expected makespan is both
stronger and more desirable than expected throughput.
To see why, observe that throughput is defined as the
fraction of successful slots; see Section 2.2. Consider a
scenario in which the throughput is 1/2 with probability
1/2 and 0 with probability 1/2: then the expected
throughput is constant, but the expected makespan is
infinite. Really, we want the the expected reciprocal of
throughput to be O(1), which is equivalent to saying
that the expected makespan is O(n). In this paper, we
focus on minimizing the expected makespan, optimizing
the expected throughput as a byproduct.

An implication of Theorem 1.1 is that the number
of access attempts is small relative to the number
of disrupted slots. Specifically: (1) Our protocol is
parsimonious with broadcast attempts in the absence
of disruption. (2) If a packet has been in the system
for T slots, then it makes expected O(log2 T ) access

attempts, regardless of how many of these T slots were
adversarially blocked.

Extending these results to the infinite case, we
show that in an infinite execution, for a countably
infinite number of slots, the protocol achieves both good
throughput and few access attempts.

Theorem 1.2. For any time t, denote by D
t

the num-
ber of slots disrupted before t, and by ⌘

t

the maximum
number of packets concurrently in the system before t.
Suppose an infinite number of packets get injected into
the system. Then for any time s, there exists a time
t � s such that at time t, Re-Backoff has at most
constant waste with probability 1 and expected average
O(log2(⌘

t

+ D
t

)) access attempts per packet.

Again, this implies that Re-Backoff yields constant
throughput in infinite executions:

Corollary 1.2. There exists a constant c such that:
for every time s there exists a time t � s where if
D

t

 ct, then there is constant throughput until time t.

2 Model: Contention Resolution on a
Multiple-Access Channel

Time is discretized into slots where a process can
broadcast a packet, i.e., access the shared resource. We
do not assume a global clock, i.e., there is no universal
numbering scheme for slots.

When there is no transmission (or adversarial dis-
ruption, see below) during a slot, we call that slot
empty . A slot is full when one or more packets are
broadcast in that slot. When exactly one packet is
broadcast in a slot, that packet transmits successfully,
and the full slot is successful . When two or more pack-
ets are broadcast during the same slot, a collision oc-
curs in this (full) slot. When there is a collision, there
is “noise” on the channel; all packets transmitting are
unsuccessful.

We assume that a device transmitting a packet can
determine whether its transmission is successful; this
is a standard assumption in the backo↵ literature (for
examples, see [27, 35, 41]), unlike the wireless setting
where a full medium access control (MAC) protocol
would address acknowledgments and other issues. Here,
(as in exponential backo↵), we focus solely on the
sending side (backo↵ component) of the problem.

We also assume that a device that is listening on
the channel, but not transmitting, can tell whether a
given slot is full or empty. We do not require the
listener to distinguish between collisions and successful
transmissions.

For simplicity of presentation, we assume there are
actually two channels that processes can use simultane-
ously: a “control channel” and a “data channel.” We



explain in Section 7 how to implement our solution us-
ing only one channel.

2.1 Arbitrary Dynamic Packet Arrivals

New packets arrive arbitrarily over time. We do not
assume any bounded arrival rate. A packet is live at
any time between its arrival and its successful transmis-
sion. The number of packets in the system may vary
arbitrarily over time, and this number is unknown to
the packets. Without loss of generality, we assume that
throughout the execution of the protocol, there is at
least one live packet in every slot. (If not, simply ignore
any slot during which there are no live packets.)

We postulate an adversary , who governs two
aspects of the system’s dynamics. (1) The adversary
determines the (finite) number of new packets that
arrive in each slot. (2) The adversary may arbitrarily
disrupt slots. A disruption appears as a full slot to
all packets; any packet transmitted simultaneously fails.
This model corresponds to collisions on Ethernet or a
1-uniform adversary in wireless networks (see [51]).

The adversary is adaptive with one exception—
the adversary decides a priori whether the execution
contains infinitely many packets or a finite number n of
packets. For the finite case, the adversary chooses n a
priori. The packets themselves do not know whether the
instance is infinite or finite (meaning that they cannot
know n). In all other ways, the adversary is adaptive: it
may make all arrival and disruption decisions with full
knowledge of the current and past system state; at the
end of a given slot, the adversary learns everything that
has happened in that slot.

2.2 Throughput and Waste

We define throughput in the natural way: for an interval
I, the throughput � 2 [0, 1] is the fraction of successful
slots in the interval I. (Recall that for the purposes
of throughput and waste, we only consider slots when
there is at least one packet live in the system.)

We also define a notion of “waste.” A slot is wasted

if there was a missed opportunity for a successful trans-
mission: the slot was empty or more than one packet
was broadcast. Otherwise the slot is nonwasted , i.e.,
successful or disrupted. A disrupted slot is not seen
as wasted, since it could never be used for a successful
packet transmission. The nonwaste ⇤ 2 [0, 1] of an in-
terval I is the fraction of nonwasted slots in I, and the
waste is 1�⇤. In the absence of disruption, throughput
and nonwaste are identical.

Definition 1. Consider interval I having NI success-
ful transmissions and DI disrupted slots. The through-
put of I is � = NI/|I|, the nonwaste is ⇤ = (NI +

DI)/|I|, and the waste is 1�⇤. The throughput/waste
of a finite execution is the throughput/waste for the in-
terval [0, T ], where T is the latest any packet completes.

Definition 2. An infinite instance has ⇤-nonwaste if,
for any slot t, there exists a slot t0 � t where interval
[0, t0] has ⇤ nonwaste. An infinite instance has �-
throughput if, for any slot t, there exists a slot t0 � t
where interval [0, t0] has � throughput.

The throughput/nonwaste does not depend on the
arrival rate, even with no restrictions on arrivals. The
arrival rate could be higher than feasible for an arbitrary
period of time (e.g., two packets arrive every slot), and
the system continues to deliver good throughput (even
as the number of backlogged packets necessarily grows).

There are also no restrictions on the distribution of
disruptions. The adversary can choose to disrupt arbi-
trarily large intervals of slots. When there are enough
nondisrupted slots, constant throughput resumes.

3 Algorithm
This section presents our backo↵ protocol. To simplify
the presentation, we assume throughout that there are
two communication channels, a data channel , on
which packets are broadcast, and a control channel ,
on which a “busy signal” is broadcast. See Section 7 for
how to implement this algorithm on one channel.

For a given packet u, let s
u

be the number of slots
it has been active for. Our protocol has the following
structure (see Figure 2 for pseudocode):

• Initially, each packet is inactive ; it makes no
attempt to broadcast on either channel.

• Inactive packets monitor the control channel. As
soon as the packet observes an empty slot on the
control channel, it becomes active .

• In every time slot, an active packet broadcasts
on the data channel with probability proportional
to how long it has been active, i.e., packet u
broadcasts with probability d/s

u

, for a constant
d = 1/2. It also broadcasts on the control channel
with probability c max(ln s

u

, 1)/s
u

, for a constant
c > 0.

• A packet remains active until it transmits success-
fully or sees too many empty slots. Specifically,
if packet u has observed d�s

u

e empty slots, where
� = 15/16, then the packet reverts to an inactive

state, and the process repeats.

In essence, our protocol wraps exponential backo↵
with a coordination mechanism (i.e., the busy channel)
to limit entry, and with an abort mechanism to pre-
vent overshooting. In between, it runs something akin



Re-Backoff for a packet u that has been active for s
u

slots
• With probability cmax{ln su, 1}

su
, send busy tone on the control channel.

• With probability d

su
send m

u

on the data channel and, if successful, then terminate.
• Monitor the data channel. If at least d�s

u

e data slots have been empty (� = 15/16) since node u
became active, then become inactive.

Re-Backoff for an inactive packet
• Monitor each control slot. If a slot is empty, then become active in the next slot.

Figure 2: Pseudocode for Re-Backoff.

to classical exponential backo↵ (instantiated by broad-
casting in round t with probability 1/t, instead of using
windows). One aspect that we find interesting is how
little it takes to fix exponential backo↵.

4 Protocol Design

This section gives the intuition behind the design of
Re-Backoff.

Consider the following simple protocol that Re-

Backoff builds upon. Packets are initially inactive.
Whenever there are no active packets, all packets in the
system become active and run an asymptotically opti-
mal batch backo↵ protocol on the data channel (e.g.,
SawTooth Backo↵ [5]). Active packets all broadcast a
busy tone on every control-channel slot, and inactive
packets wait for silence on the control channel.2 The
busy tone contains no data, and it serves only to pre-
vent newcomers from activating until all currently active
packets have transmitted successfully.

The busy tone yields a batch invariant : there is
only one batch running in the system at a time, which
allows the throughput guarantees of the batch protocol
to extend to arbitrary arrivals. Unfortunately, this
basic protocol yields an unacceptable number of access
attempts—one attempt per active packet per time step
due to the busy tone. But even this primordial protocol
is interesting because it shows a simple strategy for
achieving constant throughput, in contrast to classical
exponential backo↵; see Figure 3.

We require a cheaper busy tone. A natural ap-
proach is for active packets to broadcast randomly on
the control channel. This modified protocol broadcasts
less, but it su↵ers the occasional control failure , where
the busy tone disappears even though some packets are
still active.

The question is how active packets should respond
to control failures. A plausible approach is to reset ev-

2
Busy tones are also used in mutual exclusion and MAC

protocols (see, e.g., [33, 58]) for coping with hidden terminal

e↵ects.

ery packet, making every packet in the system restart
in a single new batch. With no disruptions, this new
protocol achieves constant throughput with a polyloga-
rithmic number of access attempts.

But it is not robust to disruptions. The adversary
has too much control: it can spoof the busy tone until
packets have backed o↵ a lot. The adversary then stops,
and now packets have a very low probability of making
an access attempt before a control failure causes a reset,
which forces packets to join a new batch. Using this
strategy, the adversary can prevent almost all of the
packets in each batch from broadcasting successfully,
forcing them to reset many times. Specifically, the
adversary can keep packets in the system for T � n
time steps, and it can force T⇥(1) access attempts rather
than polylog(n + T ), access attempts, as specified by
Theorems 1.1 and 1.2.

Re-Backoff addresses the previous concern by
avoiding immediate resets; a packet only resets once a
constant fraction of slots during its current batch are
empty. Intuitively, the reset condition means that any
packet that was reset could easily have chosen one of
the empty slots, and just got unlucky. Any packet
that enters a batch has at least a constant probability
of broadcasting successfully in that batch and at most
a constant probability of resetting. Therefore, in Re-

Backoff a packet joins an expected constant number
of batches before succeeding.

And so Re-Backoff sacrifices the batch invariant;
multiple batches may exist in the system simultaneously
and, consequently, we have put the throughput guaran-
tee in jeopardy. This is because batch protocols do not
perform well with dynamic arrivals. Even exponential
backo↵, which is already suboptimal on batches, per-
forms asymptotically worse under dynamic arrivals.

The probabilistic busy tone and delayed reset serve
together as a “leaky-mutual-exclusion” protocol, which
keeps out many overlapping batches, but allows others
to “leak” into the critical section. This contrasts
with the (error-free) busy tone and aggressive reset
mechanisms, each of which deterministically ensures



mO(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

O(log m) contention

O(log m) = O

✓
1 +

1

2
+

1

3
+ · · · +

1

poly(m)

◆

Figure 3: Illustration of how exponential backo↵ strug-
gles with bursts [5]. Shown above the line are packet
arrivals, and below the line are transmission attempts.
(When there is more than one red dot below the line,
there is a collision.) The packet arrivals illustrated com-
prise a steady stream of one new packet every three
time steps, plus a single burst of m packets. Initially,
the throughput is great. After the burst, the con-
tention grows large, and the steady stream is enough
to maintain the contention at ⌦(log(m)) and reduce the
throughput to O(1/poly(m)) for a length of time that
is super polynomial in m.

mutual exclusion.
Most of the technical contribution of our paper has

to do with proving that despite leaky mutual exclusion,
Re-Backoff still guarantees constant contention (sum
of broadcast probabilities) a constant fraction of the
time, and therefore ensures constant nonwaste (and
constant throughput when at most a constant fraction
of slots are jammed). The idea is to prove that there
are enough prefixes of slots so that: if the contention
is much more or much less than a constant for X slots,
then there are ⌦(X) slots where contention is ⇥(1).

Digging deeper, the technical hurdle that contention
arguments seem to have is that contention changes over
time in ways that are hard to characterize. For example,
if the contention in a given time slot comes from a small
number of young packets, then it will drop quickly over
time (unless another batch activates), whereas if the
contention comes from a large number of older packets,
then it will drop gradually. Thus, there is a funny and
unpredictable way in which the contention changes as a
function of time.

Besides its complexity, what makes this proof un-
usual to us is that we are deprived of some of our favorite
tools: high-probability arguments e.g., using Cherno↵
bounds. This tool is denied to us because the bursts
may be arbitrarily smaller than the number of packets
ever to enter the system.

Ultimately, we have a rather simple protocol that
maintains, at its core, exponential backo↵—while at
the same time delivering the three desirable properties:
constant throughput, few attempts, and robustness.

5 Throughput and Waste Analysis

In this section, we analyze Re-Backoff, showing that
it achieves at most constant waste in both the finite and
infinite cases.

Let st
i

be the age of packet i in slot t, i.e., the
number of slots that it has been active. At time t, we
define the contention to be X(t) =

P
i

1/st
i

, where
we sum over all the active packets. Thus, the expected
number of broadcasts on the data channel in slot t is
dX(t). For every slot t, we define the value �

t

to be
the minimum age out of all active packets such that
the following hold: (i)

P
i:0<s

t
i�t

1/st
i

� X(t)/2;

(ii)
P

i:s

t
i��t

1/st
i

� X(t)/2. That is, active packets with
age  �

t

have at least half the contention, and active
packets with age � �

t

have at least half the contention.
We call these two sets the young and old packets,
respectively. Note that packets with age exactly �

t

are
both young and old.

Lemma 5.1. For all times t, �
t

is well-defined.

Proof. Sort the packets by age so that s
1

 s
2

 . . ..
Let k be the minimum index such that X(t)/2 P

k

i=1

1/s
i

 X(t)/2 + 1/s
k

. Let �
t

= s
k

. Notice that
the young packets have contention at least X(t)/2, and
the old packets have contention at least X(t)/2. 2

We say that a control failure occurs in slot t if
no packet broadcasts on the control channel during the
slot. Recall that (1) a packet activation can occur only
immediately after a control failure and (2) a packet j
resets at time t if t is the first slot during j’s lifetime
[t � st

j

, t] of s
j

slots, for which at least �s
j

slots are
empty.

Overview. In Section 5.1, we relate performance
to contention. The tricky part is to bound how often
and for how long the contention stays high. In Sec-
tion 5.2, we break the execution up into epochs, struc-
turing the changes in contention. We can then analyze
the control failures (Section 5.3) and resets (Section 5.4)
as a function of contention. This leads to a key result
(Corollary 5.2) in Section 5.5 that shows that an epoch
is “good” (in some sense) with constant probability.

One tricky aspect remains: the adversary may use
the results from earlier epochs to bias later epochs
by injecting new packets at just the wrong time. We
introduce a simple probabilistic game, the bad borrower
game, to capture this behavior and show that it cannot
cause much harm (in Sections 5.6–5.8). Finally, we
assemble the pieces in Sections 5.9 and 5.10, showing
that we achieve at most a constant-factor waste.



5.1 Individual Slot Calculations

The next two lemmas look at the probability of a
broadcast as a function of the contention, first looking
at successful broadcasts and then all broadcasts—even
those that result in a collision. (The proofs make use
of the fact that d = 1/2, specifically relying on the
inequality d  1/2.)

Lemma 5.2. For a given slot t in which there is no
disruption, the probability that some packet successfully

broadcasts at time t is at least dX(t)

e

2dX(t) .

Proof. Packet j is successful with probability
d

sj

Q
i 6=j

(1 � d

si
). At most one packet is success-

ful, so the success events for each packet are disjoint.
The probability that some packet succeeds is thus at
least d

s

1

Q
i

(1� d

si
)+ d

s

2

Q
i

(1� d

si
)+· · ·+ d

sk

Q
i

(1� d

si
) =⇣Q

i

(1 � d

si
)
⌘

·
P

j

d

sj
� dX(t)

e

2dX(t) . The denominator fol-

lows from the fact that 1 � x � e�2x for 0  x  1/2,
and hence

Q
i

(1 � d

si
) � e�2d

P
i(1/si). 2

Lemma 5.3. The probability that some packet is broad-
cast (not necessarily successfully) in slot t is at least
1 � e�dX(t) and at most 1 � e�2dX(t). The probability
of a collision in the slot is at most (1 � e�2dX(t))2.

Proof. The probability that no packets broadcast is
Q

i

⇣
1 � d

si

⌘
 e�dX(t). Conversely,

Q
i

⇣
1 � d

si

⌘
�

e�2dX(t) by the fact that 1 � x � e�2x for 0  x  1/2.
Let p be the probability that a slot is full. Then, the
probability of a collision in that slot is at most p2. Since
p  1 � e�2dX(t), the claim follows. 2

5.2 Epochs, Streaks, and Interstitial Slots

An execution is divided into two types of periods:
epochs and interstitial slots.

Definition 3. Each time t
0

when a packet is activated,
a new epoch begins (and any earlier epoch ends). When
an epoch ends, either a new epoch begins (if a new packet
is activated) or there is a gap between epochs called
the interstitial slots. To describe the duration of an
epoch, we have two cases.

If the contention is not too high at the start of an
epoch, specifically, if X(t

0

) < 8, then the epoch consists
of a single timestep t

0

. We call such an epoch a unit

epoch .
If X(t

0

) � 8, then the epoch is subdivided further
into a sequence of streaks, with the first streak begin-
ning at t

0

. If a streak begins at time t, then it ends at
time t0 = t+�

t

(or at the start of a new epoch, whichever
occurs first). If X(t0) < 8, then the epoch ends. Other-
wise another streak begins at time t0 and ends at time
t0 + �

t

0 .

In general, we say that an epoch is disrupted if at
least 1/4 of its slots are disrupted. We next bound the
change in contention during a streak.

Lemma 5.4. Assume that some streak begins at time
t and that no control failures occur during the streak.
Then X(t + �

t

)  3X(t)/4.

Proof. During the streak, all the young packets at time
t at least double in age (since they each have age at
most �

t

), so their contention reduces by at least half.
Moreover, by definition the young packets at time t
have contention at least X(t)/2, so the total contention
reduces by at least X(t)/4. Since there are no control
failures, there are no new packets activated and hence
no increase in contention. 2

Lemma 5.5. Assume that some streak begins at time
t, where X(t) � 8, and that no resets occur during the
streak. Then for all t0 2 [t, t+�

t

], X(t0) � X(t)/8. More
strongly, this X(t)/8 is a lower-bound on the contention
contributed by just the old packets.

Proof. Since there are no resets (and no activations, by
definition) during the streak, the contention only de-
creases due to packets completing and due to increasing
age. Consider the old packets at time t (which have
contention at least X(t)/2 at time t). Since each of
these packets at most doubles in age (since they have
age � �

t

), their total contention would remain at least
X(t)/4 throughout the streak.

Some of these packets may finish, thus reducing the
contention further. Assume that the old packet with the
largest contention completes in every slot—notice that
each such packet that finishes reduces the contention
by at most 1/�

t

. Thus, if one such packet finishes in
each slot of the streak, the total contention is reduced
by at most �

t

/�
t

= 1. Thus, throughout the streak,
the total contention from old packets remains at least
X(t)/4 � 1 � X(t)/8 (since X(t) � 8). 2

Corollary 5.1. Consider any time t0 that is part of
an epoch. If no packets reset during the epoch before
time t0, then X(t0) � 1.

Proof. If t0 is the first step of the epoch, then X(t0) � 1
trivially (the packet whose activation started the epoch
contributes 1 to contention).

Otherwise, there exists some time t  t0 that marks
the start of the current streak. Since there have been
no resets, Lemma 5.5 implies X(t0) � X(t)/8. By
definition of epochs/streak, X(t) � 8. We conclude
that X(t0) � 1. 2



5.3 Control Failures

Next we look at the probability of a control failure as
a function of contention. The next lemma argues that
for the next slot in a streak (that has not yet had any
failures), the old packets provide enough contention to
make a control failure in the next slot unlikely. The
subsequent lemma takes a union bound over all slots in
the streak to conclude that it is unlikely for any control
failure to occur in the streak.

Lemma 5.6. For a fixed time t when a streak begins,
consider a control slot at time t0 during the streak.
Assume that there are no control failures or resets
during the streak prior to time t0. Then the probability

of a control failure in slot t0 is at most (�
t

)�
cX(t)

4 .

Proof. The probability of a control failure in slot t0 is
at most (see Figure 2):
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The third line follows from the fact that ln st
0

i

� ln �
t

for
all old packets. The fourth line follows from Lemma 5.5.
Note that the final result is a function of t, not t0. 2

Lemma 5.7. For a fixed time t, consider a streak begin-
ning at time t. Assume that no reset occurs during the
streak. For any target b > 0, there exists a su�ciently
large choice of algorithmic constant c such that the fol-
lowing holds: the probability that a control failure occurs
in the interval [t, t + �

t

] is at most (�
t

)�bX(t).

Proof. Assuming there are no control failures during
time [t, t0] for t0  t + �

t

, the probability of a control

failure at time t0 is at most (�
t

)�
cX(t)

8 by Lemma 5.6.
Taking a union bound over the �

t

time slots, the
probability of a control failure happening in any time

slot is at most (�
t

)�
cX(t)

8

+1. 2

5.4 Bounding Resets

We next bound the probability that a reset takes
place during an epoch. We show that with constant
probability, a packet does not reset during an epoch;
this is true since for any prefix of the epoch, there are
su�ciently many broadcasts to prevent a reset. We first
look at an abstract coin flipping game:

Lemma 5.8. Consider a sequence of independent
Bernoulli trials each with probability (at least) p of suc-
cess. Let q = p16/p be (a lower bound on) the proba-
bility that the first 16/p trials are all successful. Then
with probability at least q/2: for all i, the first i trials
contain at least ip/4 successes.

Proof. Break up the trials into geometrically increasing
subsequences of 2k trials each. We say that a “failure”
occurs in the kth subsequence if there are fewer than
p2k/2 successful trials within that subsequence. Using
a Cherno↵ bound, the failure probability is at most
e�p2

k
/8. Using a union bound, the probability that

a failure occurs in any subsequence k � lg(1/p) + 4

is at most
P1

k=lg(1/p)+4

e�p2

k
/8 =

P1
j=1

e�2

j  1/2.
Therefore, with probability at least q · (1/2), the first
16/p trials are a success and every subsequence has at
least p2k/2 successes.

Now, suppose there is no failure in any subsequence,
i.e., each has at least p2k/2 successful trials. Pick any
cuto↵ point in the subsequence of size 2i and examine
the total of 2i+1 trials up to this point. The previous
subsequences for k = 1, . . . , i � 1 each contain at least
p2k/2 successful trials, for a total of at least p · 2i/2
successful trials. Therefore, up to the cuto↵ point, at
least a p/4-fraction of the trials are successful. 2

We conclude in the next lemma that the probability
that any packet resets during the epoch is low. Note
that the probability q in the following depends only on
algorithmic parameter d, which is fixed at d = 1/2.

Lemma 5.9. There exists a constant q > 0 such that:
the probability that any packet resets during a particular
epoch is at most 1 � q/2.

Proof. Consider an execution of the protocol. Let t be
the start of the epoch in question, and suppose that
no packets reset before time t0 � t belonging to the
same epoch. Then by Corollary 5.1, we have X(t0) � 1.
Combining this fact with Lemma 5.3, we have that slot
t0 is empty with probability at most e�dX(t

0
)  e�d, i.e.,

it is full with probability at least 1 � e�d.
We shall now map the execution to the game in

Lemma 5.8, beginning from the start of the epoch at
time t. A slot t0 � t corresponds to a “success” if it is full
and “failure” otherwise. The game continues until either
a packet resets (we lose) or the epoch ends (we win).
We have already argued that until we lose, we have
success/full-slot probability of at least p = 1 � e�d. We
claim also (proof to follow) that we lose (a reset occurs)
only if there exists an i such that the first i slots of the
epoch contain less than ip/4 successes. Assuming the
claim, we can apply Lemma 5.8 to conclude that we win
with probability at least q/2 for q = (1�e�d)16/(1�e

�d
).



To prove the claim, observe that no packets activate
during the epoch, since activation starts a new epoch.
Thus, any packets active at time t0 must observe all slots
in [t, t0]. Let i be the number of slots in this interval. If
the interval [t, t0] has at least (1 � �)i = i/16 successes,
then no packets reset at time t0 — a packet can only be
below threshold at time t0 if it was also below threshold
at time t, which means it would have reset sooner. With
p = 1 � e�d = 1 � e�1/2 > 1/4, we have that a reset
occurs only if there are less than i/16 < ip/4 successes,
as claimed above. 2

5.5 Successful Streaks

The notation S(t) refers to a streak beginning at time
t and continuing for �

t

slots. A streak is successful

if there are no resets or packet activations during the
streak. Notice that during a successful streak, we
know that the contention is always at least X(t)/8 (by
Lemma 5.5), and that at the end of the streak it is at
most 3X(t)/4 (by Lemma 5.4). We say that successful
streaks S(t) and S(t0) are consecutive if t0 = t + �

t

.
The following lemma says that the length of any

given streak dominates the sum of the lengths of all
previous streaks in the epoch.

Lemma 5.10. Let S(t
1

), ..., S(t
k

) be a set of consecutive
streaks for which there is non-zero contention over each
streak. Then, for j = 2, ..., k, �

tj �
P

i<j

�
ti .

Proof. Starting from slot t
1

, consider the set of active
packets after

P
1i<k

�
ti slots for any k  j. Since

the contention is non-zero, there exist remaining active
packets. Moreover, since there are no injections over
successful streaks, each packet has an age of at leastP

1i<k

�
ti . Therefore, by the definition of �

tk , we have
�
tk �

P
1i<k

�
ti for any k  j. 2

We next prove a key result: an epoch is “successful”
with constant probability. We analyze the change in
contention and use the union bound over the streaks.

Lemma 5.11. For a non-unit epoch beginning at time
t, with constant probability, every streak is successful.

Proof. By assumption that the streak is non-unit, we
have X(t) � 8. Let S(t

1

), ..., S(t
k

) be consecutive
streaks such that k is the first index in these consecutive
streaks where the contention drops below 8. Define
⌧
j

=
P

ij

�
ti .

For the special case where we might have �
t

1

= 1,
the probability of a control failure in that single slot
is at most e�cX(t)  e�8c since X(t) � 8. This
probability can be made as small as we desire by setting
the appropriate value of c. For all other streaks, �

ti � 2.

By Lemma 5.7, the probability of a control failure
over the interval [t, t + ⌧

k

] is at most:

max

(✓
1

e

◆
c·X(t)

,

✓
1

2

◆
b·X(t)

)
+ ... +

✓
1

2

◆
b·X(t+⌧k�3

)

+

✓
1

2

◆
b·X(t+⌧k�2

)

+

✓
1

2

◆
b·X(t+⌧k�1

)

+

✓
1

2

◆
b·X(t+⌧k)

.

By Lemma 5.4, the contention decreases by at least
a multiplicative factor of 3/4 from one streak to the
next. Additionally, the contention at the beginning
of any streak is at least 8. Therefore, the contention
decreases by at least an additive value of two when going
from one streak to the next.

Returning to the above sum, the largest summand
is the last one since this is when the contention is
smallest. The summand to the left is at least a factor
of 4 smaller, by our observation that the contention
is decreasing by at least 2. Similarly, the term to
the left of that is at least another factor of 4 smaller,
and so on. Therefore, the value of the sum is upper-
bounded by a geometric series, and so it is no more
than 2 · (1/2)b·X(t+⌧k)  2 · (1/2)b·8 which we can set
to any desired (small) constant � depending only on a
su�ciently large constants b and c.

By Lemma 5.9, the probability of a restart is at
most a constant q/2 depending only on d. Therefore,
the epoch is successful with probability at least 1�((1�
q

2

)+�) = q/2�� � " for some constant " > 0 depending
only on c and d. 2

We say that an epoch is disrupted if at least 1/4
of the slots in the epoch are disrupted. The following
corollary shows that we get constant throughput in an
epoch with constant probability.

Corollary 5.2. For a unit epoch that is not disrupted,
with constant probability a packet broadcasts. For a non-
unit epoch with length T , with constant probability: (i)
every streak in the epoch is successful; (ii) the last streak
is of length at least T/2; (iii) the contention throughout
the last streak is between 1 and 8; and (iv) if the epoch is
not disrupted, then at least ⌦(T ) packets are broadcast.

Proof. Conclusion (i) follows from Lemma 5.11; con-
clusion (ii) follows from Lemma 5.10. Conclusion (iii)
follows because there are no resets or packet activations;
hence the contention decreases by at most a factor of 8
by Lemma 5.5. Conclusion (iv) follows from (ii) and
(iii), and from observing that, in a non-disrupted slot
in the last streak, there is a constant probability that a
packet is broadcast, and a constant probability that one
is not (due to an empty slot or a collision). If at most



1/4 of the epoch is disrupted, then at most half of the
slots in the last streak are disrupted, and of these T/4
non-disrupted slots in the last epoch, in expectation,
only a constant fraction are not successful broadcasts.
Thus, by Markov’s inequality, with constant probability,
at most a constant fraction of these T/4 slots are not
successful broadcasts, and hence with constant proba-
bility, at least ⌦(T ) packets are broadcast. 2

5.6 Bad Borrower Game

We have shown that each epoch is good (satisfying
Corollary 5.2) with constant probability. We now
abstract away details, defining a simple game between
two players: the lender and the borrower . There
are two key parameters: a probability p and a fraction
↵ 2 (0, 1). The game proceeds in iterations, where in
each, the borrower borrows an arbitrary (adversarially
chosen) amount of money from the lender, at least one
dollar. With probability p, at the end of the iteration,
the borrower repays a fraction ↵ of the money.

The correspondence to our situation is as fol-
lows: each iteration is associated with an non-disrupted
epoch, the length of the epoch defines the money bor-
rowed, and the number of successful broadcasts defines
the money repaid. In a good epoch, which occurs with
constant probability p, if the epoch is not disrupted,
then we get constant throughput and hence the bor-
rower is repaid an ↵ fraction of her money. In a bad
epoch, by contrast, we allow for the worst case, which
is no money paid back at all (no throughput, all waste).

For the finite Bad Borrower game , there is a
predetermined maximum amount that the lender can be
repaid: after the borrower has been repaid n dollars,
the game ends. This corresponds to a finite adversary
that injects exactly n packets. In the infinite Bad

Borrower game , the game last forever, and an infinite
amount of money is lent. This corresponds to infinite
instances, where the adversary injects packets forever.

5.7 Finite Bad Borrower Game

Our goal in this section is to show that, when the
borrower has repaid n dollars, he has borrowed at
most O(n) dollars. This corresponds to showing that
n packets are successfully broadcast in O(n) time,
ignoring the interstitial slots (which we will come back
to later). We assume throughout this section that n
is the maximum amount of money repaid throughout
the game, i.e., the adversary injects n packets in an
execution. A simple correspondence lemma bounds the
amount of money that the borrower can borrow:

Lemma 5.12. In every iteration of the finite bad bor-
rower game, � 1 dollar and  n dollars are borrowed.

Proof. The fact that the borrower borrows at least
one dollar follows by definition. Assume the borrower
borrows n dollars, i.e., that the associated epoch lasts
for at least n slots. Recall that the last streak in the
associated epoch must have been at least n/2 slots, and
at the beginning of that final streak, the contention must
have been at least 8 (or the epoch would have ended).
Since the last streak is of length at least n/2, there must
be a set of old packets with age � n/2 that collectively
have contention at least 4 (by definition of a streak).
This implies there must be at least 2n such packets,
which is impossible, given the bound of n packets total.
Thus, it is impossible to have an epoch of length n, and
hence to borrow more than n dollars in an iteration of
the finite bad borrower game. 2

We now argue, via an analysis of the expected
repayments, that when the finite bad borrower game
ends, the expected cost to the lender is O(n):

Lemma 5.13. Over an execution of the bad borrower
game, the expected number of dollars borrowed is O(n).

Proof. We analyze the dollars repaid in the following
fashion: we assume that for every dollar lent, it is
paid back with probability p↵. Notice, of course,
that these random choices are correlated: for a given
iteration, either an ↵ fraction of the dollars are paid
back (with probability p), or no dollars are paid back,
with probability 1�p. For a given iteration of the game,
if there are k dollars borrowed, we see that the expected
number of dollars repaid is pk↵.

What is the expected number of dollars we have to
lend in order for n dollars to be repaid? The answer
is n/(p↵), i.e., after O(n) dollars have been borrowed,
all n dollars have been repaid. In the last iteration,
there can be at most n additional dollars lent (as part
of the iteration where the last dollar is repaid), by
Lemma 5.12, yielding an expected O(n) + n borrowed
dollars. 2

5.8 Infinite Bad Borrower Game

In order to analyze infinite executions, we look at the
infinite bad borrower game. Recall that, for parameter k
chosen in advance, if there have been k dollars borrowed
up to some point, then in expectation there have been
O(kp↵) dollars repaid. In the infinite case, we conclude
something stronger: there are an infinite number of
times where the borrower has repaid at least a p↵/2
fraction of the total dollars borrowed.

Lemma 5.14. For any iteration r of the infinite bad
borrower game, with probability 1 there is a later iter-
ation r0 > r such that if the lender has lent k dollars



through iteration r0, then the borrower has repaid at least
kp↵/2 dollars.

Proof sketch. We can look at the random process as a
one-dimensional biased random walk with variable step
size. Let X

r

be the value of the random walk in iteration
r, where X

0

= 0. Our goal is to construct a random walk
such X

r

= 0 when exactly a p↵/2 fraction of borrowed
money has been repaid, and X

r

> 0 when more than
enough has been repaid. To do so, we renormalize the
random walk so that every dollar paid back moves a
distant of 2/(p↵) to the right.

We thus define the random walk as follows. Suppose
that we lend x dollars in iteration r. Then with
probability p, the iteration is good (an ↵ fraction of
the borrowed money has been repaid) and we have
X

r

= X
r�1

� x + (x↵)(2/(p↵)) = X
r�1

� x + 2x/p.
With probability (1 � p), the iteration is bad and we
have X

r

= X
r�1

� x. Observe that the expected value
of X

r

is X
r�1

+ x.
It can be shown that the random walk is positive

infinitely often, which is what is required to complete
the proof. (Note that we cannot say that the random
walk eventually remains always positive from some
point on, which would be true of a biased random walk
with fixed step size. The issue is that the adversary
can always introduce very large steps, for example, by
always borrowing more than X

r�1

dollars in step r.) 2

As a corollary, if we only consider the epochs,
ignoring the contribution from the interstitial slots, we
can show constant throughput for infinite executions.
Specifically, we can use the infinite bad borrower game
to define “measurement points,” thus showing that in an
infinite execution, there are an infinite number of points
at which we get constant throughput (if we ignore the
contribution from the interstitial slots).

Corollary 5.3. If we take an infinite execution and
remove all slots that are not part of an epoch, then the
resulting execution has at most a constant fraction of
waste.

We later show (Section 5.10) that the contribution
from the interstitial slots does not hurt the waste,
meaning that we get at most a constant factor of waste
taking into account all slots.

5.9 Interstitial Slots, Expected Waste, and Ex-
pected Throughput for Finite Instances

We begin by considering the finite case where there are n
packets injected. We bound the length of the interstitial
slots, after which we prove at most an expected constant
factor of waste.

We first argue that for a packet’s lifetime, any prefix
of at least two slots is at least a constant fraction full.

Lemma 5.15. Suppose that a packet u is active for the
time interval [t, s]. Then for any time t0 with t < t0  s,
at least a 1�� = 1/16 fraction of the slots in the interval
[t, t0] are full.

Proof. The proof is by contradiction. Suppose that
[t, t0] is strictly less than a (1 � �)-fraction full. Let
x = t0+1�t be the total number of slots in the interval,
and let k be the number of full slots in the interval. Then
we have x > 1

1��

k = 16k. Since x > 16k is an integer,

x � 16k + 1. Thus, the subinterval [t, t0 � 1] contains at
most k full slots across x � 1 � 16k slots, meaning that
a reset would occur at or before time t0 � 1. 2

Our next lemma extends the above argument to
cover all interstitial slots. We would like to say that
the first t timeslots of the entire execution include at
most a �-fraction of empty slots. This is not necessarily
true — the first slot could be empty. The issue is that
Lemma 5.15 does not apply to the first step of a packet’s
lifetime. But we can make a similar claim if we elide
certain slots. We define a slot to be active if at least
one packet is active, and we define a slot to be a quiet

arrival if a packet activates but the slot is empty. The
following lemma achieves our goal by ignoring slots with
quiet arrivals.

Lemma 5.16. For any integer t > 0, consider the first
t active time slots that are not quiet arrivals. At most
a � = 15/16-fraction of these slots is empty.

Proof. The proof is by induction on t. For the base case,
observe that a quiet arrival results in an immediate reset
of that packet. Thus, the first time step in consideration
is a step during which a packet arrives and the slot is
full.

For the inductive step, we assume that the claim
holds for all of the t first steps and argue that it holds
at (t+1)th. Consider any packet u that is active at time
t + 1. Let t

u

 t + 1 be the step at which u’s current
lifetime began. We have two cases.
Case 1. If t

u

= t+1, then the packet just activated. By
assumption, this is not a quiet arrival, and hence the
(t + 1)th step is full. By inductive assumption, the first
t slots are at most a �-fraction empty. Concatenating
these slots proves the claim.
Case 2: t

u

< t+1. Consider the interval [t
u

, t+1]. Since
u is active for the entire interval and t

u

< t+1, we apply
Lemma 5.15 to conclude that at most a � fraction of
these slots are empty. Eliding the quiet arrivals (which
are empty slots) only reinforces this claim. By inductive



assumption, at most a � fraction of the slots up to
t
u

�1 are also empty. Concatenating these two intervals
proves the claim. 2

Observe that Lemma 5.16 counts all of the active
interstitial slots, as any quiet arrivals are by definition
part of an epoch. We thus have a way of charging the
empty interstitial slots against full slots, incurring at
most a 1/(1 � �) cost.

Our goal now is to bound the number of full
interstitial slots, specifically the non-disrupted slots.
The main idea is to show that for each non-empty and
non-disrupted slot, there is a constant probability of
successful transmission. Thus after O(n) such slots, in
expectation, all the packets have broadcast.

Lemma 5.17. For a slot s, let e�2

denote the event
where two or more packets are broadcast in s, and let
e
=1

denote the event where one packet is broadcast in
slot s. If s is an interstitial slot, then Pr(e�2

) =
O(Pr(e

=1

)).

Proof. The lemma follows immediately from Lemmas
5.2 and 5.3, since in interstitial slots, the contention is
O(1). 2

Lemma 5.18. There are at most O(n) full, non-
disrupted interstitial, slots in expectation.

Proof. By the time that there are n full slots that
have successful transmissions, the execution is over.
And if we condition upon a given slot being full, there
is a constant probability of a successful transmission
by Lemma 5.17. Thus it takes O(n) such slots, in ex-
pectation, before all n packets have successfully trans-
mitted. 2

We can now prove our claims in Theorem 1.1 and
Corollary 1.1 regarding expected waste and throughput:

Lemma 5.19. If the adversary injects n packets, Re-

Backoff has at most an expected constant factor waste.

Proof. We will argue that the expected number of slots
for all the packets to finish is: E [T ] = O(n + D)
slots. We then observe that the expected nonwaste is
E [�] = E [(n + D)/T ], which by Jensen’s inequality is
at least a constant. Throughout the proof we consider
only active slots. Reincorporating the inactive slots only
increases the waste by a constant factor as a packet
activates after seeing an inactive slot.

Let n
e

denote the total number of slots over all
non-disrupted epochs3, let n

d

denote the number of

3
Recall that an epoch is non-disrupted if < 1/4 of its slots are

disrupted.

slots over all disrupted epochs, and let n
i

denote the
number of full non-disrupted interstitial slots. Again,
let D denote the total number of disrupted slots.

Our goal is to bound the number of empty inter-
stitial slots. Lemma 5.16 implies that, ignoring some
empty epoch slots (namely, the quiet arrivals), at most
a �-fraction of the remaining slots are empty. In partic-
ular, the worst case occurs if we pessimistically assume
all epoch slots are full, giving at most O(n

e

+n
d

+n
i

+D)
empty interstitial slots.

By Lemma 5.13, the finite bad borrower game
implies that the number of epoch slots in non-disrupted
epochs required to complete all n packets is O(n)
in expectation, therefore, E[n

e

] = O(n). As for
the interstitial slots, Lemma 5.18 shows that E[n

i

] =
O(n). Therefore, among non-disrupted epochs and
non-disrupted interstitial slots, we conclude that the
expected number of slots required for all n packets to
succeed is O(n).

Finally, we count the number of disrupted slots.
Since a disrupted epoch is one in which at least 1/4
of the slots are disrupted, there are clearly at most
O(D) disrupted epoch slots. Similarly, there are at most
O(D) disrupted, non-empty insterstitial slots. There
are also at most O(D) slots in which the control channel
is disrupted (which can cause wasted time on the data
channel if there are no active packets). Thus, there are
at most O(D) such slots otherwise unaccounted for.

Thus we conclude that there are, in expectation,
O(n) non-disrupted epochs and non-disrupted intersti-
tial slots, at most O(D) disrupted slots and disrupted
epochs, and O(n + D) empty slots. 2

5.10 Interstitial Slots for Infinite Instances

We now show that the contribution from the interstitial
slots does not hurt the throughput in infinite executions.
To do so, we deterministically bound the contribution
from the empty interstitial slots. We show that as long
as we pick “measurement points” that are su�ciently
large that from then on the non-empty interstitial slots
do not hurt. We use the following well known facts
about random walks [44].

Fact 5.1. Suppose that we have a biased random walk
on a line with fixed step size, where the probability of
going right is at least p, the probability of going left is
at most 1 � p, and the step size right is �

r

and the step
size left is �

`

. Suppose that p�
r

> (1 � p)�
`

. Then if
the random walk starts at the origin, the probability of
returning to the original is some constant strictly less
than 1.

Corollary 5.4. For any such biased random walk,
there is a last time that the walk returns to the origin.



We use Corollary 5.4 to bound the ratio of collisions
to broadcasts in non-disrupted, non-empty interstitial
rounds. From some point on, the number of collisions
is always at most a constant factor of the number of
broadcasts, and hence yields constant throughput. We
again observe that the empty slots cannot hurt the
throughput by more than a constant factor overall,
because, by Lemma 5.16 at most a � fraction of the
slots in any prefix can be empty interstitial slots.
Finally, we bound the disrupted interstitial slots by
D. From this, we conclude that we achieve constant
nonwaste and throughput, as claimed in Theorem 1.2
and Corollary 1.2:

Lemma 5.20. In an infinite execution, Re-

Backoff achieves at most a constant-fraction of
waste.

Proof. For some slot t, let ib
t

be the number of successful
broadcasts in non-disrupted interstitial slots prior to
time t, and let ic

t

be the number of collisions in non-
disrupted interstitial slots prior to time t.

We first argue that, with probability 1, from some
point t onwards, for all t0 > t: ic

t

 O(ib
t

). Conditioned
on the fact that there is at least one broadcast in an non-
disrupted interstitial round, let p be the probability of a
successful broadcast and q = 1� p be the probability of
a collision. We know from Lemma 5.17 that q = O(p).

Define the following random walk: with probability
q take a step to the left of size 1, and with probability p
take a step to the right of size 2q/p. Since p ·(2q/p) > q,
by Corollary 5.4 we know that from some point on, this
random walk is always positive.

Let t be a time slot that is after the last point
where the random walk crosses the origin. We can then
conclude that ic

t

< ib
t

· (2q/p). Since 2q/p = O(1), we
conclude that ic

t

= O(ib
t

).
Finally, we analyze the throughput. Fix any time t.

Let t̂ be the smallest time after t where the random walk
defined above is positive. According to Lemma 5.14,
there is a time t0 > t̂ where we have achieved constant
throughput during the non-disrupted epochs, i.e., a
constant fraction of the slots in non-disrupted epoch
are broadcasts. By the analysis of the random walk,
we conclude that a constant fraction of the non-empty,
non-disrupted interstitial rounds are broadcasts. By
assumption, at most O(D) slots are part of disrupted
epochs, and there are at most D disrupted interstitial
slots. There are at most D disrupted control slots
(which may cause delays on the data channel if there
are no active packets). Finally, by Lemma 5.16, at most
� of the data channel slots in the entire execution are
empty interstitial slots. Putting these pieces together
yields constant throughput overall. 2

6 Analysis of the Number of Access Attempts

In this section, we analyze the number of access at-
tempts. We show that in the absence of disruption,
the number of broadcasts is small and the adversary re-
quires a significant amount of disruption to cause even
a small increase in the number of access attempts.

We first analyze how often a packet resets, showing
that it is likely to succeed before it has a chance to reset.
This ensures that a packet cannot be forced to make a
large number of attempts via repeated resets.

Lemma 6.1. When a packet becomes active, it succeeds
(instead of resetting) with constant probability at least
1 � e�d/8.

Proof. In this proof, we grant the adversary even more
power than given by the model—in each slot, the
adversary is allowed to specify whether the slot is
“covered”, meaning that it is either disrupted or some
other packet transmits. The only thing the adversary
does not control is the packet in question.

Starting from the time the packet becomes active,
we divide time into windows W

0

, W
1

, W
2

, W
3

, . . ., where
window W

i

has length 2i. Note that if the first slot
is covered, the packet cannot possibly reset until time
16 or later, which more than subsumes window W

1

.
Similarly, if at least 1 slot is also covered in window W

1

,
then the packet cannot possibly reset until after window
W

2

. In general, if at least half the slots are covered in
each of the windows W

0

, W
1

, . . . , W
i�1

, then the packet
either stays alive through W

i

, or it succeeds sometime
before the end of W

i

—it cannot reset. Our argument
thus proceeds inductively over windows, stopping at the
first window W

i

that is not at least half covered. In
window W

i

, the packet transmits independently in each
data slot with probability at least d/2i+2, where d is
a constant specified in the protocol. Thus, if at least
2i�1 of the slots in W

i

are left uncovered, the packet
has either succeeded earlier, or it succeeds in window W

i

with probability at least 1�(1�d/2i+2)2
i�1 � 1�1/ed/8,

which is constant. 2

Corollary 6.1. For any positive integer k, the prob-
ability that a packet resets k times is at most 1/e⇥(k).

Proof. The only observation we need is that for a par-
ticular packet, each of its lifetimes are nonoverlapping.
Thus, Lemma 6.1 bounds the probability of a reset for a
given lifetime, and for each lifetime the probabilities are
independent. Thus, each reset occurs with probability
at most 1/ed/8, and hence the probability of k resets is
at most 1/ekd/8 = 1/e⇥(k). 2

We can now bound the total number of access
attempts that a packet makes during the first t slots



after its arrival. If it has not yet reset by time t, it is
easy to see that it has made O(log2 t+1) access attempts
in expectation—and we have show above that a packet
is unlikely to reset too many times. This yields:

Lemma 6.2. In the first t slots following a packet’s
arrival, it makes O(log2(t)+1) attempts in expectation.

Proof. Consider any lifetime of the packet. The ex-
pected number of access attempts during a slot is equal
to the packet’s transmission probability, and hence the
expected total number of access attempts is the sum of
probabilities across all slots by linearity of expectation.
The expected number of access attempts in a lifetime is
thus at most

P
t

s=1

⇥(1+ln s)/s = ⇥(log2 t+1), with the
⇥(1 + ln s) arising from the higher transmission proba-
bility of c max(ln s, 1)/s in control slots.

We now compute the expected number of access at-
tempts made by the packet by using linearity of expec-
tation across all lifetimes of the packet. In particular,
the number of access attempts during the kth lifetime
is 0 if the packet does not reset k � 1 times, and hence
applying Corollary 6.1 the expected number of access
attempts of the kth lifetime is 1/e⇥(k) · O(log2 t + 1).
Using linearity of expectation across all lifetimes, we
get a total expected number of access attempts of
O(log2 t + 1)

P1
k=0

1/e⇥(k) = O(log2 t + 1). 2

We can now prove our claims in Theorems 1.1
and 1.2 regarding the expected number of access at-
tempts per packet. In the finite case, we have al-
ready bounded the expected length of the execution in
Lemma 5.19. In the infinite case, we separately analyze
the disrupted slots, the non-disrupted slots with young
packets, and the non-disrupted slots with old packets,
bounding the number of attempts.

Lemma 6.3. Consider the finite case, let n be the num-
ber of injected packets, and let D be the number of dis-
rupted slots. Then the expected number of access at-
tempts each packet makes is O(log2(n + D) + 1).

Proof. Suppose the execution completes in time t. Then
applying Lemma 6.2 yields an expected number of
access attempts of O(log2 t + 1), as the packet must
complete before the execution completes. Let T be the
expected time of completion. From Markov’s inequality,
t � T i with probability at most 1/T i�1. Summing
across all i, the expected number of access attempts
becomes O(

P1
i=1

(1/T i)(log2(T i)+1)) = O(log2 T +1) ·P1
i=1

(i2/T i) = O(log2 T ). Substituting in the expected
makespan T = O(n + D) from Lemma 5.19 concludes
the theorem. 2

Lemma 6.4. Consider any time t in the infinite case at
which we have � throughput, for constant �. Let D

t

be
the total number of disrupted slots before t, and let ⌘

t

be the maximum contention prior to time t. Then the
expected average number of access attempts per packet
active prior to time t is O(log2(⌘

t

+ D
t

) + 1).

Proof. The analysis is split into two cases: either D
t

�
�t/2, or D

t

< �t/2. The first case is easy—Lemma 6.2
states that the expected number of access attempts per
packet is O(log2 t + 1) = O(log2 D

t

+ 1).
Suppose for the remainder that D < �t/2. Then

we divide the analysis here into three parts: (A) the
disrupted slots, (B) the non-disrupted slots for “young”
packets, and (C) the non-disrupted slots for “old”
packets. In parts A and B, we shall show that the
expected number of access attempts per packet is at
most O(log2 D

t

+log2 ⌘
t

) = O(log2(D
t

+⌘
t

)), regardless
of whether we have constant throughput. It is only in
part C that we leverage the assumption that time t is a
time at which we have constant throughput.

A. Consider a single lifetime of a specific packet.
Our goal is to bound the number of access attempts by
this packet during all D

t

disrupted slots. The number
of access attempts is maximized if all D

t

slots occur
as early as possible in the packet’s lifetime, in which
case the expected number of access attempts during
disrupted slots (i.e., during the first D

t

slots of its life-
time) is at most O(log2 D

t

+1) per lifetime (Lemma 6.2).
As in Lemma 6.2, we then apply Corollary 6.1 and lin-
earity of expectation to get an expected number of ac-
cess attempts of at most O(log2 D

t

+1)
P1

k=0

1/e⇥(k) =
O(log2 D

t

+ 1).
B. Consider a specific packet. We say that the

packet is young during the first ⌘2

t

steps of its lifetime,
during which it makes O(log2 ⌘2

t

+ 1) = O(log2 ⌘
t

+ 1)
access attempts in expectation (Lemma 6.2). Summing
across all lifetimes as above, we conclude that the
contribution for young packets is O(log2 ⌘

t

+ 1).
C. If a packet is not young, i.e., if its age is at

least ⌘2

t

, we say that it is old. Unlike parts A and B
which analyze on a per-packet basis, this part analyzes
the number of access attempts in aggregate. For every
non-disrupted slot, there are at most ⌘

t

packets in
the system, and hence at most ⌘

t

packets are old.
Each old packet transmits with probability at most
O((1 + ln(⌘2

t

))/⌘2

t

) = O(1/⌘
t

), and hence the expected
number of access attempts across all old packets in
any slot is O(1). Using linearity of expectation across
all t slots, we have a total expected number of access
attempts by old packets of O(t).

Since we have constant throughput at time t, we
know that at least �t slots are either disrupted or
successful transmissions. There are at most �t/2



disrupted slots by assumption, and hence there are at
least �t/2 = ⌦(t) successful transmissions. We charge
the O(t) number of access attempts from old packets
to these ⌦(t) completed packets, for an additional O(1)
number of access attempts per successful packet. 2

7 Synchronization: Reducing to One Channel

In this section, we describe how to transform the Re-

Backoff algorithm so that it runs on a single channel.
We first describe the modified algorithm. We then show
that it maintains a synchronized view of the channel.
Finally, we review the analysis and see how it has to be
modified for this variant.

7.1 Modified Algorithm

We begin by describing the modified algorithm that uses
only one channel.

As in Re-Backoff, packets are initially inactive.
They monitor the channel and wait to hear two empty
slots, immediately after which they become active. (By
contrast, in Re-Backoff, a packet becomes active in
the next slot when it hears one empty control slot.)

The main idea is that once a packet becomes active,
it alternates executing control slots and data slots. (This
idea gets refined below to synchronize packets so that
they agree on the parity of the slots.) When a packet
first becomes active, it treats its first active slot as a
control slot. In that first control slot, it broadcasts
with probability 1. It then proceeds to alternate data
and control slots. From then on, as in Re-Backoff,
a node with age s

u

broadcasts in a control slot with
probability c max{ln s

u

, 1}/s
u

, and in a data slot with
probability d/s

u

(terminating upon success)—where c
and d are constants as before.

For example, if packet u is inactive and it observes
slot s and s + 1 to be empty, it becomes active in slot
s+2. It treats s+2 as a control slot and sends a control
signal (with probability 1). It then alternates, treating
s + 3 as a data slot, s + 4 as a control slot, etc.

A packet calculates its age as follows: prior to its
first active slot (which it designates a control slot), it
sets its age to 1; immediately before every subsequent
control slot, it increments its age. That is, the age of
a packet in slot s is the number of slots that it has
designated as control slots since it became active, up to
and including slot s.

With no further synchronization, di↵erent packets
may treat a given slot as a control slot and a data
slot at the same time. We thus add a synchronization
mechanism:

If a packet observes an empty control slot followed
by a non-empty data slot, then it designates the

following slot as a data slot.

In doing so, it breaks the rule of alternation, synchro-
nizing the packets.

For example, suppose packet u believes that s is
a control slot. If s is empty (i.e., no broadcast, no
collision, no disruption), and if s + 1 is non-empty (i.e.,
a broadcast or a collision or disruption), then packet u
treats slot s + 2 as a data slot. It then continues to
alternate, treating s + 3 as a control slot.

If a packet completes in a data slot that immediately
follows an empty control slot, then it does not terminate
immediately, but participates in the additional data slot
that follows before terminating.

Finally, recall that a packet resets if it finds that a �-
fraction of data slots have been empty since it became
active. Here, the reset rule remain identical with one
change: if there are two consecutive data slots, then the
packet does not count the results from the first data
slot.

For example, if s is a control slot and s + 1 and
s+2 are data slots (because s is empty and s+1 is non-
empty), then after these three slots: if s + 2 is empty, a
packet increments its count of empty data slots by one;
if s + 2 is full, a packet increments its count of full data
slots by one.

7.2 Slot Agreement

We observe that packets agree on whether a slot is a
control or a data slot, i.e., synchronization works:

Lemma 7.1. Let t be a slot, and let u and v be two
packets that are active in slot t � 1 and slot t. Then u
considers t a control slot if and only if v considers t a
control slot. Similarly, u considers t a data slot if and
only if v considers t a data slot.

Proof. Assume u and v are injected in the same slot
t
0

< t. Then u and v both consider t
0

to be a control
slot, and observe the same pattern of full and empty
slots from then on. Hence u and v continue to identify
slots in the same manner.

Assume instead that u is injected in slot t
u

and v
is injected in slot t

v

> t
u

(where t
v

< t). There are two
cases. First, the slot t

v

may be considered a control slot
by u. In that case, as of slot t

v

, both u and v consider t
v

to be a control slot and both observe the same pattern
of full and empty slots from then on. Hence u and v
continue to identify slots in the same manner.

Finally, assume that u considers slot t
v

to be a data
slot. We know that v broadcasts in slot t

v

, because a
packet broadcasts in its first control slot, and hence t

v

is non-empty. Notice, though, that t
v

� 1 and t
v

� 2
must be empty slots, as packet v only becomes active



after observing two empty slots. From this we conclude
that u considers t

v

� 1 to be a control slot: we know
(by assumption) that t

v

is a data slot; if t
v

� 1 were
also a data slot, then the preceding control slot t

v

� 2
must also have been non-empty (in order to force the
repeated data slot); however, we know that t

v

� 2 is
empty.

Since u considers t
v

� 1 to be an empty control
slot, and u considers t

v

to be a non-empty data slot,
it designated slots t

v

+ 1 to be a data slot. Packet v
also considers t

v

+ 1 to be a data slot (because it is
alternating slot types). Hence, as of slot t

v

+ 1, both u
and v agree on the slot designation. From that point on,
but packet u and v observe the same pattern of full and
empty slots, and hence they continue to identify slots in
the same manner. 2

As a result of Lemma 7.1, we can o�cialy designate
slots as control or data slots. Consider a slot t:

• If no packet is active in slot t, we designate slot t
to be an empty slot.

• If there exists any packet u that is active in slot
t � 1 and slot t, then we designate slot t a data or
control slot based on the designation of packet u.

• If all the packets active in slot t were not active in
slot t�1, then we designate slot t a control slot (as
do all the newly activated packets).

We can then designate a pair or triple of slots consisting
of a control slot followed by one or two data slots as
a slot-group. Throughout, unless specified otherwise,
when we refer to a slot as a control or a data slot, we
refer to this global (synchronized) designation.

7.3 Changes to the Analysis

We can then repeat the analysis found in Sections 5
and 6, with a very small number of minor changes,
yielding the same waste, throughput, and energy re-
sults. Here, we highlight some of these issues.

The analysis begins by defining contention, dividing
packets into young and old packets, definiting control
failures, etc. Nothing needs to change as a result. It is
perhaps worth noting that a control failure is no longer a
su�cient condition for a packet to become active (as two
consecutive slots are needed), but it remains a necessary
condition

We proceed to calculate the probability of various
events as a function of contention (e.g., Lemma 5.2 and
Lemma 5.3), which remain identical for all slots in which
no packet becomes active.

We define epochs and streaks as before, i.e., an
epoch begins at the beginning of a slot group in which

some packet is activated, and a streak to consist of
the subsequent �

t

slot-groups. If a streak ends with
contention below 32, then the epoch ends and interstital
slots begin; otherwise a new streak begins. (Notice that
we have increased the contention limit for an epoch.)

We say say that an epoch is disrupted if at least
1/4 of its data slots are disrupted; for this purpose, if a
slot-group contains three slots, we count only the second
data slot.

The analysis of contention remains unchanged (e.g.,
Lemma 5.4 and Lemma 5.5), with the only di↵erence
that, due to the extra data slots, more packets can
complete, lowering the contention twice as fast. Thus,
we assume that initially X(t) � 16, and conclude that it
does not drop by more than a factor of 16. Similarly, the
analysis of control failures (Lemma 5.6 and Lemma 5.7)
remains unchanged.

The analysis of resets, howevers, requires a small
modification. Consider Lemma 5.9, which argues that
a reset occurs during an epoch with at most constant
probability, specifically, 1 � (q/2) for some constant
q > 0 depending only on d.

Here, we need to modify the proof slightly. Consider
a slot-group with an empty control slot. In this case,
there are two cases that lead to us “counting” an empty
data slot (and increasing the likilihood of reset):

• The data slot is empty.

• The data slot is non-empty, followed immediately
by an empty data slot.

The first non-empty data slot triggers another data
slot (for synchronization purposes), which may gives a
second chance for an empty data slot. (Recall that we
count a data slot as empty for a slot-group in a three-
slot slot-group if the second data slot is empty.)

Thus, we modify the proof as follows. First, we
consider epochs whose initial contention is 32. This
ensures that through the epoch, the contention is at
least 2, and hence the probability of an empty data slot
is at most e�2d (by Lemma 5.3).

As such, the probability that, for a given slot-group,
we count a data slot as empty is at most 2e�2d. Hence,
for the purpose of Lemma 5.9, we define p = 1 � 2e�d.
The remainder of the analysis continues as before, with
the conclusion that at least p/4 � 1 � � fraction of the
slots in the epoch are full with probability at least q/2.

The remainder of the throughput analysis continues
unchanged. For example, Lemma 5.11 is a critical
lemma that shows that every streak is successful with
constant probability. This follows from a calculation
based on the probability of control failures and resets.
As those bounds remain unchanged, the lemma holds
unchanged here. As a result, Corollary 5.2 also holds



unchanged, where lengths refer to the number of slot-
groups (instead of the number of slots).

Similarly, the analysis of the bad borrower game
(Lemma 5.12, Lemma 5.13, Lemma 5.14, Corollary 5.3)
are not impacted by the modifications.

It remains to consider the interstitial slots.
Lemma 5.15 shows that for any prefix of a packet’s life-
time (as long as it is length at least 2), at least a (1��)
fraction of the data slots are full. This remains true, so
long as we count only the second data slots in a 3-slot
slot-group.

Lemma 5.16 then follows, implying that for times-
lots that are non-quiet arrivals, at most a �-fraction of
the data slots are empty. Again, this holds identically,
so long as we only count the second data slot in a 3-
slot slot-group. (Moreover, the first data-slot in a 3-slot
slot-group is always non-empty, by definition.)

At this point, we have accounted for all the empty
interstitial slots and the remaining accounting continues
as before. We conclude Lemma 5.18 excactly as before,
i.e., there are at most O(n) full non-disrupted intersti-
tial slots. Putting the pieces together, this yields The-
orem 1.1 which shows expected constant throughput in
finite executions.

The analysis of interstitial slots in the infinite case
proceeds similarly, with Lemma 5.20 following as before
from the same basic analysis of random walks (which
does not depend on the protocol itself, and hence is
unchanged).

Finally, the energy analysis is unchanged, beyond
accounting for the energy used in the extra data slots. A
packet may now spend somewhat more energy, as it may
now broadcast in two data slots for some slot-groups
instead of just one. This change, however, increases the
energy usage by at most a constant factor.
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