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ABSTRACT 
Lithium (Li) dendrite formation compromises the 

reliability of Li-ion batteries, either because dendrite pieces 
lose electrical contractor or growing dendrite penetrates the 
separator and leads to internal short-circuiting. In this paper, a 
multi-scale computational approach integrating phase-field 
model and first-principles calculation is proposed to predict the 
Li dendrite formation at the anode/electrolyte interface of Li-
ion batteries. The first-principles calculation is employed to 
atomically determine the interfacial energy, which is 
subsequently fed into the phase-field model at the micro-scale. 
1D distribution of fields is first analyzed to validate the 
proposed model. An apparent 2D tree-type Li dendrite, widely 
observed in experiments during electrodeposition, is produced 
using the model. Finally, the 2D dendritic evolution under 
different electrochemical conditions specified by the applied 
current densities is discussed. 

INTRODUCTION 
The success of electric vehicles (EVs) requires a 

significant increase in the specific capacity of current Lithium 
(Li) -ion batteries (1, 2). Li metal is an ideal anode material for 
rechargeable batteries due to its extremely high theoretical 
specific capacity (3862 mAh/g) and the lowest negative 
electrochemical potential. Li-O2 and Li-S batteries using Li-
metal as an anode have attracted much attention for their 
significantly high capacity compared to a regular Li-ion battery 
(3, 4). However, lithium dendrite formation can lead to 
degradation and failure of batteries, either because dendrite 
pieces lose electrical contact with the rest of the Li electrode 
(typically during Li stripping on discharge) or growing 
dendrites penetrate the separator and lead to short circuits (5-7). 
Thus, a good understanding of the mechanism of Li dendrite 
formation and growth is critical to mitigate or eliminate Li 
dendrites.  

The important role of lithium dendrites in Li-ion batteries 
has stimulated numerous efforts on simulating the dendritic 
formulation. The first attempt to model the electrochemical 

dendrite growth was made by Monroe and Newman (7). They 
presented a comprehensive mathematical model for temporal 
evolution of dendrite tip height and growth velocity in Li-
polymer cells. Recently, Akolkar (8, 9)  extended this model by 
incorporating a concentration-dependent diffusion coefficient, 
with application to liquid electrolytes. More recently, Aryanfar  
et al. (10) proposed a coarse-grained Monte Carlo calculation 
to uncover the Li-dendrite mechanism, by dealing explicitly 
with Li+ migration in time-dependent non-uniform electric 
fields.  However, they either failed to explicitly capture the 
temporal evolution of electrode-electrolyte interface, or did not 
provide the thermodynamic parameters inputs physically. 

Phase-field method (PFM) has been applied to a vast 
range of phenomena in materials processes, e.g., solidification, 
solid-state phase transformation, recrystallization, and grain 
growth (11, 12). PFM is formulated based on the theory of 
irreversible thermodynamics, and is advantageous in addressing 
the time-dependent evolving morphologies process, which is 
hard to implement in traditional sharp-interface model. The 
early attempt along this line was made by Guyer et al. (13, 14) 
who developed a 1D PFM to investigate the equilibrium state 
and kinetic behavior of electrochemistry. Later, Okajima et al. 
(15) simulated the 2D electrodeposition process by linking a 
Cahn-Hilliard equation with a Butler-Volmer type equation. 
Recently, Liang et al. (16) proposed a 1D formulation that 
captures the Butler-Volmer kinetics of electrodeposition. More 
recently Ely et al. (17) conducted a PFM study on the kinetics 
of Li electrodeposits by extending the asymptotic analysis of 
the phase field theory. However, all these models are assuming 
a linear electrochemical reaction kinetics that breaks down 
when the system is highly out of equilibrium (16, 18), e.g., 
under high charging voltage, or do not capture an apparent 
dendritic growth of electrodeposits. Therefore, in order to be 
more consistent with the nonlinear electrochemical kinetics, it 
is necessary to develop a PFM that is able to capture the 
nonlinear nature of the electrochemical reaction at the 
electrode-electrolyte interface.  
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In addition, the validity of the phase-field, to a large 
extent, relies on having accurate thermodynamic, mechanical 
and kinetic parameters. The first-principles calculation based 
on density function theorem (DFT) has been demonstrated to 
be a powerful tool to determine these necessary parameters 
based on properly constructed atomic structures, particularly 
those can hardly be measured by state-of-art experimental 
techniques. One of the key parameters is the Li 
metal/electrolyte interfacial energy and its anisotropy. 
However, the Li metal anode cannot be in direct contact with 
electrolyte in real batteries. Instead, Li metal is covered by a 
thin passivation layer called solid electrolyte interphase (SEI) 
(19), which is either artificially coated or naturally formed 
arising from a complex of electrolyte reduction reactions (20). 
Therefore, the development of a real experimental-driven Li 
metal/SEI interfacial structure of first-principles calculation is 
highly critical to obtain the accurate interfacial energy and its 
anisotropy.  

 

In this paper,  a multi-scale framework, based on the 
combination of first-principles calculation and our recently 
developed PFM, is therefore proposed to predict the Li dendrite 
growth at electrode-electrolyte interface, as shown in Figure 1 
(16). First-principles calculation, using the Li metal/SEI 
interfacial structure discussed above, is employed to calculate 
the interfacial energy and anisotropy as the important input for 
PFM. In the PFM, a nonlinear relationship is used to describe 
the electrode-electrolyte interface evolution and the 
thermodynamics driving force involving overpotential and ion 
concentration. The model automatically reproduces the Butler-
Volmer type electrochemical kinetics at the moving diffuse-
interface. The SEI layer is not explicitly included as an 
individual phase in this PFM. Further, a modified Poisson-
Nernst-Planck (PNP) equation is included to solve ionic 
transport and local overpotential variation. The atomically 

determined interfacial energy and its anisotropy are 
incorporated into the phase field model, rendering it atomically 
informed and faithful in simulating the dendritic growth. The 
present multi-scale model is generally applicable to any non-
equilibrium electrodeposition system exhibiting the dendritic 
growth. 

FIRST PRINCIPLE CALCULATION 
To calculate the interfacial energy and its anisotropy, Li 

metal/SEI interfacial supercells with incoherent sharp 
interfaces are carefully constructed based on interfacial 
orientations and in-plane misfit minimization. Due to that fact 
that LiF and Li2CO3 are two major components in both 
naturally formed and artificially coated SEI layers, the 
corresponding two interfaces, Li/LiF and Li/Li2CO3 are 
specifically used as the examples in this paper.  

All first principle calculations are performed by Vienna Ab 
Initio Simulation Package (VASP) (22, 23) with plane wave 
basis sets and projected-augmented wave (PAW) 

pseudopotentials (24). The exchange-correlation (X-C) 
functional applied in the model is a generalized gradient 
approximation (GGA) of Perdew-Burke-Ernzerhof sol 
(PBEsol). Valence electron configurations for each element are 
as follows: 1s22s1 for Li, 2s22p2 for C, 2s22p4 for O, and 2s22p5 
for F. The plane wave cutoff energy is tested to be 500 eV, and 
applied for all supercells. Prior to interface study, bulk and 
surface calculation were conducted for the validation purpose. 
For surface structures relaxation, one k-point was set in surface 
normal direction while in-plane k-points numbers remained the 
same as bulk calculation. The total energy of all structures were 
converged to 10-4 eV/supercell. Methfessel-Paxton smearing 
(order equals 1) was used for Li metal and Gaussian smearing 
was used for Li2CO3 and LiF, with a 0.2 eV energy broadening 
in all cases.  

Figure 1 Schematic diagram of multi-scale study method: (a) Li dendrite growth mechanism, (b) phase-field model of the 
simulated system, the electrode ( 1)   and electrolyte ( 0)  , (c) atomic scale SEI/Li interfacial model. 
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The surface energy from slab method is the difference 
between the total energy of the relaxed slab structure and the 
bulk energy with the same number of atoms. The thickness of 
slab and vacuum layer is assumed to be large enough to neglect 
the interaction between the two surfaces of the slab (At least 10 
Å vacuum layer is tested and added between slab surfaces in 
this calculation). The surface energy can be expressed as 

1
lim ( )

2
N
Slab BulkN

E N E
S




     (1) 

where N
SlabE   is the total energy of the relaxed slab containing 

N units, BulkE  is the unit bulk total energy, S is the surface 

area, and the coefficient 2 indicates two equivalent surfaces in 

the supercell. To avoid error caused by BulkE  calculation with 

different supercells and different k-point mesh from N
SlabE , 

Fiorentini and Methfessel method (25) was applied to obtain 

BulkE  by linear fitting the slab supercell total energy data 

versus N and taking the slope of the straight line to reach the 
converged surface energy values efficiently with least atomic 
number of layers. 

Interface structures with extended supercells are then built 
and their initial as-constructed atomic structures are shown in 
Figure 2. Since Li is rather isotropic, the two lowest energy 
surfaces, (100) and (110), are both considered in the interface 
model. On the other hand, LiF and Li2CO3 are rather 
anisotropic, only the orientations with the lowest surface 
energy were considered. The supper lattice size of Li metal are 
selected to match the lowest energy surfaces, (100) of LiF and 

(001) of Li2CO3, respectively. Each surface was cleaved and 
expanded to match the counterpart, reducing the interfacial 
mismatches to ~3% for all interface supercells.. 
 

To obtain the stress-free interfacial energy, the following 
method (26) was applied  on an interfacial supercell of 
constituents A and B. First, the constructed interface structures 
were fully relaxed (with respect to cell volume, shape and 
atomic coordinates) to their external stress-free states. Then, 
pure A and B bulk structures with the same interfacial 
geometry and similar atomic layer numbers, were relaxed along 
interface normal direction (z) respectively, with fixed strained 
in-plane (x and y) lattice vectors obtained from the fully 
relaxed interfacial geometry. Same k-point mesh and cut-off 
energy were used for the two steps. The interfacial energy can 

be then calculated by 

 ( ) ( )

2

AB xyz A B B zA zE N E N E

S


 
  (2) 

where ( )AB xyzE  is the fully-relaxed total energy of the 

interfacial structure.  ( )A zE  and ( )B zE  are the energies per 

atomic layer of the pure A and B bulk structures after 
constrained relaxation along interface normal direction (z 
direction) with fixed x and y lattice vectors. AN  and BN  are 

the atomic layer numbers of A and B in the interfacial 
supercell, respectively. S is the interfacial area and the factor 2 
in front of S is due to the two interfaces in one interfacial 
supercell. 

Figure 2 Top view of Interface structure with extended supercells. 
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PHASE-FIELD MDOEL 
A schematic representation of the model geometry in half 

cell of Li-ion batteries is shown in Figure 1(b). The model 
consists of a lithium metal surface in contact with a liquid 
electrolyte containing cation (Li+) and anion (PF6

-) species. 
When the batteries operates a high current densities or high-
voltages, in addition to Li intercalation, Li  cation in a binary 
dilute electrolyte 6LiPF  transports through the SEI layer, and 

reacts with electrons e  reduced to Li-atom at the surface of 

the electrode. This process can be illustrated by -Li e Li   . 
The Gibbs free energy of the electrochemical system can be 
expressed by  

( ( ( , ) d) )ch grad elec

V

G f c f c f c V     , (3) 

where { , , }ac c c c   is the set of concentrations for Li-atom, 

Li  cation and PF6
- anion respectively. A set of dimensionless 

concentrations is introduced in the form of 

0 0{ / , / , / }a a sc c c c c c c c c      , where sc  is the site 

density of Li-metal and 0c  the standard bulk concentration of 

electrolyte solution.  Note that the same symbols are used for 
each dimensionless concentration for convenience. 

)(chf c  corresponds to the Helmholtz free energy density 

that is related to and the electrochemical potential, for which 
the expressions for different components in the 
electrodeposition reaction can be written as  

+ + +Li Li Li
ln sRT a F     , (4) 

lne e e eRT a F   , (5) 

LLi iLilnRT a   , (6) 

where  s  and e  are, respectively, the electrostatic potential in 

the electrolyte solution and the electrode. The electrode-
electrolyte interfacial potential difference is e s     . RT is 

the product of the molar gas constant, R, and the temperature, 
T. F  is the Faraday’s constant. ia  are the activity of 

component i (which could be Li  cation, or electrons -e , or Li-

atom). i
  denotes the reference chemical potential of species 

i.  
In order to describe the diffuse interface in the present 

phase-field model, a continuous phase-field variable,  , with a 

physical correspondence to the dimensionless concentration of 
Li-atom, as ac  , is introduced. An arbitrary double well 

function 2 2( ) (1 )g W     is used to describe the two 

equilibrium states for the electrode ( 1ac  ) and the electrolyte 

( 0ac  ). W/16 represents the barrier height. Thus, )(chf c  reads 

  2 2
0( ln l1 ) nch i i

i

cf W T c c cR c c  
        (7) 

In addition, 1 / 2gradf c c     is the gradient energy 

density associated with interfacial energy. The interfacial 
energy anisotropy, i.e., its dependence on the orientation of the 

electrode-electrolyte interface,  is introduced in the system by 
expanding the gradient coefficient as 

   0 1 cos        , where  and  are the strength and 

mode of the anisotropy, 0  is related to the surface energy  , 

  is the angle between the normal vector of interface and the 
reference axis. 

elec ef    is the electrostatic energy density where   is 

the electrostatic potential, and e  is the charge density that is 

expressed as e i i
i

F z c   , which involves the concentrations 

of all the species in the system.  
Having these definitions, the electrochemical reaction rate, 

eR , takes the variational form of  

1
0 Li

(1 )
exp expe

nF nF
R k a

RT RT
a    



                
 (8) 

where 0k  is the reaction rate constant. The anodic and cathodic 

charge-transfer coefficients a  and c  satisfy 1a    and 

c   with asymmetry factor 0 <   < 1. In addition, the 

overpotential,  , is defined as  

1eq

i inF

G

cnF

  



   


   (9) 

This total overpotential is further defined as the sum of the 
activation overpotential a and the concentration overpotential 

c  

a c     (10) 
with  

. Li

Li

lnc

a aRT

nF a





   (11) 

and  

a E     . (12) 

where 

n MM en
E

nF

  
  

 



 (13) 

is the standard half-cell potential. Assuming a dilute electrolyte 
solution in the system with 

Li
a c  ,  and the electrons are 

always supplied on the surface of the electrode  1ea  . In 

addition, the activity for Li-atom, Lia ,  is expressed by 
2 2

Liln ( ) ( )sc RT a g c c g           (14) 

based on the definition of activity (18), e.g.,  for species i , 
which is given by  

1
exp( )mix

i
i

f
a

RT c





. (15) 

where mix ch grad i i
i

f f f c     is the mixing free energy 

density relative to the standard state.  
In the present model, we consider the phase-field evolves 
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by the electrochemical reaction, eR , thus  

1
0

(1 )
exp expM

nF nF
k c

t RT RT
a     



                  
. (16) 

after substituting the activities. 
Considering the electrodeposition system physically, the 

driving force is generally contributed by two parts: interfacial 
free energy and the electrode reaction affinity. When the system 
is far from equilibrium, the driving force from interfacial 
energy or curvature variation is usually small relative to the 
electrode reaction. Therefore, the temporal evolution of phase-
field is considered linearly proportional to the interfacial free 
energy and exponentially to the thermodynamics driving force 
related electrode reaction, that is  

 

 

2

(1 )
' exp xp

(

e

)

a a

L g
t

nF nF
L h c

RT RT





 

   







 



              





 


 (17) 

where    3 26 15 10h        is an interpolating function, 

a E      is the activation overpotential, and E  is the 

standard half-cell potential. L and L  are, respectively, the 

interface mobility and the reaction-related constant.  
For the species diffusion in the electrodepostion system, 

the flux of species i is proportional to the thermodynamic 
driving force in the form of  

i i i i i i i

F
J M c D c c

RT

          
 

, (18) 

In the model, Li-atom is regarded as immobile without 
diffusion process, while the electrochemical reaction provides a 
source term for the evolution of Li  cation. Ignoring the effect 
of PF6

- anion transport, the diffusion of Li-atom is governed by  

s e e

c nF c nF
c R or R

t RT t RT

             


. (19) 

The Li  cation diffuses following  

c
eff

eff
s e

c D c nF
D nF c R

t RT RT

 


               
. (20) 

Combining Eqs. (19-20) yields  

0

eff
eff scc D c

D c nF
t RT c t

 


  
         

  , (21) 

where the effective diffusion coefficient is interpolated by 

    1eff e sD D h D h     , where De and Ds are the Li  

diffusion coefficients in the electrode (which is almost zero) 
and the SEI layer respectively. The first two terms duplicate the 
classical Nernst-Planck equation. The last term is to describe 
the accumulation/consuming of Li  cation due to the 
electrochemical reaction on the electrode surface.   

For the electrostatic potential distribution, assuming the 
charge neutrality in the system, we consider the current density 
is conserved described by Poisson equation including a source 
term IR to represent the charge that enters or leaves due to the 
electrochemical reaction, as 

  ,eff
Rr t I       , (22) 

 

RESULSTS AND DISCUSSION  

1. First Principle Calculation  

The computed surface energy values of Li, Li2CO3 and 
LiF are first compared with the available experimental 
measurements and other computational results for the 
validation purpose. The excellent agreement is clearly 
observed, whatever the material orientations [30-34] as given 
in Table 1. It is also found the lowest surface energy is usually 
in the most close-packed directions with least number of 
daggling bonds. To be specific, for b.c.c. Li metal, the three 
low-indices surfaces, (100), (110) and (111), show close values 
of surface energies, with the lowest of 0.49 J/m2 along (100) 
direction. For monoclinic Li2CO3, (001) orientation has the 
lowest surface energy of 0.18 J/m2, prominently smaller than 

the other two low-indices surfaces, ( 01) and (110). For 
rocksalt-structured LiF, the (100) orientation has the lowest 
surface energy of 0.36 J/m2, almost two times smaller than 
(110) direction. The LiF (111) surface is not energetically 
favorable due to net dipole along surface normal direction 
produced by alternating stack of F-only and Li-only layers. 

 
Table 1 Comparison of DFT calculated surface energies with 

the experimental references [30-34]. 

 
The energetic results for the four structures are then 

calculated and listed in Table 2. Compared with Li/LiF 
interfaces, the Li/Li2CO3 interfaces have substantially lower 
energies (~50%) in both Li (100) and (110) directions. The 

Table 2 DFT-calculated energies for different representative interfaces in SEIs. 



 6 Copyright © 2016 by ASME 

lower interfacial energy of Li2CO3/Li interface are closely 
related to the total energy decrease from larger lattice distortion 
after relaxation as shown in Figure 3, in which the final fully-
relaxed four interfacial supercells are plotted. Compared with 
LiF/Li interfaces, the relaxed Li2CO3/Li interfaces underwent 
more drastic structural changes with large distortion in the CO3 
layer near the interfacial region. By contrast, the relaxed LiF/Li 
interfaces experienced less lattice distortion, and instead, only 
slight atomic layer bending near interfacial region is observed.  

In respect to the Li (100) and (110) orientations, the 
former shows higher work of adhesion and lower interfacial 
energy values in contact with either LiF or Li2CO3. Since Li 
(110) and (100) have similar surface energy, the interfaces with 
Li(100) are more stable when they both exist and are covered 
by LiF or Li2CO3, while (110) surface may become exposed 
again due to delamination. One interesting finding is the 
difference between the interfacial energies of Li (100) and 
(110) interfaced with the same material, either LiF or Li2CO3, 
is prominently small (~10%), which is close to the Li metal 
surface anisotropic difference. Therefore, it is highly possible 
that the surface energy anisotropy of Li metal dominates the 
anisotropy of Li/SEI interface despite the complication in the 
structure of the multicomponent SEI.  

2. Phase-field Results  

We apply the present nonlinear phase-field model to a realistic, 
Li e Li   , electrodeposition system, where the electrode is 
composed of pure Li-metal, while the electrolyte solution.  
includes cation (Li+) and anion (PF6

-) species such reaction is a 
typical electrode reaction in half cell of Li-ion batteries and the 
corresponding parameters characterized from experimental 
studies or modelling references [16, 29, 30] are detailed in 

Table 3.   
The phase-field model is simulated using a finite element 

method on the platform of COMSOL Multiphysics 5.2, under 
an adaptive grid. Only the protuberant is initially considered for 
the electrode in the model to reduce the computational cost, 

with the size of electrolyte solution set to 500 500 μm . On 

the mesh sensitive study, the system mesh size is set as 
140 140  with a minimum grid spacing of min 2 μmd  . We 

use an implicit time integration, with a time step of 0.2 st  . 

The Li+ bulk concentration is employed as 

 Real value  Normalized value 

Parameter Symbol Value  Symbol Value  

Interfacial mobility  L  6 32.5 10 m /(J s)   0 0( )L L E t     2000 

Reaction constant. L  1.0 / s  0L L t    4000 

Gradient energy coeff.    55 10 J/m  2
0 0/ ( )E l    0.01 

Barrier height  W  5 33.75 10 J/m  
0/W W E  0.25 

System size  l  500 μm  
0/l l l  5.0 

Time step t  0.2 s 0/t t t     55 10  

Dif. coeff. in electrode eD  
13 27.5 10 m /s  2

0 0/ ( / )e eD D l t   0.03 

Dif. coeff. in solution   sD  
10 27.5 10 m /s  2

0 0/ ( / )s sD D l t   30 

Con. in electrode e  71.0 10 S/m  
2 2

0

0

/ ( )e e ol c F

t RT
  


  910  

Con. in solution  s  1.0 S/m  
2 2

0

0

/ ( )s s ol c F

t RT
  


  100 

Figure 3 Atomistic study of the SEI components, from our
preliminary first principles modeling. (a) As-constructed 
atomic structure and (b) fully-relaxed structure of a 
Li(001)/Li2CO3(001) interface. (c & d) Same as (a & b), 
except for a Li(001)/LiF(001) interface. 

Table3. Phase-field model parameters 
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3 3
0 1.0 10 mol/mc   . The site density of Li-metal is inverse of 

the volume of one mole Li-atom that is given by 
4 3

Li Li1 / / 7.64 10 mol/msc V m    , where Lim  and Li  

are molar mass and density of Li, respectively. All the 
parameters are normalized by a characteristic energy density 

6 3
0 1.5 10 J/mE    , a characteristic length 0 100 μml  , and a 

characteristic time step 0 4000 st  . The symmetric factor 

0.5   is speculated in this work, unless otherwise specified.  
 

Figure 4 shows the calculated 1D field distribution of 
phase-field, electric potential and Li  concentration. Both the 
potential and concentration fields have jumps at the electrode-
electrolyte interface. The order parameter   equals 1 in the 

electrode and 0 in the electrolyte and has a diffuse interface. 
The Li+ concentration in the vicinity of electrode increases 
away from the electrode surface due to charging condition. The 
total electric potential drop in this half-cell system includes 
three parts. The potential drop in the electrolyte is due to the 
ionic conduction, the potential drop across the interface 
because of the electrochemical reaction and Ohmic potential 
drop in the electrode where it is almost flat due to the high 
conductivity of lithium metal. The overpotential across the 
interface is taken as the thermodynamic driving force. The 
overpotential slightly increases with the time which 
corresponds to the increasing electrochemical reaction rate. 
During the electro-deposition process, Li+ is transferred to Li 
metal due to the electrochemical reaction at the 
electrode/electrolyte interface, and the motion of the 
electrode/electrolyte interface characterizes the Li dendrite 
growth. Moreover, it is able to handle the complex 
microstructure evolution of Li dendrite growth in 2D space. 

 
Figure 4 Distribution of order parameter, Li+ concentration 
and potenital in 1D. 
 

 
Figure 5 The 2D snapshots of order parameter , Li+ 
concentration c , and electric potential   at various times. 

 
2D simulations of lithium dendrite growth are then 

presented in which the anisotropic interfacial energy is fed into 
phase-field model.  We start with a case where an artificial 
nucleation occurs at the center of electrode-electrolyte interface 
to illustrate the distributions of different fields Figure 5 shows 
the snapshots of the phase-field order parameter, Li+ 
concentration and electric potential distributions as a function 
of evolution time by solving Eqs.(8-10).  The local variations 
of Li+ concentration and electric potential are both clearly seen. 
During the charging operation, the growth of phase-field (i.e., 
electrodeposit) can be related to the Li+ concentration and 
electric potential by reaction kinetics in which surface tension 
(i.e., interfacial energy) also appears. This in turn results in a 
concentration gradient as well in an electric potential gradient 
at the neighborhood of the electrode and/or the deposit. The 
tips of deposits have larger concentration and electric potential 
gradients which give larger overpotential and force their faster 
growth. We should note that the overpotential, as a function of 
Li+ concentration and electric potential, is taken as a field in 
our simulation which is different from the mathematical model 
that always taken as a single value. The overpotential across the 
interface is automatically taken as the thermodynamic driving 
force based on Eq.(8). The lithium deposition begins when the 
overpotential is less than zero.  

 
In the real condition, charging conditions for a lithium ion 

battery can be divided as fixed charging current density type 
and fixed applied potential type. In this model, we supposed 
that the potential applied at the right side of this half-cell is 
constant and the left boundary condition is the Neumann 
boundary condition. The charging condition is the same as 

Newamn’s model as 
0(1 )

Li L
Li

I t
C

D F





   . Figure 6 shows the 

dendritic morphologies under two charging current density 
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22 mA / cm  and 25 mA / cm  at a certain time step. The 

deposit is unstable for all cases. The local inhomogeneities of 
deposits are expected to induce local variations of current 
density, hence of the concentration gradient. Because of the 
electrochemical reaction, the deposit grows with Li ions 
deposition. Simultaneously, part of Li ions can be deposited 
onto electrode surface to form the continuous dense lithium 
layer. However, the growth of dense layer is relatively slow 
compared with the growth of deposit due to the inhomogeneity 
of current densities. Clearly, the larger charging current density 
will increase the lithium ion concentration at the anode surface 
which gives the larger driving force, leading longer and thicker 
deposits. 

 

 
Figure 6 Diagram showing the effect of applied current density 
on dendritic patterns. 

 

CONCLUSIONS 
In summary, a multi-scale computational approach 

integrating phase-field model and first-principles calculation is 
proposed to predict the Li dendrite formation at the 
anode/electrolyte interface of Li-ion batteries. A 
thermodynamically consistent phase-field model, accounting 
for the nonlinear reaction kinetics, has been proposed to 
investigate the dendritic patterns, making use of the first-
principles calculation that is employed to atomically determine 
the interfacial energy. Three different dendritic patterns have 
been discovered depending on the applied voltage and the 
interface morphology. A phase diagram was proposed, which 
could potentially be used as the guidance to experimentally 
control of Li-dendrite patterns. Analysis on the dendritic 
patterns demonstrates that the large applied voltage or the flat 
protuberant at the interface contributes to the side branches of 
dendrites, and even promotes an unstable tip-splitting. 
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