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ABSTRACT 

This paper describes a work-in-progress software framework for 

identifying the highest priority variables in a software sample, 

based on a relative importance metric.  The framework utilizes a 

combination of static and dynamic analysis to gather features 

pertaining to each variable in  the relevant functions of a software 

sample and then makes a prediction as to the priority ranking of 

each variable in that sample.  This ranking is based on the 

likelihood of the variable to cause a fail state in the software when 

dealing with a faulty or unexpected data value and the magnitude 

of the failure.  The magnitude of the failure is determined by how 

far reaching the impact of the data fault is and how long the fault 

persists in the software sample.  An initial experiment is presented 

where two open-source software samples are used to get some 

initial data on the effectiveness of the framework.  The samples are 

used in two ways: a training/test method and a cross-validation 

method.  These two methods are used to test the learning algorithms 

used in the experiment against unseen data and against data that is 

familiar, respectively.  The data indicates a strong potential to this 

line of research and once the framework is automated, a much 

larger sample size will be collected and evaluated.  The key goal of 

the research at this stage is to determine if the features extracted 

from the software sample can be used to accurately predict the trend 

of the rankings of the variables in the top ten to thirty percent within 

a reasonable range.  To reduce the time needed to bring an open-

source software component to an acceptable range of reliability and 

security, only the most important variables are indicated for follow-

up with error handling and recovery techniques.  Any variables that 

fall below the ranking threshold, usually the top ten to twenty 

percent, have too low of an importance ranking to cause a lasting, 

long-reaching failure. 

Categories and Subject Descriptors 

D.4.5 [Operating Systems]: Reliability – Fault-tolerance, 

Verification, Security and Protection – Verification 

D.2.5 [Software Engineering]: Testing and Debugging – 

Diagnostics, Error handling and recovery 

General Terms 

Algorithms, Measurement, Design, Reliability, Experimentation, 

Security, Verification. 

Keywords 

Variables, relative importance, efficient test cases, prediction 

algorithms, open-source, software framework 

1. INTRODUCTION 
The research presented in this paper seeks to address the rising 

trend of open-source software usage across all levels of software 

development.  Open-source software in general uses a less 

regulated development process and requires a period of intensive 

testing and debugging before integrating a component into a current 

software project.  This testing and debugging process can make the 

idea of utilizing open-source software less appealing than just 

developing the code in-house.  We are developing a framework that 

combines the elements of: static analysis, dynamic analysis, fault 

tolerance and learning algorithms to predict the priority of variables 

in the target software.  The primary focus of this paper is to 

highlight the improvements to the framework with respect to the 

learning algorithms used to predict variable importance. 

The goal is to determine which variables, at what parts in the code, 

have the highest impact on the system when a data fault is introduce 

in the memory space belonging to that variable.  Once these key 

variables are identified, error handling and recovery mechanisms 

can be put in place to prevent the system from entering a fail state 

or recovering from one gracefully.  The framework is being tested 

on C source code, but we are working on expanding the 

functionality to include other languages, such as Python and Java.  

The primary focus of our effort now is the automation of a large 

portion of the framework to greatly speed up the testing process to 

create a larger sample set to train and test our data.  Once the 

framework is automated and new data is published on the 

effectiveness of the work, a version of the framework will be 

released in order to aid in the recreation of the data by other 

researchers. 

By utilizing relative use cases and test cast prioritization and 

minimization techniques in tandem with the results of the variable 

ranking algorithm, the testing time needed to identify key areas in 

the code that require error handling and recovery mechanisms is 

reduced [1].  This reduction in cost is key for justifying the use of 

open-source software in a project that is heavily scrutinized in 

terms of reliability and security.  With the high priority variables 

identified, the software can be hardened to reduce the occurrence 

of system fail states.  Hardening the code is vital when running in 

an environment where a fail state could allow the system running 

the code to be accessed, exposing sensitive data, or when the fail 

state itself is the concern.  The framework allows open-source 

components to be used in high fidelity systems, by reducing the 

time and effort needed to bring the components up to the required 

reliability and security needs. 

Assuming access to the source code, this framework is useful for 

helping to manage the increasing time and cost of completing full 



 

 

testing suites on software in the late stages of development or 

during regression testing from a software patch. The framework 

when used along with statistical or historical data analysis tools can 

aid in creating a more efficient means of prioritizing test cases.  As 

the framework learns from the development of the tool over time, 

it can make judgments about the code with previous knowledge 

gained from earlier releases.  The framework design is moving 

towards reducing the amount of direct interaction and manipulation 

of the target software in order to collect the data and make the 

predictions about the relative importance of variables across the 

sample. 

2. RELATED WORK 
Utilizing software metrics as machine learning algorithm features 

to make decisions about software is not a new concept.  Of 

particular importance to this work is the research done on selecting 

software metrics and other features used in determining fault-

proneness of a software module and prediction models for 

determining reliability and faultiness of a software system.  

A comparison of intermittent and transient hard faults on programs 

is done by Wei, et al. in [2].  The fault model used to represent the 

faults in this work is similar to our framework using transient fault 

injection simulation to measure the failure rate of variables under 

certain conditions.  The differences between intermittent and 

transient fault injection is dependent on the length of the 

intermittent fault, the fault type, and the origin of the fault in the 

hardware. 

A model based on support vector regression and an estimation 

distribution model is used in [3].  Estimation of distribution 

algorithms are used to optimize the parameters of the support vector 

regression model.  This model is used to predict the reliability based 

on data acquired during the life-cycle of the project.  The work 

showed that diverse population of training data can improve 

performance and that a hybrid model has better performance to the 

original model.  Another hybrid approach is explored in [4] which 

seeks to avoid relying heavily on unrealistic assumptions about 

software usage and reliability models too dependent on the 

environment where the software is run.  The work notes the 

inaccuracies of these types of reliability models when applied to a 

real-world case study.  The hybrid model which utilized two 

prediction phases to find trends in the data came out ahead of the 

single phase prediction model using real word software failure data.  

A neural network regression is used in [5] to estimate the failure 

rates of software.  A Bayesian method is used to predict the 

reliability based around the available software metrics.  The results 

of the work indicate performance issues with working with a 

generic implementation of a prediction model.  The frameworks 

presented in [6] look at measuring reliability based on the 

observation of failures and the fault removal process.  The 

framework watches for faults that are not completely removed and 

measures the complexity of a fault with regards to the delay 

between identifying a failure and removing the fault which caused 

the failure. A path-based prediction model is used in the adaptive 

framework from [7] which focuses on viewing sequences, 

branches, and loop structures.  These metrics are used to determine 

path reliabilities in the software, which are then used to determine 

the reliability of the entire system.  The resulting data indicated a 

high correlation between actual software reliability and simulated 

path reliability. 

Deciding on which features to extract from the software is key 

when attempting to train and test a prediction model to maximize 

the accuracy of the model.  Coupling between object classes and 

lines of code are investigated in [8] and [9] and found to be a strong 

indicator of fault-proneness of a software module.  Regression and 

machine learning methods are reviewed in [10] and [11] along with 

object oriented software metrics to detect faults specific to classes 

in a system.  The data found here suggests that predicting quality 

of software using machine learning is possible, especially in object-

oriented languages.  The work in [12] suggests that the accuracy of 

the prediction models using software metrics comes more from 

utilizing a combination of code and design metrics and not 

necessarily from the chosen machine learning algorithm. 

3. FRAMEWORK OVERVIEW 
The framework aims to complete reliability verification and risk 

assessment on software where the source code is available as 

efficiently as possible.  The original design for the framework 

focused on using fault injection to acquire the data needed to make 

a determination about which variables where the highest priority in 

the sample and then placing error handling and recovery 

mechanisms around those variables.  Changes to the framework 

have been made to make extracting the metric data and ranking the 

variables by relative importance less invasive and more efficient.   

The overall objective remains the same, but there are additional 

steps involving the use of machine learning algorithms to predict 

priority functions and variables at two major steps in the process. 

In addition to the inclusion of machine learning elements, the static 

and dynamic analysis elements have been expanded to include a 

mixture of currently accepted metrics and some metric specific to 

this framework.  The fault injection framework code was updated 

and expanded upon, refining the injection method and including a 

larger number of available injection types. The research goals are 

to expand the static and dynamic analysis portions of the process to 

increase the number of metrics that could be used to predict the 

priority of functions and variables. Machine learning is integrated 

into the framework to make identifying key locations for error 

handling more efficient. The fault injection framework is used to 

validate the predictions and increase the training data sets for 

teaching the model. Ideally, the process would not utilize fault 

injection, but would instead have enough data to predict the 

importance of the variables without needing to calculate relative 

importance manually using the failure rate, spatial impact and 

temporal impact.  The first step of the research is to identify key 

pieces of open source software that can be easily obtained, 

compiled, and tested. At this stage of the research, the process does 

not consider the functionality of the target software or its general 

structure. 

The research objective is to validate that it is possible to effectively 

utilize machine learning algorithms in the context of making 

reliability verification testing more efficient. Once the target 

software is obtained, the function metrics are gathered and are sent 

to the binary classification model which predicts whether the 

functions in each model are important, i.e. that they are part of the 

critical path. Once the predictions have been made, the priorities of 

the functions are calculated and the critical path is determined. The 

idea behind the critical path is discussed in more detail in [1], but it 

is essentially the key data flow of information throughout the 

system across modules and the functions within those modules. 

This is done by determining the highest priority function and 

passing that information along to the second stage of the process. 

This stage will determine the critical path using static analysis to 

map out the flow of data in the program to locate all the functions 

that have an effect on the variables in the priority function. Further 

analysis is done to complete the dataset for variable metrics in this 

stage. The metrics are used as features in the regression model to 



 

 

predict the importance of each variable relative to the usage of the 

target software. Lastly, fault injection is completed on the target 

software to obtain the relative importance and the results of this 

testing are used to create a validation dataset. This dataset is tested 

against the previous predictions in order to validate the 

effectiveness of the prediction models. The following sections 

further detail the effort that goes into each stage of the process. 

4. EXPERIMENT DESIGN 
This section will detail the setup and methodology behind the initial 

test cases used as a proof of concept for the framework.  This 

experiment uses only two open-source software samples for the 

proof of concept tests.  A much larger sample set size will be used 

in further testing, now that promising results have been obtained. 

4.1. Case Study 
The case study for this experiment tests the entirety of the 

framework on a new dataset that had not been seen by the models 

and then combines a second dataset and first dataset for one larger 

dataset and to observe the improvements with an increase in data 

points. The dataset used in this experiment is taken from the testing 

and analysis of the Mv program from the coreutils. The Mv tests 

come from testing the prediction model by using the Mp3gain 

datasets as training data and the Mv datasets as test data. The 

second part of the validation testing combines these models and 

completes ten-fold cross validation in order to get a more accurate 

reading of the prediction potential of the models once more data 

points are collected.  

4.2. Test Setup 
The data used in the experiment is collected during the execution 

of the framework on each of the software samples.  Once the 

framework has completed fault injection analysis and calculated the 

relative importance, the datasets were run through a series of 

machine learning algorithms of varying types.  WEKA [13] is used 

to investigate the capability of the predictive models to predict on 

data that had not been seen before and then again using a method 

more relevant to smaller datasets.  We are currently moving away 

from utilizing the WEKA tool for training and testing our predictive 

model and instead utilizing the sklearn package in python [14]. 

4.3. Variable Attribute Selection 
To identify which attributes have the greatest merit when predicting 

the value of relative importance for each of the variables in the 

dataset, two attribute selection algorithms are tested. The full 

training set is used as an input to the attribute selection algorithms. 

In this case, not all of the algorithms worked utilizing ten-fold 

cross-validation and so the entire training set is used in order to 

maintain consistency between the algorithms. 

4.3.1. Software Features 
All of the metric values from the function pertaining to each 

individual variable are included in the dataset. At this point it was 

important to include as many features as possible in order to 

identify any possible trends between the software metrics in order 

to evaluate which metrics were the best for predicting the relative 

importance.  The only new metric to add to this section is the 

inclusion of the probability of corruption for a single function, PCf, 

which was added with the improvements to the metrics and was 

calculated for each function in the target software and used to 

recalculate the priority of each function accordingly.  This metric 

is used to estimate the potential for a randomly generated data fault 

to occur in the memory space relating to a variable in a given 

function. 

The new static metrics included in the framework analysis are: local 

connection (LC), intermodule connections (IMC), reads, writes, 

and variable type. The local connections are the number of 

variables that affect or are affected by the variable in question.  LC 

was determined using the source code of the target software and 

manually investigating each line of code that the variable appeared 

in. This value can be determined during the dynamic code slicing 

stage of the framework. The intermodule connections refers to the 

number of the functions that the variable appears to effect. This 

includes all function calls within the function currently being 

investigated. All variables are given a starting value of one local 

and intermodule connection and for each new connection that value 

is increased by one. Each branch statement that relies on the 

variable value increases the local connections by one. In the case of 

global variables, the intermodule connections value increases by 

one. The reads and writes are the number of times in the function 

that the value of the variable is read from and written to. This is 

done because it is important for helping to predict the temporal 

impact and potentially the failure rate. Each write to the memory 

location for a variable is one potential overwrite of the faulty data. 

Each read is potentially a point where the data fault can affect the 

system. The variable type has proven to be an interesting metric to 

include in the datasets. The different variable types have a widely 

varying effect on the system when injected with faults. For 

example, with the implementation of Boolean variables the failure 

rate is particularly low because of the chances of flipping the single 

bit used to determine value. The failure rate for string variables 

tends to be higher than other variable types, especially with 

variables dealing with file paths and file names.  

The new dynamic metrics include the frequency and size. The 

frequency of the variable, VarFreq, is calculated by using the 

results of the gcov tool. Each occurrence of the variable in the 

function currently being analyzed and the frequency of the lines of 

code that are executed with the variable in them are summed to give 

the frequency that the variable occurs throughout the execution of 

the program. This value serves as the variable equivalent to the 

frequency found for each function call using the gcov tool to 

determine the probability of execution of each function. The size 

metric is calculated by instrumenting the code with a probe that 

returns the runtime size of the variable in bytes. This is done 

because the size of variables is implementation specific and it is 

important to identify the size of the variables for the particular 

system being used. For this reason both the size and the variable 

type are included in the dataset. The size is used in order to calculate 

the probability of corruption for the specific variable.  

The primary relative metrics included in the dataset are: PEv, PCv, 

PFI, and relative importance.  The probability of the randomly 

generated data fault occurring in memory belonging to a variable, 

PCv, and then being accessed by the program, PEv, are determined 

in order to add an element of relevance to the importance 

calculation. The probability of these two independent events 

occurring at the same time is the PFI metric. This is the value that 

is multiplied by the importance of the variable to calculate the 

relative importance. 



 

 

4.3.2. Merit and Rank of Variable Attributes 
The principal component algorithm performs an analysis and 

transformation of the data.  Dimensionality reduction is 

accomplished by choosing enough eigenvectors to account for 

some percentage of the variance in the original data, in this case a 

variance of ninety-five percent is used.  Dimensionality reduction 

in this context is the process of reducing the number of random 

variables under consideration for feature selection.  Essentially, 

each value of the attribute would be multiplied by its coefficient 

and added to the other attributes in order to obtain the class value.  

The relief attribute evaluation algorithm evaluates the worth of an 

attribute by repeatedly sampling an instance and considering the 

value of the given attribute for the nearest instance of the same and 

different class. This algorithm detects the features which are 

statistically relevant to the desired class.  The influence of each 

attribute indicates how much of an effect the attribute has on the 

prediction of the relative importance. Higher numbers indicate a 

greater influence on the prediction and the positive and negative 

values indicate a direct or indirect proportion to the class, 

respectively. More information can be found at [15]. 

4.3.3. Variable Classification 
 

ZeroR This is the default algorithm for classifying the dataset. It 

serves as the starting point for validating the performance of other 

classification algorithms on a dataset. This classification has no 

rules, so it merely predicts the mean, for numeric classes, or the 

mode, for nominal classes.  For the purposes of this framework, 

ZeroR and the majority of the rule based algorithms are not of much 

use because they create a series of rules that provide threshold 

values for the predictions, which is incompatible with the ranking 

system used to sort the highest priority variables. 

Linear Regression A regression algorithm is included as another 

reference point to compare the other machine learning algorithms 

against. This is a simple classifier that uses linear regression for 

prediction.  The linear regression model fits a straight line through 

the set of data points in order to make the sum of the squared values 

for the distance between the points of the data set as small as is 

possible. The resulting model is used to predict the desired class. 

IBk A version of the K-nearest neighbor classifier, IBk [16], 

expands on the nearest neighbor algorithm to reduce the high 

storage requirements.  A major drawback of this classification 

algorithm is that when one classification is significantly more 

common than another, it is more likely that the test data will be 

skewed towards the more popular classification.  This algorithm 

was chosen for a similar reason to the others, it is easier to 

understand and allows for easy customizations in order to get some 

initial data about the trends in the data set. Another advantage to 

using this algorithm is that it is conducive to working as a weighted 

classifier, which will become important when doing cost-sensitive 

analysis. 

KStar K* is an instance-based classifier, meaning the class of a test 

instance based upon the class of those training instances similar to 

it, as determined by some similarity function. It differs from other 

instance-based learners in that it uses an entropy-based distance 

function. Using the entropy as a distance measure provides this 

algorithm with benefits over other: consistent handling of symbolic 

attributes, real values and missing values. Instance based learners 

work by comparing the current instance, or data point, to a database 

of pre-classified examples, the training set. This explains the poor 

performance of this variable in the validation testing that tested the 

models using new unseen test data instead of cross-validation [17]. 

LWL stands for locally weighted learning. This algorithm uses an 

instance-based algorithm to assign instance weights which are then 

used by a specified WeightedInstancesHandler method in WEKA. 

This algorithm then utilizes another algorithm depending on the 

desired prediction values. For classification predictions Naive 

Bayes is used and linear regression is used for regression models, 

like this one.  The results show that the lazy types of predictors do 

well with the cross-validation testing because the dataset is 

balanced be- tween training and test data. The exception to this is 

the validation testing using just the mv variable dataset that the 

predictor has not seen before. This problem is potentially solved by 

adding more data points over varying types to the dataset to give 

the algorithm a wider range of data points for comparing the test 

data. More information on the functionality of the algorithm can be 

found at [18]. 

Least Median Squared This algorithm implements a least median 

squared linear regression algorithm based on the original linear 

regression model discussed previously. Least squared regression 

functions are generated from random subsamples of the data. The 

least squared regression with the lowest median squared error is 

chosen as the final model. This model is an interesting addition to 

the experimental data, because even though it is based around the 

linear regression model that provides less desirable prediction rates, 

this algorithm is consistently a strong predictor. Particularly in 

dealing with the test data from mv that the model has not seen 

before in the next section. [19][20]. 

M5P This algorithm implements base routines for generating an 

M5 model and trees. The original algorithm M5 is defined in [21] 

and improvements are described in [22]. The algorithm deals with 

inducing trees of regression models. The algorithm works by 

creating a decision-tree induction algorithm to build a tree where 

each node minimizes the variation of the class values for the nodes 

beneath it on its branch. The primary difference between the old 

algorithm and this one is that when pruning an interior node the 

algorithm decides between replacing the node with a constant value 

or a regression plane. The attributes of the regression plane are 

those that are used in decisions in the tree nodes that are located 

lower in the branch than the current node. [22] 

5. RESULTS  
The attribute selection algorithms: principal component and relief 

information gain were run on the combined dataset to obtain the 

evaluation metrics.  The principal component algorithm chose the 

PEv, function frequency, PFI, and a few of the variable types as the 

attributes with the highest impact on the relative importance of the 

variable. This makes sense when you consider how the relative 

importance is calculated. The PFI is directly proportional to the 

value of the relative importance, but the other attributes help to 

identify some trends in the metrics that can be used to determine 

the relationship with the other values that make up the relative 

importance. The type of variable, function frequency, probability 

that a variable will be executed after having a fault injected and the 

type of variable all appear to have a closer connection to the failure 

rate, spatial impact and temporal impact. The relief attribute 

evaluation provides a similar attribute selection, identifying PFI, 

variable frequency, PEv and the read metric as being the strongest 



 

 

indicators of predicting the correct priority of the variables. Just as 

before, these values make sense, as the variable frequency is tied to 

the probability of a fault occurring during the program executing a 

line of code involving the particular variable and the reads helps to 

show the likelihood that the data fault will have an effect on the 

system.  

Given the dataset sizes used, it makes sense for there to be a drop 

in accuracy when dealing with unseen data as opposed to the 

validation dataset that uses the combined data from Mv and 

Mp3gain and cross- validation.  There is a drop in accuracy from 

the previous run of the models on just the Mp3gain datasets. The 

total mean error is quite high for most cases, the exception being 

the least median squares algorithm. This indicates that against data 

that has not been seen before, with a small sample size for training, 

the other models predicted quite poorly when compared to the 

zeroR model which just predicts the mean value for each. But, when 

combining the datasets and using the ten-fold cross-validation 

method in order to test on a more knowledgeable dataset, the error 

found in the models is back in line with where it would be expected. 

Note again that the error in predicting the correct rank is less 

important than the accuracy of the models in correctly identifying 

the top ten percent, twenty percent and so on.  

The average percent correct for the predictions made by the models 

using the training data from Mp3gain and the test data from Mv is 

lower than with the cross-validation, because the training set used 

is based on a single software project, so the relationships between 

the attributes and the class are particular to that instance. Note that 

zeroR and Kstar are all zero in this case because they determined a 

single value and predicted that single value for each instance, 

leaving no correctly identified instances. Alternatively, the least 

median squared algorithm gets much better results in the twenty 

percent range and beyond. The IBk and the M5P algorithms fall 

behind the least median squared algorithm in their predictive 

ability, catching up only when determining the bottom percent 

ranges of eighty percent of variables or higher. Linear regression is 

particularly bad at dealing with this test case. It is interesting that 

linear regression does poorly in this case, but the least median 

squared algorithm which uses linear regression for predicting 

numeric classes does quite well compared to the other baseline 

models.  

When the datasets are combined into the single dataset for 

validating through cross- validation, the models saw an increase in 

predicting ability because of the training process incorporating data 

points from numerous software projects which provides a better 

informed model. IBk returns to being the best model in this case, 

but least median squares is not far behind in accuracy. The most 

interested data is the in top ten to thirty percent prediction ranges 

for variables, because the user is most likely interested in upping 

the error handling on those areas. Overall it appears that least 

median squared is the best choice for predictions for relative 

importance of variables, despite performing worse than IBk in the 

validation dataset. The cross-validation is a good way to measure 

performance of a smaller sample size that we have in this research, 

but it is important to measure the capability of the models when 

dealing with potentially unknown data trends from software 

projects with different architectures. Figure 1 shows a 

representation of the prediction accuracy of the different models 

tested against the Mv dataset using the Mp3gain dataset for 

training. Figure 2 shows the same, but for the combined validation 

dataset using cross-validation.  

The models that have lower correct predictions also have a greater 

variance in the predictions made by that model. For example, the 

least median squared algorithm had the best prediction rates and 

also the lowest variance in the actual and predicted ranks for each 

of the variables with respect to the relative importance of each 

variable. The models that provided a lower true positive prediction 

rate also had a higher difference on average between the actual 

ranks and the predicted ranks of the variables. Again, zeroR and 

Kstar have the same values because they both pick threshold values 

and attempt to match the variables to those as opposed to 

calculating a unique prediction for each variable. In the top thirty 

percent of the variable rankings, least median squared, M5P, and 

Ibk had the best overall results, because the Kstar and zeroR model 

results are not usable for actual ranking.  

The validation dataset results reinforce the trend shown in the 

previous data for the validation dataset. For the combined dataset, 

IBk gives the best results, then least median squares and M5P in a 

distant third. Similarly to the prediction metrics, the overall best 

model in this experiment is least median squared. When comparing 

the results of the model predictions against an unseen dataset and 

the combined dataset, least median squares performs better overall, 

with IBk outperforming on the combined set, but falling far behind 

for the dataset from the Mv program. Figure 3 shows the curve of 

the average difference in actual and predicted rank for the models. 

Figure 4 shows the same relationship but on the data from the 

validation dataset.  

6. CONCLUSION 
The results of the baseline testing on Mp3gain show that machine 

learning is an effective choice for increasing the efficiency of the 

framework by correctly predicting the importance of functions and 

variables. A combination of standard software metrics and the 

Figure 1. Training/Test Set Mv Predictions 
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Figure 2. Combined Validation Set Predictions 
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relative metrics introduced in this work need to be used in order to 

make the best possible prediction. In addition to these metrics, 

some general aspects of the code that are used as features in the 

dataset are particularly important in the prediction process. For 

example, the type of variable has a major impact on the importance 

of the variable for data faults in the system. Pointer variables, 

including strings, are in general more indicative of higher risk 

variables in a system due to their more complex nature in how they 

are stored and utilized in memory. The number of writes occurring 

for a particular variable was another indicator of high risk variables. 

A greater focus on the real probabilities of the occurrence of a data 

fault and its execution was an effective way to measure the 

importance of variables in the system. The high impact of the 

propagation metric for predicting function priority indicates that the 

architecture of the system and data-flow has a high impact on the 

priority of a function in a system.  

Of the various machine learning pre-processing methods, cost 

benefit analysis proved to be the most effective at increasing the 

true positive prediction rate. Though the overall percentage of 

correct predictions lowered in some cases, the cost-benefit analysis 

increased the total number of true positives. For efficient reliability 

verification we can afford to have some false positives, but false 

negatives could lead to letting a potentially high risk function go by 

untested. Discretization of the attributes in the datasets did not 

provide a consistent improvement to the prediction capabilities of 

the models. Using the Multilayer Perceptron and J48 models for 

function prediction saw true positive prediction rates of over eight-

percent, as high as eighty-seven percent with Multilayer 

Perceptron. It should be noted that overall between both cross-

validation and test data, J48, a tree algorithm, performed the best 

for the function model.  

The best algorithms for variable prediction were Least Median 

Squared, IBk and M5P. In the case of variable prediction, Least 

Median Squared was far ahead of the others, with eighty to ninety 

percent correctly ranked variables in the top ten to thirty percent of 

rankings. Even when dealing with the fresh datasets and the 

accuracy drop, Least Median Squared showed an average accuracy 

of seventy-seven percent against the top thirty percent of unseen 

data points. Comparatively, the lazy and rule based algorithms had 

drastic drops when dealing with completely unseen data points. 

Given that it is unlikely that it will be possible to collect enough 

training data for these models to have a rule for every scenario, it is 

best to pick a model that gracefully handles unseen data points. 

Least Median Squared is the best overall model for dealing with 

ranking the variables according to relative importance. This is the 

case despite the cross-validation showing better results with IBk, 

because the lazy model is on average twenty percent worse than 

Least Median Squared on unseen data points. 

7. FUTURE WORK 
As work continues on the framework, we are focused on three key 

goals moving forward: converting the code to python, automating 

the process from giving the framework a software sample to getting 

the prediction listing and integrating more features into the 

prediction algorithm. The framework is currently being converted 

to Python for its simplicity and efficiency in rapidly prototyping 

software and its strength in string processing.  Another advantage 

to utilizing python over the original C source code is the abundance 

of python packages that can be utilized to facilitate faster 

development.  The automation of the project is key in releasing the 

software for other researchers to incorporate into their own work or 

just replicate the work that we are doing.  With a fully automated 

framework, the number of open-source software samples that we 

can analyze and add to the training set will increase much more 

quickly.  In order to facilitate this transition to an automated 

framework, we are utilizing the pycparser [23] package in python 

to create abstract syntax trees from the software samples.  The 

desired features are then extracted from the tree and fed into the 

machine learning algorithm to make predictions.  Lastly, to expand 

the feature list we are starting with the Clang Static Analyzer. [16] 

Clang is a compiler front end for C-Type languages running on the 

LLVM (Low Level Virtual Machine) compiler infrastructure.  

Clang Static Analyzer is a tool running the Clang compiler 

designed to perform static code slicing on source files.  The tool 

runs against C-type source files and uses an automated approach to 

generating reports of possible errors and warnings in the code.  As 

stated previously, the current method of metric generation is done 

manually.  Utilizing the error reports generated by Clang we can 

automate the process allowing more source to be tested and a 

greater number of relevant features to be extracted from the source 

to be used in the prediction algorithm.  

We plan to utilize this tool for the error report generation.  We can 

then take the resulting reports to generate our own metrics.  Clang 

will allow us to increase our sample size by helping to automate the 

analysis of larger samples of source code.  Utilizing the output will 

allow us to generate larger sample metrics and increase our overall 

feature list.  The current goal is to have a first release of the code 

out in September that can be utilized to replicate the results 

presented in this paper, and subsequent papers, and can be 

integrated into other research projects. 

This work is sponsored by the NSA CAE Cybersecurity Program 

under Grant# H98230-15-1-0279. 
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