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The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles
with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three
key differences in the crazing behavior of a composite relative to the pure homopolymer matrix,
namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure
stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer
interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no
relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibits void
nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted
chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving
rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. The
dominant failure mechanism of composite samples depends strongly on the length of the grafted
chains, with disentanglement being the dominant mechanism for short chains, while bond breaking
is the failure mode for chain lengths >10Ne, where Ne is the entanglement length. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4961872]

I. INTRODUCTION

It is well known that the addition of nanoscale fillers to
polymer materials can lead to markedly enhanced mechanical
properties. Polymer nanocomposites (PNC) exhibit improved
mechanical properties in processing, modulus, strain-to-
failure, and toughness, relative to pure polymers and also
to composites comprised of conventional microscale fillers.1–5

The reinforcing mechanism of adding nanofillers has been
under intense study in the past decade. It is now appreciated
that changes to polymer behavior depend on numerous
properties including particle concentration, particle geometry,
particle size, interfacial interactions, and thermal history.
While extensive work has been dedicated to studying the
low-strain elastic behavior of PNC,6 little attention has
been paid to the equally important plastic flow regime that
constitutes the major part of the mechanical performance
before fracture. In particular, glassy polymeric materials
exhibit unique mechanical failure through crazing, where
undeformed polymer evolves into an intricate network of
fibrils called crazes. Crazing dissipates an exceptional amount
of energy and increases the fracture energy by factors of
several thousands, making polymer glasses desirable for
load-bearing purposes in many engineering applications. The
molecular origins and dynamic development of crazes in pure
polymers have received considerable attention experimen-
tally7,8 and theoretically,9–12 but attempts to extend the current
understanding of nanocomposite materials have been limited.

a)Current address: Dave C. Swalm School of Chemical Engineering, Missis-
sippi State University, Starkville, Mississippi 39762, USA.

Papakonstantopoulos et al.13,14 demonstrated a strong
correlation between local mechanical properties and the
nature of nonaffine plastic failure of nanocomposites through
computer simulations. They found that the average moduli
of PNC filled with nanoparticles (NPs) are larger than that
of the unfilled polymer. Experimentally Lee et al.15 reported
changes in the distribution of NPs in glassy PNCs during
craze development. They found alignment of surface-treated
NPs along the pre-craze, expulsion of NPs from craze fibrils
of the pre-craze, and NP entrapment among craze fibrils
in the mature craze. A further study16 also concluded that
NPs at the craze-bulk interface can serve as separators
between polymer chains because of the increased mobility
of polymer segments at an enthalpically neutral NP surface.
Therefore, the probability for entangled strands to pile up at
the craze-bulk interface decreases as NP loading increases.
Consequently, less cross-tie fibrils form in the craze and
greater strain is required to exceed the critical fracture
energy for crack propagation. Lin et al.17 investigated the
crazing of glassy polystyrene (PS) mixed with polystyrene-
grafted multiwalled carbon nanotubes (PS-MWCNT). They
also found a high local concentration of MWCNTs at craze
boundaries. The pile up is thought to result from the
incapability of the softened chains to pull the rigid carbon
nanotubes into the nanoplastic flow. As crazes widen, the
polymer chains drawn into crazes are filtered through the
pileup of MWCNTs at craze boundaries, causing a significant
increase of chain friction during micro deformation. As a
result, craze widening becomes progressively difficult and
ultimately enhances the delocalization of the plastic flow of
crazing.
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Toepperwein and de Pablo18 investigated the early stages
of crazing in nanocomposites of linear polymers and nanorods
using computer simulations. They found that voids form
preferentially in regions of low local elastic modulus and that
the addition of attractive NPs induces earlier void formation
due to a more mechanically heterogeneous environment.
In the developing crazes, they find that larger particles
resist incorporation into developing voids, consistent with
the trapped regions of additives found experimentally by
Lee et al.15,16 Riggleman et al.19 showed that bare NPs
can serve as entanglement attractors, particularly for large
deformations, altering the topological constraint network that
arises in the composite material. Gersappe20 showed that, at
the same loading of nanofillers, smaller fillers increase the
area between fillers and polymer matrix and thus improve the
toughness of the composite above the glass transition Tg. These
simulations also showed that the increase in the attraction
strength between nanofillers and polymer matrix enhances
the composite toughness above Tg. However, Gersappe found
little improvement in the composite toughness below Tg.

In this study, we focus on PNCs of long entangled polymer
chains mixed with polymer-grafted (or brush) NPs. Grafting
polymers to NPs is an effective strategy for improving the
dispersion of NPs in polymer nanocomposites. In contrast to
surfactant coated NPs, polymer chains grafted onto NPs are
typically of the same chemistry as the surrounding matrix.
Entropic effects, which are controlled by the grafting density
and brush-matrix chain length ratio, modify the effective
interaction between polymer grafted NPs21,22 and can be
used for controlling their state of dispersion in a polymer
matrix. Studies have shown that adjusting grafting density
and the chain length ratio of the graft to the matrix chains
allowed for control over the self-assembly of polymer grafted
NPs, e.g., structures such as spheres, strings, and sheets can
be formed.23 Given the different levels of brush-brush and
brush-matrix interactions as the result of varying the spatial
arrangements of NPs, the composites are expected to exhibit

distinct mechanical properties, opening up new avenues for
producing hybrid materials with “designer properties.”

We study the crazing behavior of composites comprised
of polymer-grafted NPs using molecular dynamics (MD)
simulations. Figure 1 shows snapshots comparing crazing
for nanocomposites and pure polymer samples. We focus
on understanding the role played by polymer grafted NPs in
changing the crazing behavior of nanocomposites as compared
to that of neat polymers and PNCs composed of bare NPs.
In particular, we consider the regime where the NPs are well
mixed with the matrix, i.e., when the chain length of the
end-grafted polymer is comparable to or greater than that
of the matrix chains.24–26 Specifically, we characterize the
differences in the stages of craze development: the cavity
nucleation regime that determines the yield stress σy, the
craze growth regime where material is deformed into a craze
at a constant drawing stress σd and extension ratio Λ, and
the fracture regime where the fully formed craze grows until
bonds break or chains disentangle at the maximum stress σmax.
We offer insights into the molecular level mechanisms that
are responsible for these differences. Our study suggests a
strong dependence of the mechanical properties of polymer
nanocomposites on the nature of surface-tethered polymers.

In Sec. II, we define the model and methodology used in
this study. In Sec. III, we present results for the static structures
prior to deformation and for the stress-strain curves. In Secs.
IV-VI, we present our results for cavity nucleation, growth,
and failure. Finally, in Sec. VII, we present a brief summary
of our main conclusions.

II. MODEL AND METHODOLOGY

The chains and the NPs are all assumed to be formed by
chemically identical monomers with a mass m and diameter σ.
All monomers including bonded monomers interact through
the truncated and shifted Lennard-Jones potential,

FIG. 1. Snapshots from simulations
showing (a) craze growth, (b) fully
formed crazes, and (c) failure for ho-
mopolymer (left, with Lz/L

0
z = 4.0,

9.0, and 14.5, respectively) and teth-
ered NP-polymer composite (right, with
Lz/L

0
z = 4.0, 14.0, and 19.0, respec-

tively).
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where ε is the well-depth. The cutoff distance, rc = 21/6σ or
1.5σ in two different classes of simulations.

Nanoparticles are smooth spheres of radius a = σNP/2
= 10σ and their mass and interactions are calculated by
integrating over their volume and assuming that they contain
monomer-like Lennard-Jones atoms with number density,
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where Ushift
R,A are the values of the potential at the

cutoff radius Rc. The Hamaker constant ACC = 4π2εCCρ
2σ6

= 39.478ε for NPs made of the same type of monomers
as the polymer chains. The cutoff radius is selected to be
Rc = 20.45σ so that NP/NP interactions are purely repulsive.

The interaction between a NP and a chain monomer is
given by

UC,m (r) = 2a3σ3ACS
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×
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(4)

where Ushift is the value of the potential at r = RC. Here
we set ACS = 80ε. Unless stated otherwise, the cutoff radius
for the polymer/NP interaction is Rc = 11σ, in which case
the NP-polymer interactions are purely repulsive. In a few
cases, Rc is increased to 15σ to study the effects of attractive
interactions between the NPs and polymer chains.

To represent the catenation of chains, we adopt two
types of bonded interactions depending on the stages in the
simulation. The finitely extensible nonlinear elastic (FENE)
potential is used during equilibration, with spring constant
k = 30ε/σ2 and a maximum bond extent R0 = 1.5 σ. To
allow covalent bonds to break, “FENE” bonds are replaced by
“quartic” bonds,

Uquartic (r) = K(r − R0)3 (r − B) +U0, (5)

in the quenching and active deformation stages. R0 = 1.5σ
is the maximum bond length beyond which bonds become
permanently broken. Three other constants, K = 2351ε/kB,

B = 0.7425σ and U0 = 94.745ε, ensure that the average
bond length lb = 0.97σ matches the FENE bond value.
The maximum force before a covalent chain bond breaks
is set to be 100 times higher than that required to break a
Lennard-Jones bond, as in previous simulations10,27–29 and
supported by experiments.30,31 In addition, a bond bending
potential Ubend (θ) = kθ(1 + cos θ) is also applied to increase
the degree of entanglement in the system, where the bending
energy constant kθ = 0.75ε and θ is the angle between two
neighboring bonds. This set of parameters corresponds to
an entanglement length Ne ∼ 40 and a persistence length
lp = 2.10σ.32

Initially, 50 NPs of diameter σNP = 20σ are randomly
placed inside a simulation cell under the constraint that no
overlap is allowed between any two NPs. Then 125 polymer
chains are randomly grafted to the surface of each NP,
corresponding to a grafting density of Σ = 0.1 chains/σ2.
A total of n free, matrix polymer chains are created inside
the box using the method of Auhl et al.33 In all cases,
no overlap was allowed between the monomers and the NPs;
monomer-monomer overlap was allowed. The overall (grafted
and matrix) monomer density was chosen to be ρm = 0.85σ−3.
In this study, the grafted chain length assumed values of
Ng = 200, 400, and 600 in a series of simulations, while the
degree of polymerization of the matrix chains N = 400 ∼ 10Ne

so that the matrix chains are well-entangled. The initial

volume fraction ηNP ≡
πσ3

NPNNP
6V of NPs is ∼5%, resulting in a

simulation box of L ∼ 170σ and a total of ∼4 × 106 “beads.”
Overlapping monomers in the initial states are pushed off each
other using a soft potential until they are far enough apart for
the Lennard-Jones interaction to be switched on.

In the equilibration stage, double bridging MC moves are
first performed for 105 τ to relax global chain conformations
at constant pressure with T = 1.0ε/kB and P = 5.0ε/σ3 with
the cutoff distance Rc = 21/6σ.33 The equilibration process
continues without the double bridging moves for another
105 τ at constant volume with Rc = 1.5σ, to further relax
local structures. The final pressure of the equilibrated samples
is P ∼ 1.9ε/σ3. The samples are then quenched at constant
volume at a rate of 0.0004ε/kBτ to the temperature where
the hydrostatic pressure becomes zero, followed by further
cooling at the same rate to the final temperature T = 0.2ε/kB

at P ∼ 0. A Langevin thermostat with a damping constant
Γ = 1.0τ−1 was employed during equilibration and cooling to
maintain the temperature. The glass transition temperature Tg
of all the samples is 0.35-0.37ε/kB as determined from the
break in slope of the density vs. temperature plots shown in
Figure 2. Therefore, the working temperature T = 0.2ε/kB for
mechanical tests is well below Tg for all the samples.

In this study, samples are subject to active deformation
following the quenching without any aging. Since strong
triaxial tensile stresses are in general required to induce
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FIG. 2. Density ρ as the function of temperature during cooling at constant
pressure P = 0. The glass transition temperature Tg is determined from the
crossing of the linear extrapolation from high and low temperatures.

cavitation and crazing of polymer glasses,7 the box dimensions
Lx and Ly are kept constant during mechanical deformation
while Lz is stretched, accompanied by proportional changes
in the corresponding coordinates of all particles in the box.
Samples are deformed from the isotropic state with an
acceleration of d2Lz

dt2 = 5 × 10−5 σ/τ2 until the deformation
rate reaches dLz/dt = 0.02σ/τ and then the deformation
rate is held constant afterward. The normal stresses σαα are
recorded during deformation as a function of the stretching
factor ≡ Lz/L0

z, where L0
z is the simulation box size in the

isotropic state and α = x, y, z. The stresses depend weakly
(logarithmically) on the deformation rate.11

III. STATIC STRUCTURES
AND STRESS-STRAIN CURVES

Before discussing the mechanical response, it is helpful
to examine the static structure of the samples in their isotropic
glassy states. Figure 3 shows radial densities of polymer
segments around a NP for samples with Ng = 200, 400,
and 600. The multiple peaks near the NP surface suggest
layering of primarily grafted polymer segments. While the
overall polymer density profiles are similar, the degree
of brush-brush interpenetration increases with increasing
grafting chain length Ng . Since the density of free polymers
decreases as Ng increases, the number of brush-matrix contacts
decreases with increasing Ng . For Ng = 600, free polymers
make up only ∼10% of the total monomers in the sample,
and the brush-brush interactions become dominant. Under
the crude approximation that the entanglement density is
proportional to the product of the segmental densities, the
amount of entanglements formed between brushes increases
with increasing grafted chain length at the cost of brush-matrix
entanglements at fixed NP core volume fraction.34

The stress along the stretching direction σzz is shown
as a function of the stretching factor Lz/L0

z in Figure 4.
As discussed in previous work,11 the stress-strain curves of
crazing glassy polymers consist of four regimes: the cavity
nucleation in the range Lz/L0

z ≤ 1.3, the craze growth by

FIG. 3. Radial densities of polymer segments around tethered NPs with
(a) Ng = 200, (b) 400, and (c) 600 with polymer/NP interactions cutoff at
Rc = 11σ: overall polymers (black), own brushes (red), grafted chains on
other NPs (green), and free chains (blue). The black dotted lines indicate the
bulk density of homopolymer at T= 0.2ε/kB.

FIG. 4. Stress-strain curves of (a) homopolymer and tethered NP-polymer
composites with purely repulsive polymer/NP interactions (Rc = 11σ); (b)
homopolymer, tethered NP-polymer composites (Ng = 200) with purely re-
pulsive (Rc = 11σ) and attractive (Rc = 15σ) NP-polymer interactions; (c)
homopolymer, tethered NP-polymer composites (Ng = 200) and bare NP
composites with attractive (Rc = 15σ, Acs= 80) NP-polymer interactions.
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pulling fibers from the uncrazed material at fixed drawing
stress σd and extension ratio Λ (Lz/L0

z up to Λ), stretching
of the craze under increasing stress, and finally craze failure
starting at the peak stress. The system initially responds
homogeneously with a stress that rises rapidly with strain.
The stress begins to drop when cavities nucleate at σyield,
allowing the surrounding material to relax back towards the
equilibrium density. The cavities localize on a plane and the
craze growth initiates. The top panel of Figure 1 shows a
snapshot during the craze growth. Material at the boundary
of the craze is drawn into the craze structure at a constant σd
and expands by the extension ratio Λ. The middle panel of
Figure 1 shows the system after the entire volume has been
deformed into a craze (Lz/L0

z ∼ Λ). As the strain increases,
the stress rises above σd until the craze fails at σmax (bottom
panel).

Compared to a homopolymer matrix, the stress-strain
behavior of the composite samples shows three key
differences: a reduced yield stress σyield in the cavitation
regime (when NP-monomer interactions are purely repulsive),
smaller characteristic extension ratioΛ coupled with a slightly
higher drawing stress σd in the craze growth regime, and a
maximum (failure) stress σmax in the craze breakdown regime
that increases with grafted chain length Ng . In Secs. IV–VI,
we address these differences from a microscopic point of view.

IV. CAVITY NUCLEATION

As shown in Figure 4(a), the polymer nanocomposites
yield at smaller stretches Lz/L0

z than the homopolymer melt.
The yield stress σyield (the height of the first peak in σzz) is
also significantly reduced, but is apparently independent of
Ng . We emphasize that all samples in our simulations have
the same thermal history; therefore, the decrease in σyield for
the composite samples is not a result of aging.

Yielding of homopolymer glasses is often associated
with strain localization, or cavity nucleation.8,35,36 Figure 5(a)
compares the averaged radial polymer density around a
repulsive NP before and after yielding for Ng = 400 (similar
results are also found for Ng = 200 and 600). It is seen that the
overall polymer density exhibits a significant depletion near
the NP surface right after yielding occurs (Lz/L0

z ∼ 1.05).
This indicates that the repulsive interaction between NP and
monomers causes cavities to nucleate preferentially near the
NPs.

Further evidence of enhanced cavity nucleation near
repulsive NPs is shown by plotting the radial distribution
of microcavities around NPs in Figure 5(b). Microcavities
are defined as cubic volumes of 8σ3 containing no polymer
monomers inside. The radial distribution in Figure 5(b) is
obtained by normalizing the probability ρcavity (r) of finding
a cavity at radial distance r from the center of a NP by
volume 4πr2(2σ) at a stretching factor Lz/L0

z = 1.1. There is
a clear enhanced distribution of microcavities around the NP
surface for the case where NP-polymer interactions are purely
repulsive (i.e., employing a cutoff radius of Rc = 11σ).

One might argue that the location of nucleation merely
reflects the heterogeneity induced by NPs. To test this

FIG. 5. (a) Radial densities of overall polymer segments ρpoly (symbol line)
and brush segments ρbrush (dashed line) before (Lz/L

0
z = 1.02 in red) and

after (Lz/L
0
z = 1.1 in blue) yielding; (b) probability of finding a cavity cell

(see text for definition) as the function of distance from NPs at Lz/L
0
z = 1.1.

hypothesis, the interactions between the NP and the polymer
were made attractive by increasing the cutoff distance Rc

(Eq. (4)) from 11σ to 15σ. As seen in Figure 5(b), the
cavity distribution shows a decrease near the NP when the
interactions become favorable, indicating that the probability
of nucleation near the NP is suppressed. This supports
our conclusion that energetically unfavorable NP-polymer
interfaces in composite samples reduce σyield as compared to
pure homopolymers. When the resulting yield stresses σyield

become similar in magnitude to that of pure polymer due to
favorable NP-polymer interactions, cavity nucleation around
NPs can be suppressed but not in the region far from NPs. In
that case, the resulting σyield is expected to be comparable to
that of a pure homopolymer.

For the well-dispersed composites studied here, the
grafting chain length Ng (and hence degree of brush-matrix
and brush-brush interpenetrations) does not seem to affect the
yielding behavior of composite samples. For repulsive NPs,
in Fig. 4(a), cavitation occurs near NP-polymer interfaces and
σyield is reduced to about the same magnitude for all values of
Ng studied. For attractive NP-polymer interactions shown in
Fig. 4(c), cavitation occurs away from NP-polymer interfaces
and σyield becomes comparable to that of pure homopolymers
(this is even true for Ng = 0, i.e., bare NPs). These observations
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are consistent with the past studies on cavitation suggesting
that yield stress was determined by local interactions.11 Since
NP-polymer interactions only act to change local interfacial
properties, their effects are mostly manifested in the craze
nucleation regime and are not as significant in craze growth
and craze break down regimes where the interactions on length
scales of polymer chains become relevant. Thus, the results
in Secs. V and VI will be limited to composite samples with
repulsive NP-polymer interactions.

V. CRAZE GROWTH

The craze growth regime of pure homopolymers is
characterized by the coexistence of crazed and uncrazed
regions (Fig. 1, top), with constant corresponding polymer
densities ρ f and ρi, respectively. Material in an “active zone”
near the craze boundary is converted into the craze structure
at the constant drawing stress σd.

In experiments on homopolymers, ρi and ρ f are often
measured from X-ray or electron absorption, and the ratio
ρi/ρ f is reported as the extension ratio Λ. Figure 6(a) shows
the average monomer density as a function of height in
simulations. The low and high density regions correspond
to crazed and uncrazed regions. For the pure homopolymer,
Λpure =

ρi
ρ f
≈ 0.962

0.143 = 6.73 which approximately matches the
stretching factor beyond which the stress plateau terminates
as shown in Figure 4(a).

FIG. 6. (a) Polymer density profiles along the stretching direction of
homopolymer (blue circles) and tethered NP-polymer composites (green
squares) (Ng = 400); (b) final height z f as a function of initial height zi, and
(c) standard deviation from the average height in each layer, of segments in
homopolymer (blue circles), of segments in tethered NP-polymer composites
(green squares), and NPs in polymer composites (red triangles).

For composite samples, the different scattering of polymer
and NPs complicates the interpretation of x-ray data. One
may expect more inhomogeneous stretching because the
volume occupied by the NPs will not expand. To illustrate
the nature of extension, we repeat the analysis of particle
displacements that was done for pure polymers in Ref. 11.
Figure 6(b) shows the mean final height zf of particles as
a function of their initial height zi. The results fall on a
straight line as expected for an affine extension by a factor
equal to the slope of the line. A linear fit shows that the
slope is equal to Λpure for the pure polymer system and
ΛPNC ≈ 4.95 for both the NPs and polymer beads in the
composite sample. The latter is equal to the ratio between
initial and final densities of polymer beads in Fig. 6(a)
(0.91/0.18 = 5.05) and to the stretching factor beyond which
the stress plateau terminates in Fig. 4(a). These results confirm
that on large scales, the composite is extended affinely by
ΛPNC ≈ 4.95. There are small scale non-affine fluctuations
due to heterogeneity. For pure polymers, the fluctuations
in the final height of beads from the same initial height
(Fig. 6(c)) are a half of the entanglement length. The presence
of NPs increases the degree of heterogeneity and the rms
variations rise about 50%. As we now discuss, the increase in
heterogeneity is associated with different behavior of grafted
chains.

For homopolymers, the extension ratio can be estimated
by Λ =


Nelblp, based on scaling arguments and the

assumption that chain sections become fully straightened
on the length scale Ne inside the crazed region. Here Ne is
the entanglement length, lb is the bond length, and lp is the
persistence length of the chains. This formula has been shown
to correctly capture the qualitative trend that ρ f increases with
higher entanglement density and is essentially independent of
molecular weight. However, following the same logic for
composite samples would imply that Ne decreases by ∼1.6
times. This is a surprising, unphysical outcome considering
that the polymer model is unchanged—thus we expect no
changes in Ne. Of course the NPs themselves do not expand,
but since they only account for 5% of the volume, this would
only reduce Λ by about 5%.

In order to understand the decreasedΛ and increased ρ f in
composite samples, we analyzed the structure inside the crazed
region. The radial density of polymer segments and radial
distribution of NPs around a reference NP inside the crazed
region are shown in Figure 7(a). The radial distributions of NPs
for all three values of Ng indicate a NP-NP nearest neighbor
distance of ∼40-50σ. Figures 6(b) and 6(c) show that this
reflects an increase in spacing along the extensional direction
during crazing. Meanwhile the radial densities of polymers
show polymer-rich regions at a distance ∼15σ from the NP
surface following a polymer-depleted layer. The polymer rich
regions have significantly higher polymer densities than the
crazed density ρ f for a homopolymer and reflect primarily the
distortion of the brush chains. However, after excluding the
polymer chains attached to a NP, Figure 7(b) indicates that
polymer density in the region matches well with ρ f of the
homopolymer and is independent of grafting chain length Ng .
This suggests that free polymer chains as well as chain sections
of grafted chains far from tethering ends (referred to as “free”
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FIG. 7. (a) Radial densities for polymer around a reference tethered NP
inside the crazed region (open circles for total polymer segments, dashed
lines for segments on own brushes, and open triangles for all other segments);
filled circles show NP-NP radial distribution function g (r ). Red, green, and
blue for composite samples with Ng = 200, 400, and 600, respectively. The
black dashed line indicates the crazed density for homopolymer. (b) Similar
data with the grafted chains removed.

sections, hereafter) behave more or less indistinguishably.
However, chain sections close to the tethered ends (referred
to as “grafting sections,” hereafter) suffer loss of degrees
of freedom as a result of being connected to NPs. Upon
deformation, the “grafting” sections give rise to a region of
high polymer density around NPs following a depleted layer

and are responsible for the higher crazed density ρ f of the
composites.

To further demonstrate the presence of the so-called
“grafting” sections, the bond orientation correlation function
C(∆N) is computed for grafted chains inside the crazed region.
Here, C(∆N) ≡ ⟨u(∆N) · u(0)⟩/⟨u(0) · u(0)⟩, where u(0) is the
bond vector of the tethering bond and ∆N denotes the
separation from the tethering bond along chain backbone.
Figure 8(a) shows that C(∆N) exhibits an initially slow decay
with increasing ∆N . Upon further examination of the three
components, it is clear that the slow decay of C(∆N) is mostly
along the extension direction z and that appreciable decay
happens only after ∆N ≈ 20.

Based on this observation, a series of C(∆N) are then
calculated, but with u(0) being the bond vector of the δN th
bond from the tethering site as shown in Figure 8(b). For
δN = 100, C(∆N) essentially overlaps with that of free chains
in the sample, exhibiting significantly faster decay compared
to C(∆N) for δN = 0. This reinforces our conjecture that
“grafting” sections on the brush chains have very different
conformations than the rest of the grafts. The length scale
of the “grafting” sections can be roughly estimated from the
number δN required to recover the C(∆N) of ungrafted chains,
approximately ∼100 bonds in this case.

In addition to bond correlations, the differences in
microstructure of “grafting” sections are also reflected by
the scaling of the z component of the mean square distance
between two segments separated by ∆N bonds



z2 (∆N)�

with respect to ∆N . As shown for Ng = 400 in Figure 8(c),

z2 (∆N)� ∝ ∆N2 starting from the tethering points up to
∆N ∼ 15. This suggests that the first ∼15 segments starting
from tethering sites are pulled taut along the z direction.
This length scale is consistent with the distance from
NP surfaces over which polymer-rich regions are located
(Figure 6(a)). Once again, the scaling behavior of “free”
sections on grafted chains are similar to the free chains,

FIG. 8. (a) Bond correlation func-
tion and its components calculated for
the grafted chains inside crazed re-
gion (Ng = 400); (b) bond correlation
functions calculated for free chains
and grafted chains inside crazed region
with δN = 0 and 100; (c) scaling of

∆z2�/∆N2 with respect to ∆N (see

text for definition) for grafted chains
and free chains inside crazed region;
(d) distribution of FENE bond tensions
along chain backbone for polymers in-
side crazed region; grafted chains (red),
free chains (green), and homopolymer
(magenta).
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both of which are much less stretched than the “grafting”
sections.

The FENE bond tensions along backbones of the grafted
and free chains inside the crazed region are shown in
Figure 8(d) for the sample with Ng = 400. The tension along
the chain backbone is calculated by recording the component
of the stress tensor in the pulling direction for each segment
due to FENE bond during extension, followed by an average
over segments of the same location along the chain contour.
Only segments in the crazed region are included. For segments
far from the tethering ends of the grafted chains (i.e., “free”
sections), the tensions are nearly identical to that of free
chains, exhibiting a plateau in the interiors of chains and
decaying toward zero as free ends are approached. In fact,
tensions also match quantitatively with what is measured
for the homopolymer and are due to “inter-connectivity” of
those chain sections through entanglements. The presence of
“grafting” sections on grafted chains is now clearly manifested
by the elevated tensions when tethering ends are approached.
The length scale of “grafting” sections is consistent with what
is suggested from bond correlations, i.e., ∼100 segments.
The tension analysis proves that during craze growth, “free”
sections on grafted chains respond to deformation in a
similar way as free chains and chains in the corresponding
homopolymer. It is the presence of “grafting” sections that
are responsible for most of the differences between tethered
NP-polymer composites and homopolymer. In the case of
tensions, this is reflected by a higher drawing stress σdraw for
the composite samples as shown in Figure 4(a).

Figures 8(a)-8(d) unambiguously show that the loss of
degrees of freedom of “grafting” sections of ∼100 monomers
plays a prominent role in changing the mechanical response
of the grafted-NP composite samples as compared to the
homopolymer. As a result, the removal of the grafting
constraints should yield mechanical behavior akin to the
homopolymer, which is indeed the case as indicated by
Figure 4(c).

VI. CRAZE FAILURE

Stretching samples beyond Lz/L0
z = Λ requires deforma-

tion of the entanglement network and results in stress increases
that mostly arise from the stretching of covalent bonds.
Eventually, this leads to catastrophic failure either through
bond breaking or chain disentanglement (Fig. 1, bottom).
These two competing mechanisms determine the maximum
stress σmax that the samples can sustain before failure. The
fracture energy for crack propagation scales as the square
of σmax.10,37 In general, σmax is a function of polymer chain
length but saturates for chain lengths greater than 5-10Ne.38

Simulations11,12 show that the saturation of stress is associated
with a transition from chain disentanglement at small N to
chain scission at large N . For shear failure of polymer glasses,
the transition from chain pullout to chain scission occurs at
almost the same chain length in simulations39 of polymers
with different Ne, suggesting that chain friction is critical in
determining the chain length at which chain pullout dominates
over chain scission.40

For tethered NP-polymer composites, as discussed in
Section V, the “grafting sections” bear significantly higher
bond tensions than other polymer segments. Figure 9(a) shows
that this is still true beyond the growth regime (Lz/L0

z > Λ),
except for Ng = 200. Comparing to the craze growth regime,
as Lz/L0

z > Λ, bond tensions for both tethered and matrix
chains are observed to increase with stretching factor, while
tensions near free ends still vanish as a result of “free-
end disentanglements” from tube escape. The chain contour
length that is subject to “free-end disentanglements” can be
estimated by fitting the measured bond tension to a function
a1 [1 − exp (−N/a0)] (for N . 10). The fitting parameter a0
increases from ∼Ne to ∼5Ne as the stretching factor Lz/L0

z

increases from 4.95 to 9.5, suggesting an increasing degree of
free-end disentanglement as samples are stretched beyondΛ. It
is imaginable that for samples with Ng . 5Ne (e.g., Ng = 200)
bond tensions on the “grafting sections” will eventually be
reduced as the range of free-end disentanglement progresses
toward the tethering ends, as shown in Figure 9(a). However,
for samples with Ng & 5Ne (e.g., Ng = 400 and 600), this
effect becomes much less obvious. For free polymer chains,
disentanglements occur at both ends, resulting in lower “total”
bond tensions than that on grafted chains. It is worth noting
that tensions on free chains are found to be nearly identical for
all three composite samples (Ng = 200, 400, and 600, data not
shown), indicating that the asymptotic Ng-independent limit
is reached.

Intuitively, in the craze breakdown regime, one may
expect entanglements formed between brushes belonging to
different NPs to play a defining role in determining the
observed Ng dependent stress-strain behavior (Figure 4(a)).
However, our data do not support this idea for the following
two reasons: First, given the different degree of brush-
brush interpretation of the three samples (Figures 3(a)-3(c)),
Figure 9(a) shows that free-end disentanglements vary with
Lz/L0

z in a very similar way. This suggests that entanglements
by brush-brush and brush-matrix interpenetrations are not
distinguishable in regard to releasing free-ends. Second,
as long as Ng is greater than the contour range of free-
end disentanglements, similar tensions are obtained on the
“grafting sections” (Ng = 400 and 600 in Figure 9(a)), further
indicating that neither the degrees of brush-brush or brush-
matrix entanglements affect tensions on “grafting sections.”
Instead, according to the analysis in the previous paragraph,
higher tensions are carried by grafted chains due to the losses
of half of the free ends. In the craze failure regime, the faster
increase in stress for samples with larger Ng can be simply
understood as a result of higher volume fractions of grafted
polymers.

The dominant failure mechanism can be inferred from
Figure 9(a). As bond tensions increase with increasing range
of free-end disentanglements, an upper limit in the range
is expected. Beyond this, bond tensions exceed the bond
breaking threshold (100× LJ bonds in this study). When the
grafting chain length Ng is short compared to this upper limit,
the system fails predominantly through disentanglements
(e.g., Ng = 200), whereas for large Ng , the sample fails via
bond breaking (Ng = 400 and 600). To confirm this, the
fractions of broken bonds in different samples are shown
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FIG. 9. (a) Comparison of FENE bond
tensions along chain backbones of
grafted chains (Ng = 600 (blue), 400
(green), 200 (red)), and free chains
(pink), at Lz/L

0
z ∼ 4.95 (crosses) and

9.5 (solid circles). (b) Fraction of bro-
ken bonds as a function of extension
ratio Lz/L

0
z (Ng = 600 in blue, 400 in

green, 200 in red, and homopolymer
in black). Dotted lines show the fitted
functions. (c) Snap shots from simula-
tions showing configurations of grafted
chains on two neighboring NPs (distin-
guished in blue and red color), at an ex-
tension ratio Lz/L

0
z = 12.0. The upper

and lower plots are from simulations
with Ng = 200 and 600, respectively.

in Figure 9(b) as a function of stretching factor. All data
can be well fitted using a hyperbolic-tangent function of the
form A × tanh(x) with x = c(Lz/L0

z − λmax). The asymptotic
fraction of broken bonds A = 4.1 × 10−5, 2.3 × 10−4 and
4.1 × 10−4 for Ng = 200, 400, and 600, respectively. Moreover,
for Ng = 600 and 400 but not 200, the stretching factor with the
highest rate of bonds breaking (per stretching) also produces
σmax in the stress-strain curves shown in Figure 4(a). An
analysis of the distribution of the broken bonds indicates
that >95% of the broken bonds belong to grafting chains
(data not shown). Similar to what has been reported for
homopolymers,12 catastrophic failure requires only a tiny
fraction of bonds being broken (0.04% for Ng = 600). The
state of “disentanglement” and “bond breaking” can also be
indicated by snapshots taken at Lz/L0

z = 14.0 as shown in
Figure 9(c). The snapshots show that grafted chains from two
NPs are “parting away” without breaking for simulations with
Ng = 200, while extensive entanglements are still present for
simulations with Ng = 600. Note that bond breaking is not
directly visible due to small number of broken bonds.

One important experimentally measurable quantity is
the macroscopic fracture energy Gc. During tensile fracture

of many polymers, large volumes of material around the
advancing crack are deformed into a craze.7,8 The work
required to deform this material greatly enhances Gc. Direct
simulations of this process are not possible, since the width
of crazed regions is micrometers and the crack length is
millimeters.7,8 However, Rottler et al.10 showed that fracture
energies for homopolymers could be obtained by using
small scale simulations to determine the parameters of a
macroscopic fracture model.37 In particular,

Gc = 4πκD0
σmax

2

σdraw
(1 − 1/Λ),

where D0 is the fibril spacing and the prefactor κ depends on
the anisotropic elastic constants of the crazed network but is
typically 1–3. This expression allows us to determine what
factors will optimize the fracture energy of composites. As
both σdraw and 1/Λ are greater for samples filled with polymer
grafted NPs, higher fracture energy can only be achieved via
increasing σmax. According to our study, this requires the
grafting chain length N being larger than the maximum range
of “free-ends disentanglements” that itself depends on Ne and
covalent bond strength.
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VII. CONCLUSIONS

In this work, molecular dynamics simulations were
used to study the crazing behavior of polymer nanocom-
posites comprised of polymer-grafted nanoparticles and
homopolymers. The polymer chain lengths studied are
well into the entanglement regime. Comparing to previous
studies on crazing of pure homopolymers using a similar
model,10,11 crazing composite samples exhibit differences
in the craze nucleation, growth, and craze break down
regimes. We show that the yielding stresses σy of polymer
nanocomposites are controlled by NP-polymer interfacial
properties. Unfavorable NP-polymer interactions reduce σy,
while favorable interactions restore σy to that of the pure
homopolymer. The craze growth regime of composite samples
is characterized by inhomogeneous polymer segmental
densities around NPs in crazed regions. Comparing to pure
homopolymer samples, polymer segmental density is depleted
around NPs, followed immediately by an enriched layer
which is the result of the loss of degrees of freedom of the
“grafting sections.” This results in a reduced extension ratio
Λ compared to pure homopolymers. A bond tension analysis
also shows that in the crazed region, the “grafting sections”
carry significantly higher tension than free polymers, which is
responsible for the higher drawing stress σd exhibited by the
composite samples.

As in pure homopolymers, there are two competing failure
mechanisms, disentanglements and bond breaking. In the
craze failure regime, with increasing stretching factor, the
contour length of disentangled chain sections increases as do
bond tensions along the polymer backbone. Therefore, there
exists a “lower limit” in chain length beyond which failure via
disentanglements will be preempted by bond breaking. The
previous study shows that this limit is∼20Ne in pure homopol-
ymers samples39 above which the failure stress σmax becomes
chain length independent. For polymer nanocomposites, since
the “grafting sections” carry much higher bond tensions than
free chains, the “lower limit” is set by the grafting chain
length. Our results suggest that bond breaking on grafting
chains occurs as “free-end disentanglements” reach ∼5Ne.
As a result, composite samples with grating chain length
Ng & 5Ne fail predominantly through bond breaking, as found
for Ng = 400 and 600 but not 200. Saturation of failure stress
σmax with respect to Ng is observed for all the samples studied.
This is probably because of the increase in the number of
segments on grafting chains that carry higher bond tensions.
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