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a b s t r a c t

Austenite memory phenomenon impedes the application of reverse austenitic transformation to refine
grains in steels. In this work, a phase-field model is employed to understand the austenite memory mech-
anism in terms of austenite growth behaviors under different mechanical boundary conditions, using the
Fe–23Ni (wt.%) alloy as an example. The effect of defects formed during martensitic transformation on
reverse austenitic transformation is considered by introducing a ‘‘stored energy” term. Kurdjumov–
Sachs (K–S) variants of each phase are divided into three groups based on the crystallography analysis.
Results show that different combinations of mechanical boundary conditions during the austenite?
martensite? austenite transformation cycle have different effects on the austenite memory phe-
nomenon, which can be attributed to the minimization of strain energy induced by phase transforma-
tions, as well as the inhomogeneous distribution of stored energy (energy of defects).

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Owing to their excellent mechanical properties and low cost,
martensitic stainless steels have wide applications in industry
[1]. The increasing demand for high-quality steels continuously
drives investigations on stainless steels with better mechanical
properties. There are several methods to enhance the mechanical
properties of steels, among which grain refinement is one of the
most effective ways to improve both strength and toughness
[2,3]. Grain refinement is usually realized by phase transforma-
tions and plastic deformations [4,5]. With severe plastic deforma-
tion, it is even possible to obtain ultrafine grain structures [6].

However, for some applications, like the steam turbine rotors
used in power plants, plastic deformation is unavailable owing to
the large component size and complicated shape [7]. In which case,
reverse austenitic transformation could be an effective grain
refinement technique [8,9]. Reverse austenitic transformations
usually follow certain orientation relationships, e.g., the
Kurdjumov–Sachs (K–S) relation [16,41]. In the case of high alloy
martensitic stainless steels, austenite nucleates with an identical
crystallographic orientation in one grain and grows into a coarse
austenite grain that is crystallographically similar to original
austenite grain. This is known as ‘‘austenite memory” phenomenon
which is detrimental to the grain refinement [10–15]. In order to
achieve refined grains in high alloy steels during reverse transfor-
mations, it is crucial to understand the underlying mechanisms of
the ‘‘austenite memory” phenomenon.

Numerous efforts have been made to explain the mechanism
behind the ‘‘austenite memory” phenomenon [10–20]. For exam-
ple, it was proposed that coherent acicular-shaped reverse austen-
ite particles form at the martensite lath boundaries with the K–S
orientation relationship, leading to the reappearance of prior
austenite [19,20]. However, since the reverse transformation
occurs at high temperature, the experimental techniques (like
TEM, EBSD, XRD, etc.) offer limited insight into the mechanism of
the transformation, it has to be observed indirectly by analyzing
the quenched microstructures. Undoubtedly, the quenching pro-
cess affects the uncovering of ‘‘austenite memory”.

On the other hand, by formulating the thermodynamic func-
tions and transformation kinetic equations of both austenites and
martensites at high temperatures, the high-temperature phase
transformation and microstructure evolution processes can be pre-
dicted using theoretical methods. Among the existing theoretical
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studies [21–33], the phase-field approach stands out as a powerful
computational method for modeling phase transformation and
microstructure evolution at the meso-scale [25–33]. Moreover, it
has been widely used to study martensitic transformations
[26,28–35]. With the Bain transformation mechanism and group-
subgroup symmetry relationship between the cubic austenite
and the tetragonal martensite, three order parameters are usually
used to express the crystallographically equivalent Bain variants;
morphology and kinetics of martensitic transformations, for
instance, habit planes of martensites [30], effect of applied stress
or strain on martensitic transformations [31], etc., have been sys-
tematically studied.

However, there has been much less focus on the reverse trans-
formation [34]. Reverse austenitic transformations can take place
diffusionally due to the high temperature whereas under certain
conditions (fast heating rate, high content of austenite stabilizer
alloy element such as Ni and low C content), it would appear in a
displacive manner [10,13,14]. Therefore, to understand the reverse
transformation mechanism, we first investigated the crystallogra-
phy of both martensitic and austenitic transformations. We then
performed phase-field simulations of c! a! c phase transforma-
tion cycle to understand the influence of initial states and mechan-
ical boundary conditions of martensite on reverse transformation
and to figure out the austenite growth behaviors that are related
to the ‘‘austenite memory” phenomenon. Especially, the roles of
phase-transformation-induced strain energy for both transforma-
tions and the energy of defects are carefully studied, owing to their
influence on nucleation site and growth behavior of reverse auste-
nitic transformation [53]. The distribution and amount of these
energy contributions under different mechanical boundary condi-
tions are also investigated and related to the ‘‘austenite memory”
phenomenon through their effects on the nucleation and growth
behavior of reverse austenite. The phase transformation cycle in
Fe–23Ni alloy is taken as an example, in which the reverse auste-
nitic transformation takes place displacively [37].
2. Crystallography of c ! a ! c transformations

Both of the martensitic and reverse austenitic transformations
proceed diffusionlessly under specific heat treatment conditions
in Fe–23Ni [37,38]. The austenite, or c phase, has a face-centered
cubic (fcc) structure while the martensite, or a phase, is considered
to be with a body-centered cubic (bcc) structure. The K–S or, less
commonly, other orientation relationships show the crystallo-
graphic characteristics of coherent transformation [39,40]. The
K–S orientation relationship is expressed as f111gc==f110ga and
h110ic==h111ia. The crystallographic correspondences for both
transformations are shown in Fig. 1. As illustrated in the figure,
for the martensitic transformation, each f111gc plane defines six
crystallographically equivalent variants, resulting in 24 distin-
guishable K–S variants of the martensite. In addition, the transfer
of stacking model from . . .ABCABC. . . of fcc to . . .ABAB. . . of bcc is
shown in Fig. 2. For the reverse austenitic transformation, four
variants with different orientations are possible when the plane
is fixed as ð011Þa. Because the martensite phase has six crystallo-
graphically equivalent f110ga planes, there are also 24 variants of
the austenite available during reverse austenitic transformation
[16]. The transfer of stacking model from . . .ABAB. . . of bcc to
. . .ABCABC. . . of fcc is shown in Fig. 3.

For simplicity, the variants for each transformation can be
divided into three groups based on the analysis about the deforma-
tion tensors of both transformations. These groups are associated
with a particular variant of the ‘‘Bain strain” that provides the sim-
plest connection between the austenitic and martensitic structures
[16,41,42]. Details are provided in Supplementary materials. In an
existing simulation [34] on reverse austenitic transformation, the
crystal structure of martensite was considered to be tetragonal;
therefore, Bain strain was only applied to martensitic transforma-
tion, while the formation of reverse austenite was equivalent to the
disappearance of the martensite. In addition, the effects of
transformation-induced strain energy and defect energy on reverse
transformations were not considered. However, for bcc marten-
sites, due to the more complicated orientation relationship and
the significant effects of strain energy and defect energy, the model
in [34] could not reflect the crystallographic and microstructural
features. Therefore, in the present work, to determine the effect
of reverse austenitic transformation induced strain energy, Bain
strain is also considered for modeling the reverse austenitic
transformation.

Eqs. (S8) and (S13), and those listed in St1 and St2 (see Supple-
mentary materials) show that the deformation matrices for austen-
ite to martensite transformation contain a major part of Bain
deformation, accompanied with a small rotation. The Bain defor-
mation for austenite to martensite transformation is characterized
by the compressive axis [41], lying along one of the three cubic
axes of austenite, and by which we group those K–S variants of
martensite into three kinds. Similarly, the Bain deformation of
martensite to austenite transformation is characterized by the ten-
sile axis. It lies along one of the three cubic axes of martensite. We
label the K–S variants of both martensite and reverse austenite by
their deformation axes {xyz}, as shown in Tables 1 and 2. With the
strain of each variant calculated in Section 3.2, each group of vari-
ants can be represented by the same Bain strain tensor. Thus, we
use three order parameters in the phase-field model to represent
three groups of variants: fg1;g2;g3g for the martensite variant
groups of martensitic transformation; f/1;/2;/3g for the austenite
variant groups of reverse austenitic transformation.

3. Phase-field model

The c ! a! c transformation cycle of Fe–23Ni alloy includes
quenching and the subsequent reheating process. The microstruc-
ture evolution during cycling is governed by the total free energy
minimization within the system. The total free energy includes
the Gibbs free energy of the two phases, the interfacial energy at
phase boundaries and variants boundaries, as well as the elastic
strain energy due to the structural change. The sets of order param-
eters, fg1;g2;g3g and f/1;/2;/3g, represent different variants of a
and c phases, respectively. For the martensitic transformation, gi=0
represents the austenite phase and gi ¼ 1 represents the marten-
site phase. For the reverse austenitic transformation, /i ¼ 0 repre-
sents the martensite phase and /i ¼ 1 represents the austenite
phase. Then the total free energy of the system is given as
[27,43,44]:

Gtotal ¼
Z

Glocal
V gif g; /j

� �
; T

� �þ Ggrad
V rgif g; r/j

� �� �þ Gel
V

h i
dV ð1Þ

where Glocal
V gif g; /j

� �
; T

� �
is the temperature dependent local free

energy density, Ggrad
V rgif g; r/j

� �� �
is the gradient energy density

due to the inhomogeneity of order parameters at boundaries. Gel
V

stands for the density of phase-transformation-induced strain
energy.

3.1. Local free energy

The driving force for the displacive transformation cycle is the
bulk energy difference between the parent phase and the new
phase. We employ the Landau-type free energy to describe ther-
modynamics of the transformation, with its coefficients deter-
mined by the relevant physical variables of the specific system,



Fig. 1. Schematic figures of the atomic correspondence for (a) martensitic transformation, and (b) reverse austenitic transformation. Red dots represent the atoms of
martensite, and blue dots represent the atoms of austenite. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Atomic correspondences for variants of martensite phase with K–S orientation relationship with austenite phase. From r to w shows how the face-centered-cubic
atom stacking of austenite transform to the body-centered-cubic atom stacking of martensite. Arrows in s, t, and v represent the atomic movement. The dots of the same
color mean the same atom plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Atomic correspondences for variants of reverse austenite phase with K–S orientation relationship with martensite phase. Fromr tow shows how the body-centered-
cubic atom stacking of martensite transforms to the face-centered-cubic atom stacking of austenite. Arrows in s, t, and v represent the atomic movement. The dots of the
same color mean the same atom plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Grouping 24 K–S orientation relations into 3 Bain groups for FCC to BCC transformation.

K–S variants FCC planes BCC planes FCC directions BCC directions Bain group

KS1 ð1 1 1Þ ð0 1 1Þ ½0 �1 1� ½1 �1 1� Z
KS2 ð1 1 1Þ ð0 1 1Þ ½0 �1 1� ½1 1 �1� Y
KS3 ð1 1 1Þ ð0 1 1Þ ½1 0 �1� ½1 �1 1� X
KS4 ð1 1 1Þ ð0 1 1Þ ½1 0 �1� ½1 1 �1� Z
KS5 ð1 1 1Þ ð0 1 1Þ ½�1 1 0� ½1 �1 1� Y
KS6 ð1 1 1Þ ð0 1 1Þ ½�1 1 0� ½1 1 �1� X
KS7 ð1 �1 1Þ ð0 1 1Þ ½1 1 0� ½1 �1 1� X
KS8 ð1 �1 1Þ ð0 1 1Þ ½1 1 0� ½1 1 �1� Y
KS9 ð1 �1 1Þ ð0 1 1Þ ½�1 0 1� ½1 �1 1� Z
KS10 ð1 �1 1Þ ð0 1 1Þ ½�1 0 1� ½1 1 �1� X
KS11 ð1 �1 1Þ ð0 1 1Þ ½0 �1 �1� ½1 �1 1� Y
KS12 ð1 �1 1Þ ð0 1 1Þ ½0 �1 �1� ½1 1 �1� Z
KS13 ð�1 �1 1Þ ð0 1 1Þ ½1 �1 0� ½1 �1 1� Y
KS14 ð�1 �1 1Þ ð0 1 1Þ ½1 �1 0� ½1 1 �1� X
KS15 ð�1 �1 1Þ ð0 1 1Þ ½0 1 1� ½1 �1 1� Z
KS16 ð�1 �1 1Þ ð0 1 1Þ ½0 1 1� ½1 1 �1� Y
KS17 ð�1 �1 1Þ ð0 1 1Þ ½�1 0 �1� ½1 �1 1� X
KS18 ð�1 �1 1Þ ð0 1 1Þ ½�1 0 �1� ½1 1 �1� Z
KS19 ð�1 1 1Þ ð0 1 1Þ ½�1 �1 0� ½1 �1 1� X
KS20 ð�1 1 1Þ ð0 1 1Þ ½�1 �1 0� ½1 1 �1� Y
KS21 ð�1 1 1Þ ð0 1 1Þ ½1 0 1� ½1 �1 1� Z
KS22 ð�1 1 1Þ ð0 1 1Þ ½1 0 1� ½1 1 �1� X
KS23 ð�1 1 1Þ ð0 1 1Þ ½0 1 �1� ½1 �1 1� Y
KS24 ð�1 1 1Þ ð0 1 1Þ ½0 1 �1� ½1 1 �1� Z
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for instance, latent heat ðQÞ for the transformation, and the under-
cooling or overheating temperature DT (difference between the
cooling temperature or heating temperature and the equilibrium
transformation temperature). In Eq. (2) we use a coupled free
energy function to reflect the bulk free energy difference between
austenite and martensite phases in the transformation cycle. For
each process, only one set of order parameters are involved. During
martensitic transformation, the whole process is represented by
the evolution of gif g, and in the following reverse transformation,
gif g describe the initial morphology of martensite and the initial



Table 2
Grouping 24 K–S orientation relations into 3 Bain groups for BCC to FCC transformation.

K–S variants BCC planes FCC planes BCC directions FCC direction Bain group

KS1 ð0 1 1Þ ð1 1 1Þ ½1 �1 1� ½�1 1 0� Z
KS2 ð0 1 1Þ ð1 1 1Þ ½1 �1 1� ½�1 0 1� Z
KS3 ð0 1 1Þ ð1 1 1Þ ½1 1 �1� ½�1 1 0� Y
KS4 ð0 1 1Þ ð1 1 1Þ ½1 1 �1� ½�1 0 1� Y
KS5 ð0 �1 1Þ ð1 1 1Þ ½1 1 1� ½�1 1 0� Z
KS6 ð0 �1 1Þ ð1 1 1Þ ½1 1 1� ½�1 0 1� Z
KS7 ð0 �1 1Þ ð1 1 1Þ ½1 �1 �1� ½�1 1 0� Y
KS8 ð0 �1 1Þ ð1 1 1Þ ½1 �1 �1� ½�1 0 1� Y
KS9 ð1 �1 0Þ ð1 1 1Þ ½�1 �1 1� ½�1 1 0� Y
KS10 ð1 �1 0Þ ð1 1 1Þ ½�1 �1 1� ½�1 0 1� Y
KS11 ð1 �1 0Þ ð1 1 1Þ ½1 1 1� ½�1 1 0� X
KS12 ð1 �1 0Þ ð1 1 1Þ ½1 1 1� ½�1 0 1� X
KS13 ð1 1 0Þ ð1 1 1Þ ½1 �1 1� ½�1 1 0� X
KS14 ð1 1 0Þ ð1 1 1Þ ½1 �1 1� ½�1 0 1� X
KS15 ð1 1 0Þ ð1 1 1Þ ½�1 1 1� ½�1 1 0� Y
KS16 ð1 1 0Þ ð1 1 1Þ ½�1 1 1� ½�1 0 1� Y
KS17 ð�1 0 1Þ ð1 1 1Þ ½�1 1 �1� ½�1 1 0� X
KS18 ð�1 0 1Þ ð1 1 1Þ ½�1 1 �1� ½�1 0 1� X
KS19 ð�1 0 1Þ ð1 1 1Þ ½1 1 1� ½�1 1 0� Z
KS20 ð�1 0 1Þ ð1 1 1Þ: ½1 1 1� ½�1 0 1� Z
KS21 ð1 0 1Þ ð1 1 1Þ ½�1 1 1� ½�1 1 0� Z
KS22 ð1 0 1Þ ð1 1 1Þ ½�1 1 1� ½�1 0 1� Z
KS23 ð1 0 1Þ ð1 1 1Þ ½1 1 �1� ½�1 1 0� X
KS24 ð1 0 1Þ ð1 1 1Þ ½1 1 �1� ½�1 0 1� X
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stored energy distribution while the reverse transformation pro-
cess is controlled by the evolution of /j

� �
. The following is the

specific local free energy function:

Glocal
V gif g; /j

� �
; T

� � ¼ G0
V gif g; /j

� �� �þ DG gif g; /j

� �
; T

� � ð2Þ
where

G0
V gif g; /j

� �� � ¼ A
X3
i¼1

g2
i gi � 1ð Þ2 þ

X3
j¼1

/2
j /j � 1
� �2 !

þ Ag
X
i–j

g2
i g

2
j þ A/

X
i–j

/2
i /

2
j ð3Þ

is the local free energy at the equilibrium state with A; Ag; A/, be
the Landau coefficients [36,45–47]. DG gif g; /j

� �
; T

� �
is the differ-

ence of Gibbs free energy between austenite and martensite at tem-
perature T.

In the reverse transformation, defects in martensite are found to
be the preferential nucleation sites of the reverse austenite [37,53].
Specifically, the growth of austenite is accompanied with the dis-
appearance of defects. Thus, in this model, stored energy due to
Fig. 4. Effects of stored energy from martensitic transformation on the thermody-
namics of reverse austenitic transformation.
defects is considered as a contribution of driving force for the
reverse transformation. Fig. 4 illustrates the effect of stored energy
on the thermodynamics of reverse austenitic transformation. The
release of stored energy decreases the nucleation barrier of reverse
austenite, and contributes to the driving force for the growth of
reverse austenite. Therefore, we propose

DG gif g; /j

� �
; T

� � ¼ Q T � T0ð Þ
T0

þ Gdefects �
X3
j¼1

/2
j

 !
� H gif g; /j

� �� �
ð4aÞ

Gdefects ¼ r � Gel f ! bð Þ ð4bÞ

where
P3

j¼1/
2
j is the shape function, and H gif g; /j

� �� �
is the inter-

polation function:

H gif g; /j

� �� � ¼ B
X3
i¼1

ð3g2
i � 2g3

i Þ �
X3
j¼1

ð3/2
j � 2/3

j Þ
 !

ð5Þ

where B is the interpolation function coefficient. Eq. (4a) represents
the decrease of bulk free energy during the cyclic transformation,

and Eq. (4b) expresses the stored energy Gdefects in the reverse trans-
formation due to the formation of defects (e.g., dislocations) during
the martensitic transformation process. The stored energy term
characterizes the density of the generated defects. Typically, when
the stress arising from phase transformations rtrans exceeds the
yield stress rY of the material, the material is susceptible to the
generation of defects, and the density of defects generated is pro-
portional to the ‘‘exceeded” stress rtrans � rY ; moreover, by assum-
ing that different martensitic variants have the same elastic
properties, rtrans is proportional to the transformation induced

strain energy Gel f ! bð Þ. Therefore, as the ‘‘exceeded” energy, the
stored energy is proportional to the density of defects. It can be
evaluated based on Eq. (4b), where r measures the ratio of the
stored energy obtained from the yield curve of the material to the

coherency strain energy Gel f ! bð Þ from the microelasticity theory.
The coefficient r is no less than 0 where no plasticity is involved
ðrtrans 6 rYÞ and is less than 1.
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3.2. Coherency strain energy

As is discussed in Section 2, martensite and reverse austenite
each has 24 different crystallographic variants, which can be
divided into three groups. The coherency strain energy originated
from the lattice mismatch during the displacive phase transforma-
tion plays a key role in the morphology of microstructures. From
the microelasticity theory of Khachaturyan [36], the coherency

strain energy density Gel
V Eq. (1) can be written as:

Gel
V ¼ 1

2
Cijkl � eelij � eelkl ð6Þ

where Cijkl is the elastic stiffness tensor and eelij is the elastic strain
tensor. We assume that the elastic moduli are homogenous within
the whole system. eelij is given by heterogeneous strain tensor deij,
homogeneous strain tensor eij and eigenstrain tensor e0ij, and the
eigenstrain is determined by the lattice mismatch between new
phase and parent phase. The elastic strain is calculated by:

eelij ¼ deij þ eij � e0ij ð7Þ

Eigenstrain e0ij in this work is expressed by:

e0ij ¼
X3
p¼1

g2
p � e0ij f ! bð Þp þ

X3
q¼1

/2
q � e0ij b ! fð Þq ð8Þ

taking both the eigenstrain of martensitic transformation, e0ij f ! bð Þ,
and the eigenstrain of reverse austenitic transformation, e0ij b ! fð Þ,
into consideration. They are coupled by interpolation functionsP3

i¼1 g2
i and

P3
i¼1 /

2
i .

In Section 2 we get the ‘‘transformation matrix” for each of the
martensite variants and reverse austenite variants (see Supple-
mentary materials). As pointed out by Khachaturyan [36], we can
get the transformation strain Eðf!bÞ and Eðb!f Þ and the principal axes
of transformation strain through the ‘‘transformation matrix” [41].
Thus

e0ij f ! bð Þ ¼ Eðf!bÞ ¼ eðf!bÞ � Mj j � e�1
ðf!bÞ � I ð9aÞ

e0ij b ! fð Þ ¼ Eðb!f Þ ¼ eðb!f Þ � Tj j � e�1
ðb!f Þ � I ð9bÞ

where eðf!bÞ and eðb!f Þ are matrices composed of the principal trans-
formation axes vectors for martensitic transformation and reverse
transformation, respectively. Mj j and Tj j are diagonal matrices
whose elements are the eigenvalues of square of the ‘‘Transforma-
tion Matrix”, M2 and T2 respectively (see Supplementary materials),
and I is the identity matrix. We get the eigenstrain for each of the
variants groups as follows.

For martensitic transformation:

e0ij f ! bð Þ1 ¼
e1 0 0
0 e1 0
0 0 e3

0
B@

1
CA

e0ij f ! bð Þ2 ¼
e1 0 0
0 e3 0
0 0 e1

0
B@

1
CA

e0ij f ! bð Þ3 ¼
e3 0 0
0 e1 0
0 0 e1

0
B@

1
CA

ð10Þ

where e1 ¼ 0:136; e3 ¼ �0:196. Here we ignore the rotation part,
because it is relatively small according to the Supplementary mate-
rials [41]. The orthogonal strains are applied in our simulation.

For reverse austenitic transformation:
e0ij b ! fð Þ1 ¼
e1 0 0
0 e1 0
0 0 e3

0
B@

1
CA

e0ij b ! fð Þ2 ¼
e1 0 0
0 e3 0
0 0 e1

0
B@

1
CA

e0ij b ! fð Þ3 ¼
e3 0 0
0 e1 0
0 0 e1

0
B@

1
CA

ð11Þ

where e1 ¼ �0:093; e3 ¼ 0:126.

3.3. Gradient energy

Gradient energy describes the energy penalty due to the inho-
mogeneous distribution of phase-field variables near interfaces
[36,47–49]. In this work, it is only related to the inhomogeneity
of structure order parameters near interfaces. The gradient energy
can then be written as:

Ggrad
V rgif g; r/j

� �� � ¼ 1
2

X3
i¼1

k0g;pq rpgi

� �ðrqgiÞ

þ 1
2

X3
j¼1

k0/;pq rp/j

� �ðrq/jÞ ð12Þ

k0g;pq and k0/;pq are the gradient coefficients matrices and both are
considered isotropic.

3.4. Governing equations

The microstructure evolution is governed by the free energy
minimizing process. Since there is no diffusional process during
the cyclic transformation, the Allen–Cahn (time-dependent Ginz-
burg–Landau) equation governs the kinetics of structural phase
transformation [32]:

@giðr; tÞ
@t

¼ �
X3
i¼1

Lij � dGtotal

dgj
ð13aÞ

@/pðr; tÞ
@t

¼ �
X3
p¼1

Lpq � dGtotal

d/q
ð13bÞ

where Eqs. (13a) and (13b) represent the microstructural evolution
of martensitic transformation and reverse austenitic transformation
respectively. Lij and Lpq are the kinetic coefficients and they are both
considered isotropic [31,43,44].

4. Computer simulations and discussions

4.1. Numerical input data

The governing equations Eqs. (13a) and (13b) were solved in
dimensionless unit, thus all the parameters should be normalized:

Dx� ¼ Dx
l , Dt

� ¼ L � E � Dt, G� ¼ G
E, C

�
ij ¼ Cij

E , k
� ¼ k

E�l2, where E is the char-

acteristic energy, chosen to be 109 J=m3, and l is the characteristic
length, chosen to be 10�9 m. Dx and Dt are the discretization grid
size and time step respectively. We employed uniform grids, i.e.,
Dx ¼ Dy ¼ Dz: Dx� was chosen to be 0.5, and Dt� was chosen to
be 0.025 during the nucleation steps and 0.1 afterwards. For each
simulation, Langevin noise terms were added during the first 100
simulation steps to simulate the nucleation process and avoid
any a priori assumptions on microstructures. During the marten-
sitic transformation process we chose the elastic moduli of fcc



Table 3
Non-dimensionalized parameters in phase-field simulations.

Parameters Values Parameters Values

A� 0.2 C�
11;bcc 70.86

A�
g 5.0 C�

12;bcc 31.43

A�
/ 5.0 C�

44;bcc 34.29

A�
g;/ 0.25 C�

11;fcc 59.71

Q� 0.35 C�
12;fcc 38.0

ðk0g;pqÞ
� 0.1 C�

44;fcc 34.57

ðk0/;pqÞ
� 0.1 Dx� ¼ Dy� ¼ Dz� 0.5
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Fe–Ni for the entire system [50], and the elastic moduli of bcc Fe–
Ni [50] for the entire system in reverse austenitic phase transfor-
mation. The simulations were conducted in a
128Dx� 128Dx� 128Dx 3D system. The non-dimensionalized
parameters are tabulated in Table 3. In the simulation of marten-
sitic transformation, we chose T = 300 K, which is lower than
Ms = 435 K, and T = 820 K for simulation of reverse austenitic trans-
formation which is higher than As = 793 K and lower than
Af = 853 K of Fe–23Ni [37].

4.2. Microstructure evolution

Effects of phase-transformation-induced strain energy and
stored energy on reverse transformation are investigated by
phase-field simulations under different mechanical boundary con-
ditions with different initial states. These energy factors behave
differently under different boundary conditions to affect the
microstructure morphology and kinetics of the phase transforma-
tions, which are important indicators of the austenite memory
effect. Specifically, the austenite memory effect is related to the
evolution of the size of the austenite, and we are especially inter-
ested in the final microstructure morphology of the reverse austen-
ite, whether or not it will integrate into coarse austenite grains to
display the ‘‘austenite memory” phenomenon. Therefore, we inves-
tigate the morphology and kinetics of microstructure evolution for
four kinds of simulation paths as follows:

FCC ��������!Unconstrained BCC
��������!Unconstrained FCC ð1Þ
��������!Constrained FCC ð2Þ

8<
:

FCC ��������!Constrained BCC
��������!Unconstrained FCC ð3Þ
��������!Constrained FCC ð4Þ

8<
:

In these cases, the stored energy obtained from the FCC to BCC
transformation is kept as the initial condition of the following
BCC to FCC transformation with the change of the mechanical
boundary condition. This means the source of the stored energy is
the generated structural defects during the martensitic
transformation.

Different mechanical boundary conditions of the system have
different effects on the elastic energy distributions during a phase
transformation, and will affect the nucleation and growth kinetics,
as well as the final morphologies, of the phase transformation.
Here we briefly discuss the difference between the unconstrained
(stress free) and constrained (strain free) boundary conditions.
According to the microelasticity theory [36], the elastic strain
energy of a system undergoing phase transformations is

Eel ¼ 1
2

Z
Cijkl deijðrÞ þ �eij � e0ijðrÞ

� �
deklðrÞ þ �ekl � e0klðrÞ
� �

d3r ð14Þ

Since the heterogeneous strain deijðrÞ would not cause the macro-

scopic shape change,
R
deijðrÞd3r ¼ 0. Moreover, the eigenstrain

e0ijðrÞ can be written as e0ijðrÞ ¼
P

pe0ijðpÞ � hpðrÞ where e0ijðpÞ is the
stress-free transformation strain of the p-th variant of the product
phase (e.g., e0ij f ! bð Þ in Eq. (8)) and hpðrÞ is the shape function of

the p-th variant (e.g., g2
p in Eq. (8)). The shape function hpðrÞ satisfiesR

hpðrÞd3r ¼ Vp where Vp is the volume of the p-th variant. With
these constraints, by calculating Eq. (14), we get

Eel ¼ V
2
Cijkl�eij�ekl �

X
p

VpCijkl�eije0klðpÞ þ
X
p

Vp

2
Cijkle0ijðpÞe0klðpÞ

þ
Z

1
2
CijkldeijðrÞdeklðrÞ � CijkldeijðrÞe0klðrÞ

	 

dr3 ð15Þ

where V is the volume of the whole system. The difference of
unconstrained and constrained boundary conditions lies in the val-
ues of homogeneous strain �eij. Under constrained boundary condi-
tion, since the volume and shape of the entire system are fixed to
the initial states, �eij ¼ 0, and therefore the first two terms in Eq.
(15) related to �eij are zero. On the other hand, under unconstrained
boundary condition, the elastic energy is minimized with respect to

the homogeneous strain �eij, i.e., @Eel

@�eij
¼ 0, from which we obtain

�eij ¼
P

p
Vp

V e
0
ijðpÞ. Assuming the product phase has the same configu-

rations and spatial distributions under unconstrained and con-
strained boundary conditions, by comparing the first two terms in
Eq. (15), we have:

Eel
ex ¼ Eel

constrained � Eel
unconstrained

¼ 0� �V
2
Cijkl

X
p

Vp

V
e0ijðpÞ

 ! X
p

Vp

V
e0klðpÞ

 ! !

¼ V
2
Cijkl

X
p

Vp

V
e0ijðpÞ

 ! X
p

Vp

V
e0klðpÞ

 !
ð16Þ

Eq. (16) gives the additional elastic strain energy under con-
strained boundary condition than under unconstrained boundary
condition. Since the elastic energy in Eq. (16) is related to the vol-
ume fraction Vp=V of each variant of the product phase, it will
influence the kinetics of the whole transformation process, i.e.,
increasing the nucleation barrier and decreasing the driving force
for growth. As a result, there will be a decrease in both nucleation
sites and growth rates for the new phase. Moreover, to minimize
the elastic energy in Eq. (16), different variants of the product

phase will arrange themselves in such a way that
P

p
Vp

V e
0
ijðpÞ is

minimized. This may lead to self-accommodation of certain vari-
ants so that the variants have the same volume fraction andP

p
Vp

V e
0
ijðpÞ is minimized, or even the suppression of the phase

transformation (Vp ¼ 0 or very small) when the elastic energy is
too large.

4.2.1. Martensitic transformation under different mechanical
boundary conditions

In this work, like that in the experiments [51,52], solution treat-
ment (heating to high temperature (1473 K), holding for hours and
then ‘‘water-quenching” to room temperature) is first conducted to
get the initial martensite structure. Thus phase-field simulations of
martensitic transformation under unconstrained and constrained
boundary conditions are conducted. In the simulation of marten-
sitic transformation under unconstrained boundary condition,
one of the martensite variants tends to occupy the whole system,
thus provides the absolute minimum of the free energy for the
whole system as long as the simulation steps are long enough
[33]. Fig. 5(a)–(d) shows the microstructural evolution of lath
martensite; in Fig. 5(d) variant 2 has a larger volume fraction than
variant 3, Fig. 5(e) is the sectional view in (d) marked by the white
dashed lines. Fig. 5(f) shows the distribution of normalized
elastic energy along the black dashed line in (e), indicating that



Fig. 5. From (a) to (d) shows the microstructural evolution of martensitic transformation under unconstrained boundary condition. V2 and V3 are two of the three Bain
variants of martensite. (e) Is the sectional view in (d) marked by the white dashed lines, and (f) shows the distribution of normalized elastic energy along the black dashed line
in (e).

Fig. 6. From (a) to (d) shows the microstructural evolution of martensitic transformation under constrained boundary condition. V1, V2 and V3 are the three Bain variants of
martensite. (e) Is the sectional view in (d) marked by the white dashed lines, and (f) shows the distribution of normalized elastic energy along the black dashed line in (e).
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the phase-transformation-induced strain energy exists only at the
lath boundaries, which also reflects the distribution of stored energy,
since we assume that the stored energy is proportional to phase
transformation induced strain energy (Eq. (4b)). Without any con-
straint, the phase-transformation-induced stress can be largely
released through the volume and shape change of the new phase.



Fig. 7. Microstructural evolution of reverse austenitic transformation starting from unconstrained martensite, with (a) unconstrained boundary condition (b) constrained
boundary condition. The red, green and blue colors represent the three Bain variants of the austenite. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Simulation of martensitic transformation under constrained
condition is another way to prepare the initial martensite (mor-
phology and stored energy distribution) for reverse transforma-
tion. From Fig. 6 we get the microstructural evolution and the
stored energy distribution. In Fig. 6(a)–(d), typical martensitic lath
morphology consisting of twin-related variants is similar to that in
Fig. 5; moreover, variant 1 also exists and has a twin-relationship
with variant 2 and variant 3. Fig. 6(e) is the sectional view in
Fig. 6(d) marked by the white dashed lines. Under constrained
boundary condition, all of the Bain variants exist to reduce the
strain energy of the whole system through strain accommodation,
i.e., different variants coexist to relax the phase-transformation-
induced strain energy as much as possible [33], due to the addi-
tional elastic strain energy in Eq. (16). The distributions and the
relative values of the stored energy are also different from that
under unconstrained condition, as compared from Figs. 5(f) and
6(f). It is larger at the lath boundaries than inside the laths, and
it is much larger at the triple-point of variant 1, 2 and 3, in
Fig. 6(f). In contrast to Fig. 5(f), the elastic strain energy in
Fig. 6(f), and therefore stored energy, distributes all over the
system, providing more nucleation sites for the reverse austenitic
transformations.

4.2.2. Reverse austenitic transformations
4.2.2.1. Reverse transformation from unconstrained martensite to
austenite. In this simulation we take the result from the uncon-
strained martensite simulations (Fig. 5) as the initial states of the
reverse austenitic transformation. Under the unconstrained
boundary condition, the reverse austenite nucleates and grows
along lath boundaries at the beginning of transformation; after
that, the nuclei proceed inward and finally integrate into a larger
reverse austenite lath, leading to the ‘‘austenite memory” phe-
nomenon. Fig. 7(a) shows this whole process and it matches the
experimental results quite well [37,52,53]. From the former simu-
lations in Section 4.2.1, stored energy at lath boundaries is much
higher than that inside martensite laths. Therefore, at lath bound-
aries the available nucleation sites and driving force for the growth
of the reverse austenite is higher than that inside laths. This can be
an important reason for the preferential nucleation and growth
behavior at martensite lath boundaries of reverse austenite.

Under constrained condition (Fig. 7(b)), the nucleation behavior
is similar to that under unconstrained boundary condition: austen-
ite nucleates at lath boundaries, because of the same reason as that
in Fig. 7(a). However, the growth of austenite is much slower than
that in Fig. 7(a), primarily due to the additional strain energy in Eq.
(16) during transformation process, which decreases the driving
force of phase transformation and thus delays the evolution of
reverse austenite, as has been stated by Eqs. (14)–(16). Conse-
quently, the ‘‘austenite memory” phenomenon is suppressed and
the reverse austenitic phase transformation is incomplete even
after 5000 simulation steps (i.e., certain amount of martensite is
retained) due to the large strain energy induced by phase
transformations.

4.2.2.2. Reverse transformation from constrained martensite to
austenite. This simulation is conducted with an initial state of con-
strained martensite. As displayed in Fig. 8(a), under the uncon-
strained condition, the reverse austenite tends to nucleate at
both the lath boundaries and inside the martensite laths. After
nucleation, to reduce the strain energy induced by reverse austeni-
tic transformation, the reverse austenite nuclei grow into different
orientation variants, and meet each other to form larger variants or
twin-related variant couples. Comparing with the simulations
starting from unconstrained martensite in Section 4.2.2.1, transfor-
mation at early stages (�300 simulation steps) in this simulation
evolves much faster. Meanwhile, the size of reverse austenite laths
in Fig. 8(a) is smaller than that in Fig. 7(a), which is in agreement
with the conclusion from experiments that reverse austenite



Fig. 8. Microstructural evolution of reverse austenitic transformation starting from constrained martensite, with (a) unconstrained boundary condition (b) constrained
boundary condition. The red, green and blue colors represent the three Bain variants of the austenite. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. Kinetics of reverse austenitic transformations. U–U: starting from uncon-
strained martensite and evolving under unconstrained boundary condition; U–C:
starting from unconstrained martensite and evolving under constrained boundary
condition; C–U: starting from constrained martensite and evolving under uncon-
strained boundary condition; C–C: starting from constrained martensite and
evolving under constrained boundary condition.

148 P. Song et al. / Computational Materials Science 117 (2016) 139–150
nucleating inside martensite laths tends to form small size variants
[53]. This is primarily due to the more even distribution of the
stored energy within the initial constrained martensite. Although
the stored energy is still higher at martensite lath boundaries
(Fig. 6(f)), the stored energy inside laths of constrained martensite
is much higher than that inside unconstrained martensite, which
enables nucleation of reverse austenite inside the martensite laths.
As a result, there are more preferential nucleation sites for reverse
austenite in constrained martensite, leading to the refined austen-
ite laths during early stages of the transformation. However, if we
simulate the process for even longer time (e.g., 5000 simulation
steps in Fig. 8(a)), which mimics holding the sample at high tem-
peratures for enough long time, smaller austenite laths integrate
into larger laths, which leads to the ‘‘austenite memory” phe-
nomenon. This is mainly due to the effect of unconstrained bound-
ary condition during the reverse austenitic transformation, in
which the phase-transformation-induced stress can be largely
released through the volume and shape change of the new phase,
so that the whole system tends to form a single reverse austenite
variant to reduce the elastic and interfacial energies.

In Fig. 8(b), under constrained condition, the microstructure
evolution of reverse austenite is similar to that in Fig. 8(a) at the
austenite nucleation process, but the growth behavior is quite dif-
ferent. The size of the reverse austenite remains smaller, since all
the three variants tend to coexist to reduce the strain energy,
which mitigates the ‘‘austenite memory” effect. Indeed, based on
the simulation results for all the four sets of transformation paths
with different mechanical boundary conditions, reverse transfor-
mations with constrained boundary condition result in the finest
austenite variants, which best mitigates the austenite memory
effect. On the other hand, the unconstrained boundary condition
will promote the austenite memory effect. In addition to the mor-
phology difference, the transformation rate is lower under con-
strained boundary condition. The growth behavior is affected by
both the strain energy induced by the martensitic transformation
and the strain energy induced by the reverse austenitic
transformation.
4.2.3. Kinetics of reverse austenitic transformation under different
conditions

As discussed above, different mechanical boundary conditions
have different effects on thermodynamics and kinetics of phase
transformation. Furthermore, these effects are directly related to
microstructure evolution. Fig. 9 shows the fraction of reverse



Fig. 10. Effect of boundary conditions on thermodynamics of reverse transformation. GðbarrierÞ: the barrier energy of reverse austenite nucleation; GðdriveÞ: the driving force of
reverse austenite growth. The symbols of ‘‘U–U”, ‘‘U–C”, ‘‘C–U” and ‘‘C–C” have the same meaning as those in Fig. 9.
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austenite with respect to modeling time steps. Comparing the
austenite fractions of the four simulation paths during the initial
nucleation stages (i.e., simulation steps less than 500), their corre-
sponding transformation (or nucleation) rates have the relation-
ship of: ‘‘C–U” > ‘‘C–C” > ‘‘U-U” > ‘‘U–C”. Here U represents
unconstrained boundary condition, and C represents constrained
boundary condition. Thus, U–U means simulation starts from
unconstrained martensite and evolves under unconstrained
boundary condition. U–C, C–U and C–C have similar meaning. This
result indicates the significant effect of the first mechanical bound-
ary condition (i.e., the mechanical boundary condition during the
martensitic transformation), due to the difference of the distribu-
tion and relative values of the stored energy, on the nucleation
behavior of the reverse austenite. For reverse austenitic transfor-
mations starting from constrained martensite, since the stored
energy distributes within the whole system, and the values are rel-
atively high (much higher than that inside the unconstrained
martensite laths), there are more possible nucleation sites for
reverse austenite in the constrained martensite than in the uncon-
strained martensite, leading to the faster nucleation. Moreover,
during the subsequent growth stages of the reverse austenite
(i.e., simulation steps larger than 500), ‘‘U–U” gradually wins over
‘‘C–C” in austenite fraction, since the second mechanical boundary
condition (i.e., the mechanical boundary condition during the
reverse austenitic transformation) plays a key role in the growth
rate of the reverse austenite, as discussed in Section 4.2. Finally,
the reverse austenitic transformations under unconstrained
boundary conditions (‘‘C–U” and ‘‘U–U”) end much faster than
those under constrained boundary conditions (‘‘C–C” and ‘‘U–C”).

Based on the observations above, Fig. 10 summarizes the inter-
play of the stored energy and the elastic strain energy for the
austenite growth behaviors under different combinations of the
mechanical boundary conditions during the c ! a! c transforma-
tion cycle. As illustrated, ‘‘U–C” has the highest nucleation barrier
and the lowest driving force for growth, due to the limited nucle-
ation sites provided by the stored energy from the martensitic
transformation and the presence of the additional elastic energy
of Eq. (16) during the reverse austenitic transformation. On the
contrary, ‘‘C–U” has the lowest energy barrier and the highest driv-
ing force for growth, since the stored energy and the absence of the
additional elastic energy of Eq. (16) both promote the transforma-
tion. In addition, ‘‘C–C” has lower nucleation barrier than ‘‘U–U”
but lower driving force for growth than ‘‘U–U”.

Based on the discussions above, the mitigation of the ‘‘austenite
memory” phenomenon in the ‘‘U–C” and ‘‘C–C” path is realized by
the suppression of the growth rate of the reverse austenite. Com-
paring ‘‘U–C” and ‘‘C–C”, the ‘‘C–C” path has more nucleation sites
for the reverse austenite, which leads to the faster growth rate and
completion of the reverse transformation. The ‘‘U–C” path, with
fewer nucleation sites and less growth driving force, suppresses
the reverse austenite to a large extent. Both ‘‘C–C” and ‘‘U–C” can
be the desirable path in terms of mitigating the austenite memory
phenomenon. Especially, the generation of more nucleation sites
and suppression of growth rates through the manipulation of
mechanical boundary conditions could be a reasonable guidance
for experiments to get smaller austenite grains during the reverse
transformation.

5. Conclusion

In this work, to study the ‘‘austenite memory” phenomenon
during the reverse austenitic transformation in Fe–23Ni (wt.%),
we first assume the displacive nature of the martensite? austen-
ite transformation, and derive the corresponding transformation
strains based on the crystallographical theory [36]. We then, by
introducing the ‘‘stored energy” to consider the effects of defects
generated in martensitic transformation on the reverse austenitic
transformation, apply the phase-field method to simulate the
microstructure evolution of the reverse austenitic transformation
under different mechanical boundary conditions. Using the mor-
phology of the austenite variants, whether or not they will inte-
grate into coarse ones, as the criterion, the ‘‘austenite memory”
phenomenon is discussed for the simulation results. Based on the
discussions, the following conclusions can be drawn:

(1) The ‘‘C–C” and ‘‘U–C” simulation paths can both eliminate the
‘‘austenite memory” phenomenon. Especially, the ‘‘C–C” path
generates more nucleation sites for the reverse austenite
through the constrained boundary condition during the prior
martensitic transformation and suppresses the growth rate of
the reverse austenite through the constrained boundary con-
dition during the reverse austenitic transformation.
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(2) The effect of the mechanical boundary conditions of the
prior martensitic transformation lies in the inhomogeneous
distribution of the stored energy generated by defects during
the martensitic transformation, which primarily decreases
the nucleation barrier and provides nucleation sites for the
reverse austenite.

(3) The effect of the mechanical boundary conditions of the
reverse austenitic transformation lies in the difference in
the transformation-induced strain energy, which primarily
decreases the driving force of the growth of the reverse
austenite.

These insights can provide useful guidance for experiments to
mitigate the austenite memory effect and get smaller austenite
grain during the reverse austenitic transformations.
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