

A Framework to Efficiently Predict Variable Rankings by
Relative Importance

Patrick Pape
Mississippi State University

PO Box 9627
Mississippi State, MS 39762

(662) 325-2080

pape@dasi.msstate.edu

Christopher Ivancic

Stephen F. Austin State University
P.O. Box 13063, SFA Station

Nacogdoches, TX 75962
(936) 468-1461

ivanciccp@sfasu.edu

John A. Hamilton, Jr.
Mississippi State University

PO Box 9627
Mississippi State, MS 39762

(662) 325-3570

hamilton@research.msstate.ed
u

ABSTRACT

This paper describes a work-in-progress software framework for

identifying the highest priority variables in a software sample,

based on a relative importance metric. The framework utilizes a

combination of static and dynamic analysis to gather features

pertaining to each variable in the relevant functions of a software

sample and then makes a prediction as to the priority ranking of

each variable in that sample. This ranking is based on the

likelihood of the variable to cause a fail state in the software when

dealing with a faulty or unexpected data value and the magnitude

of the failure. The magnitude of the failure is determined by how

far reaching the impact of the data fault is and how long the fault

persists in the software sample. An initial experiment is presented

where two open-source software samples are used to get some

initial data on the effectiveness of the framework. The samples are

used in two ways: a training/test method and a cross-validation

method. These two methods are used to test the learning algorithms

used in the experiment against unseen data and against data that is

familiar, respectively. The data indicates a strong potential to this

line of research and once the framework is automated, a much

larger sample size will be collected and evaluated. The key goal of

the research at this stage is to determine if the features extracted

from the software sample can be used to accurately predict the trend

of the rankings of the variables in the top ten to thirty percent within

a reasonable range. To reduce the time needed to bring an open-

source software component to an acceptable range of reliability and

security, only the most important variables are indicated for follow-

up with error handling and recovery techniques. Any variables that

fall below the ranking threshold, usually the top ten to twenty

percent, have too low of an importance ranking to cause a lasting,

long-reaching failure.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability – Fault-tolerance,

Verification, Security and Protection – Verification

D.2.5 [Software Engineering]: Testing and Debugging –

Diagnostics, Error handling and recovery

General Terms

Algorithms, Measurement, Design, Reliability, Experimentation,

Security, Verification.

Keywords

Variables, relative importance, efficient test cases, prediction

algorithms, open-source, software framework

1. INTRODUCTION
The research presented in this paper seeks to address the rising

trend of open-source software usage across all levels of software

development. Open-source software in general uses a less

regulated development process and requires a period of intensive

testing and debugging before integrating a component into a current

software project. This testing and debugging process can make the

idea of utilizing open-source software less appealing than just

developing the code in-house. We are developing a framework that

combines the elements of: static analysis, dynamic analysis, fault

tolerance and learning algorithms to predict the priority of variables

in the target software. The primary focus of this paper is to

highlight the improvements to the framework with respect to the

learning algorithms used to predict variable importance.

The goal is to determine which variables, at what parts in the code,

have the highest impact on the system when a data fault is introduce

in the memory space belonging to that variable. Once these key

variables are identified, error handling and recovery mechanisms

can be put in place to prevent the system from entering a fail state

or recovering from one gracefully. The framework is being tested

on C source code, but we are working on expanding the

functionality to include other languages, such as Python and Java.

The primary focus of our effort now is the automation of a large

portion of the framework to greatly speed up the testing process to

create a larger sample set to train and test our data. Once the

framework is automated and new data is published on the

effectiveness of the work, a version of the framework will be

released in order to aid in the recreation of the data by other

researchers.

By utilizing relative use cases and test cast prioritization and

minimization techniques in tandem with the results of the variable

ranking algorithm, the testing time needed to identify key areas in

the code that require error handling and recovery mechanisms is

reduced [1]. This reduction in cost is key for justifying the use of

open-source software in a project that is heavily scrutinized in

terms of reliability and security. With the high priority variables

identified, the software can be hardened to reduce the occurrence

of system fail states. Hardening the code is vital when running in

an environment where a fail state could allow the system running

the code to be accessed, exposing sensitive data, or when the fail

state itself is the concern. The framework allows open-source

components to be used in high fidelity systems, by reducing the

time and effort needed to bring the components up to the required

reliability and security needs.

Assuming access to the source code, this framework is useful for

helping to manage the increasing time and cost of completing full

testing suites on software in the late stages of development or

during regression testing from a software patch. The framework

when used along with statistical or historical data analysis tools can

aid in creating a more efficient means of prioritizing test cases. As

the framework learns from the development of the tool over time,

it can make judgments about the code with previous knowledge

gained from earlier releases. The framework design is moving

towards reducing the amount of direct interaction and manipulation

of the target software in order to collect the data and make the

predictions about the relative importance of variables across the

sample.

2. RELATED WORK
Utilizing software metrics as machine learning algorithm features

to make decisions about software is not a new concept. Of

particular importance to this work is the research done on selecting

software metrics and other features used in determining fault-

proneness of a software module and prediction models for

determining reliability and faultiness of a software system.

A comparison of intermittent and transient hard faults on programs

is done by Wei, et al. in [2]. The fault model used to represent the

faults in this work is similar to our framework using transient fault

injection simulation to measure the failure rate of variables under

certain conditions. The differences between intermittent and

transient fault injection is dependent on the length of the

intermittent fault, the fault type, and the origin of the fault in the

hardware.

A model based on support vector regression and an estimation

distribution model is used in [3]. Estimation of distribution

algorithms are used to optimize the parameters of the support vector

regression model. This model is used to predict the reliability based

on data acquired during the life-cycle of the project. The work

showed that diverse population of training data can improve

performance and that a hybrid model has better performance to the

original model. Another hybrid approach is explored in [4] which

seeks to avoid relying heavily on unrealistic assumptions about

software usage and reliability models too dependent on the

environment where the software is run. The work notes the

inaccuracies of these types of reliability models when applied to a

real-world case study. The hybrid model which utilized two

prediction phases to find trends in the data came out ahead of the

single phase prediction model using real word software failure data.

A neural network regression is used in [5] to estimate the failure

rates of software. A Bayesian method is used to predict the

reliability based around the available software metrics. The results

of the work indicate performance issues with working with a

generic implementation of a prediction model. The frameworks

presented in [6] look at measuring reliability based on the

observation of failures and the fault removal process. The

framework watches for faults that are not completely removed and

measures the complexity of a fault with regards to the delay

between identifying a failure and removing the fault which caused

the failure. A path-based prediction model is used in the adaptive

framework from [7] which focuses on viewing sequences,

branches, and loop structures. These metrics are used to determine

path reliabilities in the software, which are then used to determine

the reliability of the entire system. The resulting data indicated a

high correlation between actual software reliability and simulated

path reliability.

Deciding on which features to extract from the software is key

when attempting to train and test a prediction model to maximize

the accuracy of the model. Coupling between object classes and

lines of code are investigated in [8] and [9] and found to be a strong

indicator of fault-proneness of a software module. Regression and

machine learning methods are reviewed in [10] and [11] along with

object oriented software metrics to detect faults specific to classes

in a system. The data found here suggests that predicting quality

of software using machine learning is possible, especially in object-

oriented languages. The work in [12] suggests that the accuracy of

the prediction models using software metrics comes more from

utilizing a combination of code and design metrics and not

necessarily from the chosen machine learning algorithm.

3. FRAMEWORK OVERVIEW
The framework aims to complete reliability verification and risk

assessment on software where the source code is available as

efficiently as possible. The original design for the framework

focused on using fault injection to acquire the data needed to make

a determination about which variables where the highest priority in

the sample and then placing error handling and recovery

mechanisms around those variables. Changes to the framework

have been made to make extracting the metric data and ranking the

variables by relative importance less invasive and more efficient.

The overall objective remains the same, but there are additional

steps involving the use of machine learning algorithms to predict

priority functions and variables at two major steps in the process.

In addition to the inclusion of machine learning elements, the static

and dynamic analysis elements have been expanded to include a

mixture of currently accepted metrics and some metric specific to

this framework. The fault injection framework code was updated

and expanded upon, refining the injection method and including a

larger number of available injection types. The research goals are

to expand the static and dynamic analysis portions of the process to

increase the number of metrics that could be used to predict the

priority of functions and variables. Machine learning is integrated

into the framework to make identifying key locations for error

handling more efficient. The fault injection framework is used to

validate the predictions and increase the training data sets for

teaching the model. Ideally, the process would not utilize fault

injection, but would instead have enough data to predict the

importance of the variables without needing to calculate relative

importance manually using the failure rate, spatial impact and

temporal impact. The first step of the research is to identify key

pieces of open source software that can be easily obtained,

compiled, and tested. At this stage of the research, the process does

not consider the functionality of the target software or its general

structure.

The research objective is to validate that it is possible to effectively

utilize machine learning algorithms in the context of making

reliability verification testing more efficient. Once the target

software is obtained, the function metrics are gathered and are sent

to the binary classification model which predicts whether the

functions in each model are important, i.e. that they are part of the

critical path. Once the predictions have been made, the priorities of

the functions are calculated and the critical path is determined. The

idea behind the critical path is discussed in more detail in [1], but it

is essentially the key data flow of information throughout the

system across modules and the functions within those modules.

This is done by determining the highest priority function and

passing that information along to the second stage of the process.

This stage will determine the critical path using static analysis to

map out the flow of data in the program to locate all the functions

that have an effect on the variables in the priority function. Further

analysis is done to complete the dataset for variable metrics in this

stage. The metrics are used as features in the regression model to

predict the importance of each variable relative to the usage of the

target software. Lastly, fault injection is completed on the target

software to obtain the relative importance and the results of this

testing are used to create a validation dataset. This dataset is tested

against the previous predictions in order to validate the

effectiveness of the prediction models. The following sections

further detail the effort that goes into each stage of the process.

4. EXPERIMENT DESIGN
This section will detail the setup and methodology behind the initial

test cases used as a proof of concept for the framework. This

experiment uses only two open-source software samples for the

proof of concept tests. A much larger sample set size will be used

in further testing, now that promising results have been obtained.

4.1. Case Study
The case study for this experiment tests the entirety of the

framework on a new dataset that had not been seen by the models

and then combines a second dataset and first dataset for one larger

dataset and to observe the improvements with an increase in data

points. The dataset used in this experiment is taken from the testing

and analysis of the Mv program from the coreutils. The Mv tests

come from testing the prediction model by using the Mp3gain

datasets as training data and the Mv datasets as test data. The

second part of the validation testing combines these models and

completes ten-fold cross validation in order to get a more accurate

reading of the prediction potential of the models once more data

points are collected.

4.2. Test Setup
The data used in the experiment is collected during the execution

of the framework on each of the software samples. Once the

framework has completed fault injection analysis and calculated the

relative importance, the datasets were run through a series of

machine learning algorithms of varying types. WEKA [13] is used

to investigate the capability of the predictive models to predict on

data that had not been seen before and then again using a method

more relevant to smaller datasets. We are currently moving away

from utilizing the WEKA tool for training and testing our predictive

model and instead utilizing the sklearn package in python [14].

4.3. Variable Attribute Selection
To identify which attributes have the greatest merit when predicting

the value of relative importance for each of the variables in the

dataset, two attribute selection algorithms are tested. The full

training set is used as an input to the attribute selection algorithms.

In this case, not all of the algorithms worked utilizing ten-fold

cross-validation and so the entire training set is used in order to

maintain consistency between the algorithms.

4.3.1. Software Features
All of the metric values from the function pertaining to each

individual variable are included in the dataset. At this point it was

important to include as many features as possible in order to

identify any possible trends between the software metrics in order

to evaluate which metrics were the best for predicting the relative

importance. The only new metric to add to this section is the

inclusion of the probability of corruption for a single function, PCf,

which was added with the improvements to the metrics and was

calculated for each function in the target software and used to

recalculate the priority of each function accordingly. This metric

is used to estimate the potential for a randomly generated data fault

to occur in the memory space relating to a variable in a given

function.

The new static metrics included in the framework analysis are: local

connection (LC), intermodule connections (IMC), reads, writes,

and variable type. The local connections are the number of

variables that affect or are affected by the variable in question. LC

was determined using the source code of the target software and

manually investigating each line of code that the variable appeared

in. This value can be determined during the dynamic code slicing

stage of the framework. The intermodule connections refers to the

number of the functions that the variable appears to effect. This

includes all function calls within the function currently being

investigated. All variables are given a starting value of one local

and intermodule connection and for each new connection that value

is increased by one. Each branch statement that relies on the

variable value increases the local connections by one. In the case of

global variables, the intermodule connections value increases by

one. The reads and writes are the number of times in the function

that the value of the variable is read from and written to. This is

done because it is important for helping to predict the temporal

impact and potentially the failure rate. Each write to the memory

location for a variable is one potential overwrite of the faulty data.

Each read is potentially a point where the data fault can affect the

system. The variable type has proven to be an interesting metric to

include in the datasets. The different variable types have a widely

varying effect on the system when injected with faults. For

example, with the implementation of Boolean variables the failure

rate is particularly low because of the chances of flipping the single

bit used to determine value. The failure rate for string variables

tends to be higher than other variable types, especially with

variables dealing with file paths and file names.

The new dynamic metrics include the frequency and size. The

frequency of the variable, VarFreq, is calculated by using the

results of the gcov tool. Each occurrence of the variable in the

function currently being analyzed and the frequency of the lines of

code that are executed with the variable in them are summed to give

the frequency that the variable occurs throughout the execution of

the program. This value serves as the variable equivalent to the

frequency found for each function call using the gcov tool to

determine the probability of execution of each function. The size

metric is calculated by instrumenting the code with a probe that

returns the runtime size of the variable in bytes. This is done

because the size of variables is implementation specific and it is

important to identify the size of the variables for the particular

system being used. For this reason both the size and the variable

type are included in the dataset. The size is used in order to calculate

the probability of corruption for the specific variable.

The primary relative metrics included in the dataset are: PEv, PCv,

PFI, and relative importance. The probability of the randomly

generated data fault occurring in memory belonging to a variable,

PCv, and then being accessed by the program, PEv, are determined

in order to add an element of relevance to the importance

calculation. The probability of these two independent events

occurring at the same time is the PFI metric. This is the value that

is multiplied by the importance of the variable to calculate the

relative importance.

4.3.2. Merit and Rank of Variable Attributes
The principal component algorithm performs an analysis and

transformation of the data. Dimensionality reduction is

accomplished by choosing enough eigenvectors to account for

some percentage of the variance in the original data, in this case a

variance of ninety-five percent is used. Dimensionality reduction

in this context is the process of reducing the number of random

variables under consideration for feature selection. Essentially,

each value of the attribute would be multiplied by its coefficient

and added to the other attributes in order to obtain the class value.

The relief attribute evaluation algorithm evaluates the worth of an

attribute by repeatedly sampling an instance and considering the

value of the given attribute for the nearest instance of the same and

different class. This algorithm detects the features which are

statistically relevant to the desired class. The influence of each

attribute indicates how much of an effect the attribute has on the

prediction of the relative importance. Higher numbers indicate a

greater influence on the prediction and the positive and negative

values indicate a direct or indirect proportion to the class,

respectively. More information can be found at [15].

4.3.3. Variable Classification

ZeroR This is the default algorithm for classifying the dataset. It

serves as the starting point for validating the performance of other

classification algorithms on a dataset. This classification has no

rules, so it merely predicts the mean, for numeric classes, or the

mode, for nominal classes. For the purposes of this framework,

ZeroR and the majority of the rule based algorithms are not of much

use because they create a series of rules that provide threshold

values for the predictions, which is incompatible with the ranking

system used to sort the highest priority variables.

Linear Regression A regression algorithm is included as another

reference point to compare the other machine learning algorithms

against. This is a simple classifier that uses linear regression for

prediction. The linear regression model fits a straight line through

the set of data points in order to make the sum of the squared values

for the distance between the points of the data set as small as is

possible. The resulting model is used to predict the desired class.

IBk A version of the K-nearest neighbor classifier, IBk [16],

expands on the nearest neighbor algorithm to reduce the high

storage requirements. A major drawback of this classification

algorithm is that when one classification is significantly more

common than another, it is more likely that the test data will be

skewed towards the more popular classification. This algorithm

was chosen for a similar reason to the others, it is easier to

understand and allows for easy customizations in order to get some

initial data about the trends in the data set. Another advantage to

using this algorithm is that it is conducive to working as a weighted

classifier, which will become important when doing cost-sensitive

analysis.

KStar K* is an instance-based classifier, meaning the class of a test

instance based upon the class of those training instances similar to

it, as determined by some similarity function. It differs from other

instance-based learners in that it uses an entropy-based distance

function. Using the entropy as a distance measure provides this

algorithm with benefits over other: consistent handling of symbolic

attributes, real values and missing values. Instance based learners

work by comparing the current instance, or data point, to a database

of pre-classified examples, the training set. This explains the poor

performance of this variable in the validation testing that tested the

models using new unseen test data instead of cross-validation [17].

LWL stands for locally weighted learning. This algorithm uses an

instance-based algorithm to assign instance weights which are then

used by a specified WeightedInstancesHandler method in WEKA.

This algorithm then utilizes another algorithm depending on the

desired prediction values. For classification predictions Naive

Bayes is used and linear regression is used for regression models,

like this one. The results show that the lazy types of predictors do

well with the cross-validation testing because the dataset is

balanced be- tween training and test data. The exception to this is

the validation testing using just the mv variable dataset that the

predictor has not seen before. This problem is potentially solved by

adding more data points over varying types to the dataset to give

the algorithm a wider range of data points for comparing the test

data. More information on the functionality of the algorithm can be

found at [18].

Least Median Squared This algorithm implements a least median

squared linear regression algorithm based on the original linear

regression model discussed previously. Least squared regression

functions are generated from random subsamples of the data. The

least squared regression with the lowest median squared error is

chosen as the final model. This model is an interesting addition to

the experimental data, because even though it is based around the

linear regression model that provides less desirable prediction rates,

this algorithm is consistently a strong predictor. Particularly in

dealing with the test data from mv that the model has not seen

before in the next section. [19][20].

M5P This algorithm implements base routines for generating an

M5 model and trees. The original algorithm M5 is defined in [21]

and improvements are described in [22]. The algorithm deals with

inducing trees of regression models. The algorithm works by

creating a decision-tree induction algorithm to build a tree where

each node minimizes the variation of the class values for the nodes

beneath it on its branch. The primary difference between the old

algorithm and this one is that when pruning an interior node the

algorithm decides between replacing the node with a constant value

or a regression plane. The attributes of the regression plane are

those that are used in decisions in the tree nodes that are located

lower in the branch than the current node. [22]

5. RESULTS
The attribute selection algorithms: principal component and relief

information gain were run on the combined dataset to obtain the

evaluation metrics. The principal component algorithm chose the

PEv, function frequency, PFI, and a few of the variable types as the

attributes with the highest impact on the relative importance of the

variable. This makes sense when you consider how the relative

importance is calculated. The PFI is directly proportional to the

value of the relative importance, but the other attributes help to

identify some trends in the metrics that can be used to determine

the relationship with the other values that make up the relative

importance. The type of variable, function frequency, probability

that a variable will be executed after having a fault injected and the

type of variable all appear to have a closer connection to the failure

rate, spatial impact and temporal impact. The relief attribute

evaluation provides a similar attribute selection, identifying PFI,

variable frequency, PEv and the read metric as being the strongest

indicators of predicting the correct priority of the variables. Just as

before, these values make sense, as the variable frequency is tied to

the probability of a fault occurring during the program executing a

line of code involving the particular variable and the reads helps to

show the likelihood that the data fault will have an effect on the

system.

Given the dataset sizes used, it makes sense for there to be a drop

in accuracy when dealing with unseen data as opposed to the

validation dataset that uses the combined data from Mv and

Mp3gain and cross- validation. There is a drop in accuracy from

the previous run of the models on just the Mp3gain datasets. The

total mean error is quite high for most cases, the exception being

the least median squares algorithm. This indicates that against data

that has not been seen before, with a small sample size for training,

the other models predicted quite poorly when compared to the

zeroR model which just predicts the mean value for each. But, when

combining the datasets and using the ten-fold cross-validation

method in order to test on a more knowledgeable dataset, the error

found in the models is back in line with where it would be expected.

Note again that the error in predicting the correct rank is less

important than the accuracy of the models in correctly identifying

the top ten percent, twenty percent and so on.

The average percent correct for the predictions made by the models

using the training data from Mp3gain and the test data from Mv is

lower than with the cross-validation, because the training set used

is based on a single software project, so the relationships between

the attributes and the class are particular to that instance. Note that

zeroR and Kstar are all zero in this case because they determined a

single value and predicted that single value for each instance,

leaving no correctly identified instances. Alternatively, the least

median squared algorithm gets much better results in the twenty

percent range and beyond. The IBk and the M5P algorithms fall

behind the least median squared algorithm in their predictive

ability, catching up only when determining the bottom percent

ranges of eighty percent of variables or higher. Linear regression is

particularly bad at dealing with this test case. It is interesting that

linear regression does poorly in this case, but the least median

squared algorithm which uses linear regression for predicting

numeric classes does quite well compared to the other baseline

models.

When the datasets are combined into the single dataset for

validating through cross- validation, the models saw an increase in

predicting ability because of the training process incorporating data

points from numerous software projects which provides a better

informed model. IBk returns to being the best model in this case,

but least median squares is not far behind in accuracy. The most

interested data is the in top ten to thirty percent prediction ranges

for variables, because the user is most likely interested in upping

the error handling on those areas. Overall it appears that least

median squared is the best choice for predictions for relative

importance of variables, despite performing worse than IBk in the

validation dataset. The cross-validation is a good way to measure

performance of a smaller sample size that we have in this research,

but it is important to measure the capability of the models when

dealing with potentially unknown data trends from software

projects with different architectures. Figure 1 shows a

representation of the prediction accuracy of the different models

tested against the Mv dataset using the Mp3gain dataset for

training. Figure 2 shows the same, but for the combined validation

dataset using cross-validation.

The models that have lower correct predictions also have a greater

variance in the predictions made by that model. For example, the

least median squared algorithm had the best prediction rates and

also the lowest variance in the actual and predicted ranks for each

of the variables with respect to the relative importance of each

variable. The models that provided a lower true positive prediction

rate also had a higher difference on average between the actual

ranks and the predicted ranks of the variables. Again, zeroR and

Kstar have the same values because they both pick threshold values

and attempt to match the variables to those as opposed to

calculating a unique prediction for each variable. In the top thirty

percent of the variable rankings, least median squared, M5P, and

Ibk had the best overall results, because the Kstar and zeroR model

results are not usable for actual ranking.

The validation dataset results reinforce the trend shown in the

previous data for the validation dataset. For the combined dataset,

IBk gives the best results, then least median squares and M5P in a

distant third. Similarly to the prediction metrics, the overall best

model in this experiment is least median squared. When comparing

the results of the model predictions against an unseen dataset and

the combined dataset, least median squares performs better overall,

with IBk outperforming on the combined set, but falling far behind

for the dataset from the Mv program. Figure 3 shows the curve of

the average difference in actual and predicted rank for the models.

Figure 4 shows the same relationship but on the data from the

validation dataset.

6. CONCLUSION
The results of the baseline testing on Mp3gain show that machine

learning is an effective choice for increasing the efficiency of the

framework by correctly predicting the importance of functions and

variables. A combination of standard software metrics and the

Figure 1. Training/Test Set Mv Predictions

.

Figure 2. Combined Validation Set Predictions

.

relative metrics introduced in this work need to be used in order to

make the best possible prediction. In addition to these metrics,

some general aspects of the code that are used as features in the

dataset are particularly important in the prediction process. For

example, the type of variable has a major impact on the importance

of the variable for data faults in the system. Pointer variables,

including strings, are in general more indicative of higher risk

variables in a system due to their more complex nature in how they

are stored and utilized in memory. The number of writes occurring

for a particular variable was another indicator of high risk variables.

A greater focus on the real probabilities of the occurrence of a data

fault and its execution was an effective way to measure the

importance of variables in the system. The high impact of the

propagation metric for predicting function priority indicates that the

architecture of the system and data-flow has a high impact on the

priority of a function in a system.

Of the various machine learning pre-processing methods, cost

benefit analysis proved to be the most effective at increasing the

true positive prediction rate. Though the overall percentage of

correct predictions lowered in some cases, the cost-benefit analysis

increased the total number of true positives. For efficient reliability

verification we can afford to have some false positives, but false

negatives could lead to letting a potentially high risk function go by

untested. Discretization of the attributes in the datasets did not

provide a consistent improvement to the prediction capabilities of

the models. Using the Multilayer Perceptron and J48 models for

function prediction saw true positive prediction rates of over eight-

percent, as high as eighty-seven percent with Multilayer

Perceptron. It should be noted that overall between both cross-

validation and test data, J48, a tree algorithm, performed the best

for the function model.

The best algorithms for variable prediction were Least Median

Squared, IBk and M5P. In the case of variable prediction, Least

Median Squared was far ahead of the others, with eighty to ninety

percent correctly ranked variables in the top ten to thirty percent of

rankings. Even when dealing with the fresh datasets and the

accuracy drop, Least Median Squared showed an average accuracy

of seventy-seven percent against the top thirty percent of unseen

data points. Comparatively, the lazy and rule based algorithms had

drastic drops when dealing with completely unseen data points.

Given that it is unlikely that it will be possible to collect enough

training data for these models to have a rule for every scenario, it is

best to pick a model that gracefully handles unseen data points.

Least Median Squared is the best overall model for dealing with

ranking the variables according to relative importance. This is the

case despite the cross-validation showing better results with IBk,

because the lazy model is on average twenty percent worse than

Least Median Squared on unseen data points.

7. FUTURE WORK
As work continues on the framework, we are focused on three key

goals moving forward: converting the code to python, automating

the process from giving the framework a software sample to getting

the prediction listing and integrating more features into the

prediction algorithm. The framework is currently being converted

to Python for its simplicity and efficiency in rapidly prototyping

software and its strength in string processing. Another advantage

to utilizing python over the original C source code is the abundance

of python packages that can be utilized to facilitate faster

development. The automation of the project is key in releasing the

software for other researchers to incorporate into their own work or

just replicate the work that we are doing. With a fully automated

framework, the number of open-source software samples that we

can analyze and add to the training set will increase much more

quickly. In order to facilitate this transition to an automated

framework, we are utilizing the pycparser [23] package in python

to create abstract syntax trees from the software samples. The

desired features are then extracted from the tree and fed into the

machine learning algorithm to make predictions. Lastly, to expand

the feature list we are starting with the Clang Static Analyzer. [16]

Clang is a compiler front end for C-Type languages running on the

LLVM (Low Level Virtual Machine) compiler infrastructure.

Clang Static Analyzer is a tool running the Clang compiler

designed to perform static code slicing on source files. The tool

runs against C-type source files and uses an automated approach to

generating reports of possible errors and warnings in the code. As

stated previously, the current method of metric generation is done

manually. Utilizing the error reports generated by Clang we can

automate the process allowing more source to be tested and a

greater number of relevant features to be extracted from the source

to be used in the prediction algorithm.

We plan to utilize this tool for the error report generation. We can

then take the resulting reports to generate our own metrics. Clang

will allow us to increase our sample size by helping to automate the

analysis of larger samples of source code. Utilizing the output will

allow us to generate larger sample metrics and increase our overall

feature list. The current goal is to have a first release of the code

out in September that can be utilized to replicate the results

presented in this paper, and subsequent papers, and can be

integrated into other research projects.

This work is sponsored by the NSA CAE Cybersecurity Program

under Grant# H98230-15-1-0279.

Figure 3. Train/Test Average Percent Difference

.

Figure 4. Combined Validation Set Average Percent

Difference

.

8. REFERENCES
[1] Pape, P., & Hamilton, D. (2016). Better Reliability

Verification in Open-Source Software Using Efficient Test

Cases. CrossTalk, 31.

[2] Wei, J., Rashid, L., Pattabiraman, K., Gopalakrishnan, S.

(2011, June). Comparing the effects of intermittent and

transient hardware faults on programs. In Dependable

Systems and Networks Workshops (DSN-W), 2011

IEEE/IFIP 41st International Conference on (pp. 53-58).

IEEE.

[3] Jin, C., Jin, S. W. (2014). Software reliability prediction

model based on support vector regression with improved

estimation of distribution algorithms. Applied Soft

Computing, 15, 113-120.

[4] Pati, J., Shukla, K. K. (2015, February). A Hybrid Technique

for Software Reliability Prediction. In Proceedings of the 8th

India Software Engineering Conference (pp. 139- 146).

ACM.

[5] Wiper, M. P., Palacios, A. P., Marin, J. (2012). Bayesian

software reliability prediction using software metrics

information. Quality Technology and Quantitative

Management, 9(1), 35-44.

[6] Hu, H., Jiang, C. H., Cai, K. Y., Wong, W. E., Mathur, A. P.

(2013). Enhancing software reliability estimates using

modified adaptive testing. Information and Software

Technology, 55(2), 288-300.

[7] Hsu, C. J., Huang, C. Y. (2011). An adaptive reliability

analysis using path testing for complex component-based

software systems. Reliability, IEEE Transactions on, 60(1),

158-170.

[8] Zhou, Y., and Leung, H. (2006). Empirical analysis of

object-oriented design metrics for predicting high and low

severity faults. Software Engineering, IEEE Transactions on,

32(10), 771-789.

[9] Gyimothy, T., Ferenc, R., Siket, I. (2005). Empirical

validation of object-oriented metrics on open source software

for fault prediction. Software Engineering, IEEE

Transactions on, 31(10), 897-910.

[10] Suresh, Y., Kumar, L., and Rath, S. K. (2014). Statistical and

Machine Learning Methods for Software Fault Prediction

Using CK Metric Suite: A Comparative Analysis.

International Scholarly Research Notices, 2014.

[11] Malhotra, R., and Jain, A. (2012). Fault Prediction Using

Statistical and Machine Learning Methods for Improving

Software Quality. JIPS, 8(2), 241-262.

[12] Jiang, Y., Cuki, B., Menzies, T., and Bartlow, N. (2008,

May). Comparing design and code metrics for software

quality prediction. In Proceedings of the 4th international

workshop on Predictor models in software engineering (pp.

11-18). ACM.

[13] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, Ian H. Witten (2009); The

WEKA Data Mining Software: An Update; SIGKDD

Explorations, Volume 11, Issue 1.

[14] Scikit-learn, Machine Learning in Python. Retrieved April 1,

2016:http://scikit-learn.org/stable/

[15] Kenji Kira, Larry A. Rendell: A Practical Approach to

Feature Selection. In: Ninth International Workshop on

Machine Learning, 249-256, 1992.

[16] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-

based learning algorithms. Machine learning, 6(1), 37-66.

[17] John G. Cleary, Leonard E. Trigg: K*: An Instance-based

Learner Using an Entropic Distance Measure. In: 12th

International Conference on Machine Learning, 108-114,

1995.

[18] Eibe Frank, Mark Hall, Bernhard Pfahringer: Locally

Weighted Naive Bayes. In: 19th Conference in Uncertainty in

Artificial Intelligence, 249-256, 2003.

[19] Peter J. Rousseeuw, Annick M. Leroy (1987). Robust

regression and outlier detection.

[20] Peter J. Rousseeuw, Least Median of Squares regression.

Journal of the American Statisctical Association, December

1984, 79(388)

[21] Ross J. Quinlan: Learning with Continuous Classes. In: 5th

Australian Joint Conference on Artificial Intelligence,

Singapore, 343-348, 1992.

[22] Y. Wang, I. H. Witten: Induction of model trees for

predicting continuous classes. In: Poster papers of the 9th

European Conference on Machine Learning, 1997.

[23] Pycparser: Complete C99 parser in pure Python, Retrieved

April 1, 2016: https://github.com/eliben/pycparser

[24] Clang Static Analyzer homepage. Retreived April 1, 2016:

http://clang-analyzer.llvm.org/

http://scikit-learn.org/stable/
https://github.com/eliben/pycparser

