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Abstract

In this paper the Discrete Element Method (DEM) is coupligd the LatticeBoltzmann
Method (LBM) tomodel the undrained conditiaf densegranular medighat display significant
dilation under highly confined loadin@EM-only modelsare commoly usedto simulate the
micromechanics o&n undrainedspecimenby applying displacements at the domain boundaries
sothatthe specimen volume remains const&¥hile this approach works well for uniform strain
conditions found in laboratory testsdito e s n gticallyreprasknt neaniform strain conditions
thatexist in the majority ofealgeotechnical problems. The LBMfersa more realistic approach
to simulate the undrained conditismcethe fluid can locally conserve the system voluriie
investigate the ability of thBEM-LBM modelto effectivelyrepresenthe undrained constraint

while conserving volume and accurately caldofatthe stress path of the system two
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dimensional biaxial tess simulated using the coupled DEIMBM model, and the results are
comparedvith those attained from a DEMnly constant volumesimulation Thecompressibility

of the LBM fluid wasfound to playan important rolen themodelresponseThe compressibility

of the fluid is expressed as an appa®kempd n pose pressure parametdr The biaxial test,
both with and without fluid, demonstrated partisteale instabilities associated with shear band
developmentThe resultsshow that theDEM-LBM model offers goromising techniqudor a
variety of geanechaical problems that involve particlibuid mixtures undergoing large

deformation undeshear loading

Keywords: Discrete Element Methgd LatticeBoltzmann Method Undrained Loading

Dilatancy, Skempto® Bore Pressure Parametglicromechanics

1. Introduction

The interaction of solid and water phases in granular media is central to the science and
practice of soil mechani¢]. Mathematically, this interaction is described by coupling the partial
differential equations of deformation and fluid ilao produce a system that can model the
deformation of soivater mixturestartingfromani ni t i al A u n,doingthroughdhee | o a d i
process of consolidatiomesultingingd i nal @A drSadha ehgiex ghysedl gstem can
be modeled by caqling two simplercomponentslue tothe effective stress principle, which
decomposethe applied total stress into additive components acipagratelyon the fluid and
solid phasef?].

An accurate representation of the constitutive relationship foresoains lhe keyissuein
geotechnical modeling despite a nearly {ealiitury of intensive research. The most difficult

problems are those involving large discontinuous deformations as encountered in failures (e.qg.
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landslides, liquefaction) or erosionfilures associated with internal erosion and piping. The
Discrete Element MethodDEM), originally developed byCundal and Stack[3], offers a
fundamental approach to modeling granular materials at the particle scale. The DEM has the
advantageof modeling the motion of individual grains, thus naturally capgirlarge
discontinuous deformations that confoumdntinuum formulations. Thé attice Boltzmann
methal (LBM) is a natural companion tbe DEM for modeling the fluid phase because both are
baed on explicit time integration and simple spatial discretizatuidrereby the simple lattice of

the LBM fits well with the cubical grid generally used to localize neighbor searches in the DEM
[4]. The DEM has been used extensively to study localizatiengzhena in granular media]

with recent studies including the evolution of fluid fl¢@j. Coupled DEMLBM modeling has
likewise been applied to piping probleif3. A comprehensive overview ajpplying theDEM

and LBM in these muliscale problems carelfound in[4].

Previous studies have useoupled DEMLBM modelsmainly for cases where the soll
grains are in a relatively unconfined conditgurch asedimentation, fluidized beds, liquefaction
phenomena, and piping-5, 7]. This studyfocuseson an wndrained testhat involves highly
confined loadindetween rigid platensf dense particle systems displaysignificant dilation a
case which has not been examined in the previous -DBM modeling efforts The term
i ¢ o n f dmphagizés theontrast to cases where the particles have a high dediree wfotion
such as in simulations of fluidized beds and liquefaction. In essence, the particles are confined
because they must deform within tbenstraintsof the four loading platendderein a biaxial
loading casés choserto investigatethe suitability of theDEM-LBM for modeling the undrained
condition in dilative granular mediaBiaxial loading is a two dimensional approximation to

standard laboratory tests such as the triaxial, cubicatiat, and plane strain tesand is
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commonlyused to address general academic questions involving granular media physies
numerical aspectsf the DEM.Recently several studies have been perforradising the DEM
to simulate the biaxial case withe undrained condition and to better understand the effects of
important DEM parameterg @.,[8-10]). It is common to impose the constartiume condition
in the DEM only modelsby applying displacements at the domain boundaries sathtie

specimenvolume remainsconstant. Although this approach works well for uniform strain

conditions found in laboratory tests, it is not practical for study of general geotechnical problems

such as slopstability, whichpose noruniform strain conditionsTo address this gahis study
usesthe LBM to capturethe response dfuid undergoing a compressive loathis provides a
more realistic approach &xtendingundrainednodels to conditions of nemniform strairbecause
thefluid locally conservesystem veumein the LBM.

Following this introductory section, the paper provides brief descriptibtie DEM and
LBM including their couplingwith a discussion otime integration and spatial resolutioheach
method. This section is followed by a descriptaf the biaxial test and the instability associated
with shear localization as documented several previous publicationNd1-13]. Finally, an

investigaton of the effecs of fluid compressibility and particle sizen the resultss presented

2. Numerical Method

In recent years, coupling the DEMth LBM has become a we#stablished method for
solvingfluid-particle interactiorproblemsin geomechang[1, 6-7, 19. In this coupled method,
the DEM resolves the intgrarticle interactions, and the LBM solves the NaB&rkes equations
for thefluid flow. Also, although not consideréal thepresenstudy, the coupled DEM.BM has
the potential to model the relative nmwt of soil grains and water found in consolidation problems.

Feng et al[14] used the DEMLBM to model a vacuum dredging system for mineral recovery,
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where particlearepulled through a suction pipe at turbulent Reynolds numbers. Loming &t al.
usedthe DEMLBM to model piping erosion. In these simulations, 2D discs were placed in a
rectangular domain, and a pressure gradient was applégd/éthe fluid flow. The DEM-LBM
couplingis advantageoubecause both metho@snploy explicit time integratiomaking them
particularly suitable foparalleliation[15].

The following sections briefly discuss the DEM and LBM formulations, boundary

conditiors, and coupling between the DEM and LEgpliedin this study.

2.1. Discrete Element Method

The DEM is aprocedurefor simulating interacting bodies through integration of the
equations of motion for each body. Tbentactforces arecalculatedusing binary contact laws
based on the relativéisplacement ofhe bodies at the point of their contact. Thus the bodies
themselves are assumed rigid. DEM is designed to simulate granularimiadige assemblages,
ranging from a few thousand particlesrollions of particles. To simplify contact detection,
particles areoften assumed to be spherical, but not necessarily of equal size. Spparicaes
are used as a computational expedient-sprerical particles can be modeled, although at the
expense of added memory usage to describe particle geometry ancaaigedational time for
contact detection.

Interactions between particles are described by contact laws that define forces and
moments created by relative motions of the partidiés. particle acceleration is computed from
the summation of contact forcasting on each particle combined wékternaforces.The motion
of each particle that results from the net
laws. Thus, the particles are not treated asrdginuousmedium. Rather, the medium behavi

emerges from the interactions of the particles comprising the asserj@jlage

O
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wherem andln, are the particle mass and moment of inertia respectigafythe acceleration of
gravity, fi®andM;° the forces and moments applied at the contketandTr are the hydrodynamic
force and torque, respectivebnd N the number of contacts for the particle.
Particle forces are accumulated from pairwise interactions between particles. Two particles
with radii Rx and Rs make contact when the distandeseparating the particles satisfies
Q 2 'Ys8 3
The cortact forces and moments arise from relative motion between contacting particles.
The motion of each individual particle is described by the velocity of the particle center and the
rotation about the center. The branch vector between particle ceriters? is also the difference
between the respective radii vectors that link the particle centers to the cdritact With this
nomenclature, the relative motion at contabetween particled andB is given by
w 6 o0 Qi — i —28 4)
where repeated indices indicates summatfitwe. contact moments are generated by the difference
i n r ot a“tbetweensthe pagitles,
@ 1 1 8 ®)
The contact forces for cohesionless materials are given by the contact laws in terms of their

normal and shear componerfts andf;®
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135 whereK" andK® are stiffness constantg; is a factor to dissipate energy through stiffening the
136 unl oad r"asgamthe normgband shear components of the contact displacerhent;
137 andn™ar e the unit vectors in the °tthegreatesivalme o f
138 of penetrati off iann dthaee falticospaiameters.o f @

139 Following Peterset al (2005), the particle stress tensor and the average continuum stress

140 in the solid fraction are defined as:
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141 whereVis the total volumey, is the volume of each particlgs is the total particle volumeé\©is

142  the number of contacthl’ is the number of particle§S is theith component of the force acting at

143 the contact;;®is thejth component of the radius vector from the center of the particle to the contact.
144  The particle stresses identify the particles transmitting higher than average loads through force
145 chains. The average continuum stressaisulated tanvestigae the stresdistory of the system

146 in the form of a stress path plot of the intergranular stpessd the deviatoric stress,

147
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2.2 Lattice Boltzmann Method

The LBM is a simulation techniqusommonly usedor solving fluid flow and transport
equationge.g.[16-19] ). The LBMisbased on Bol t z mawvhich@vas deriged at i on
from the gas kinetic theory. In this methadreaming anctollision operatorare employed to
describe the time and spatial evol utseqoaionof a ¢
has a direct relationship with the Navi€tokes equation21]. The LBM characterizes the fluid
at points located on a regularor 3-dimensional latticef-or the present worlaso-calledD3Q15
lattice is used, meaning each point in three dimensions is linked to neighboring points through

fifteen velocity vector®y to e, as shown in Figre 1.

€
E 10 Q A
: €y
e, |
. = [0
) , & €
E €
| €,
i el_] ___________________________
e /- €
- €,

Figure. 1. D3Q15 lattice velocities.

2.2.1 Density distribution functions and their time evoluti
Each velocity vectore to e14, has a corresponding density distribution functi@to fi4.

The density functioneepresent portions of a local mass density moving into neighboring cells in
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the directions otorrespondingliscrete velocities. The macroscopic fluid dengiat each lattice

point is a sum of the distribution functions at that lattice point:

? Q (11)

Fluid velocity at the lattice point is a weighted sum of lattice velocities, with distribution

functions being the weight coefficients:

B Gg B 'Ga
0 50 . (12

wherefi/ yatio can be interpreted as a probability of finding a particle at a given spatial location
with a discrete velocitg.

The model is completed by defining a collisioperatorthat definegshe evolution of the
density distributionUsing the collision model of Bhatnag&@rossKrook (BGK, [22]) with a
single relaxation time, the tienevolution of the distribution functions given by

Q> gwd wo QD TB"Q O QD hQ m8pt (13

wherer andtar e t he space and t i mistheptime step,iandns tref a
relaxation parameter for the fluid flow. The relaxation paramésaecifies how fast each density
distribution functionfi approaches its equilibriufif® Kinematic viscositys, is related to the
relaxation parametetd, the lattice spacingpx, and the simulation time stequ, by

T ™ ew
o wo

(14)

Depending onwhether the model is twor threedimensioml andgivena particularset of
the discrete velocities, the corresponding equilibrium density distribution function can be found

[23]. For the D3Q15 lattice, the equilibrium distribution functidffsare
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184 Using the ChapmarEnskog expansion [21]t can be showrthat LBM Ecp. 11 to 13

185 provide an approximation of the incompressible Natikes The NavierStokes equations are
186

o
” o 0090 2 0 (17)

—a

16 S 1 (18)
187

188 where thee=3 Jis the dynamic viscosity of fluidlhe approximation is valid in the limit of low

189 Mach numbeM=|u|/cs, with a compressibility erran Eqg. 18 on the order ODM2 [17], where the
190 lattice speed of soundes= c.Nda@e3that the fluid compressibility used to control pore pressure
191 response is actually considered an error in general LBM applications. The fluid compressibility

192 can be calculated as:

P
I I (19)

10



193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

where } is t haisthdlatticespedaf sosnd.t y and

2.2.2 Immersed moving boundary

The immersed moving boundary (IMB) technid24-26] allows solid boundaries to move

through thd.BM computational grid. The IMB method introduces a subgrid resolution at the solid

liquid boundaries, resultingn smoothly changing forces and torques exerted by the fluid on

moving particlesThelMB introduces an additional collision operat expressing collisions of

solid particles with fluid as
m QMo QM Q "he Q"
whereUsis the rigid body velocity of the particle that includes rotational and translai

velocities

The time evolution of the density distribution functions in IM&wvincludesY ;S

~

Qr g3od 30 QMO p [ TR ZQ MO QWD [ Thtm

—+|©

(20)

(21)

wherethe weighting factobf, U) daenpalichcdverageand r el axati on

- T

P i ®

(22)

Multiple values fob§ , @Xist but the value chosen in Equatid2was used from [25].

2.2.3 Fluidforce and torque

The ptal hydrodynamic force exerted bye fluid on a particles calculated bysumming

the momentum change at every lattice cell due to the new collision operator:

11

par am
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208 The total hydrodynamic torque can tHencalculated by:

1 > > i M m (24)

209 wherern; rcis the vector from the center of the particle to the center of the lattic&qgaltions

210 23and24appear in lattice uni tsqtaconvertrtosphysial units. b e
211 It should also be noted that the IMB does not resolve detailed pditiclenteractions such as
212 lubrication forcesalthoughthe contact radius of the DEM is usually large enough to minimize

213 nodal conflicts [25].

214 2.24 Boundary Conditions

215 The cornergreated by intersecting platerepresent the intersection of two independently
216 moving boundaries that requires special treatmemtesolve the no slip boundary conditions in
217 the corners of the domain, the values for the distribution fureotveneexplicitly stated for lattice
218 points at the corner of two or more walls. Zou and[H§ proposed a method to solve for the
219 unknown distribution functions for these boundary nodesetl [28] derived these equations
220 for both 2D and 3D lattice®f certain wall configurations. By applying this boundary condition
221 explicitly at the corners, the fluid boundary conditions at the corners were condistdatermine
222 the force exerted on the boundaries, the stress tensor was integeatdte@rea dhe boundaries

223 [29].

224 2.3 Coupled DEMLBM
225 For coupling the DEM and the LBM, the LBM calculates the forces exerted on the solid

226  boundary by the fluid and passes the information to the DEM. Then, the DEM uses the total force

12
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on the solid boundary to integeathe equations of motion for the solid particles. To visualize the
coupling of the DEM and LBM, a screenshot was taken from a sedimentation simwlitidine
contributions from each method highlighted in Figur&l® example of sedimentation illusest
thedominanteffectsof each component of the coupled syst&or example, in the region where
the particles are settling, the DEM inqaatrticle forces dominate the fluid forces, resulting in the
particlestacking showmn the left insertHowever, in he fluid mixing region shown in the right
insert, the LBM fluid forces control the motion of the particles.

The LBM ttisdeternsinecefiom tipe kinematic viscosity of flaidrequired grid
r e s ol u tandocanstrgints on the relaxation param¢ie0.5) according to Eql4. The
relaxation parameter must be chosen low enough to achieve a sufficient time resolution. An upper
limit on the relaxation parameter is given by the low Mach number conskarEM, the largest
stabletime step value igstimatedrom the smallest particle mass and the stiffest sprinf in

the systemgiven the frequency of fastest oscillations

0 O
1 T (29)

0 Q&

and their time period
Y — (26)

In this work, the LBM time step is constrained to be greater than or equal to the DEM time
step. Accordingly, the LBM time step is determined first, and then the DEM time step is adjusted
to perform an integer number of substeps before performing the laBlation. To couple the
two methods, the DEM first calculates contact forces and torques between the particles. The LBM
then receives locations and velocities of the particles and solves the fluid equations. The LBM

calculates the fluid forces and torguen the particles at the current positions and adds those forces

13
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and torques to the DEMO0s contact forces and
motion and updates the locations and velocities of the particles. During the DEM subdleling,
fluid forces and torques remain constant, and the-8oldl boundary does not move. Therefore,

care must be taken when deciding the number of DEM subd6gs

v

Discrete Element Lattice Boltzmann

Method (DEM) — ﬁ Method (LBM) —
Solid phase Particle positions’ Fluid Phgse

velocities, and = *‘(a
accelerations >
YT Hydrodynamic forces and AV
. ‘ torques ' L )
- Contact Stiffness - Fluid Viscosity
- Contact Friction - Fluid Density

- Density of Particles

Figure 2. Diagram showing the coupling of the DEM and LBiMthe LBM(Fluid Phase)
image,eachsquare represenia 5x5 lattice griddemonstrating howhe lattice size compesto
particle size.
The presentedDEM-LBM simulations were performed on the Shadow cluster at the

Mississippi State University High Performance Computing CollaboyaThe research code used

in this study was developesa collaboration between Mississippi State University and the US

14
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259 Army Engineer Research and Devetggnt Center. The LBM portion of the algorithm was

260 parallelized using spatial domain decompositigoathm, as dscribed in [15]

261 3.Model Setupand Input Parameters

262 To investigate the ability of the LBM to properly impose the undrained constram: a

263 dimensionabiaxial test is simulated using the coupled DIEBM modelas well asa DEM-only

264 constant volum¢DEM-CV) model The focus in this paper is on th&xial test whichinvolves

265 highly confined loading of dense particle systems that display significant dildtienbiaxial

266 DEM-only simulation is especially well suiteds a referencdor the presentDEM-LBM

267 investigation because the reference simulation, thmundarydisplacementsvere imposed to

268 maintainthe constant domain volume, thus approximating the undrained condition in absence of
269 a fluid phaseln systems sutas the biaxial test, the compressibility of the fluid phase is critical
270 to achieving realistic undrained conditions. The incompressibility condition is only approximated
271 inthe LBM and is tied to the simulation time step and grid spacing. Theiisssgatedin this

272  studyis whether the LBM compressibility is sufficiently small to represent the undrained loading
273  with specific fluid compressibility. The following sections show that the LBM can effectively
274 model realistic fluid behavioiThe biaxial testequires a simple computational domain that is
275 easily discretized by the LBM grid and in which the undrained condition can be simulated either
276 by coupling the DEM to the LBM or by applying displacement boundary conditt@nidealzed

277 boundaryconditionsimposedby eliminatingvolume change through the bounddigplacement

278 represent the benchmark against which the efficacy of the biMel ofthe fluid phase is

279 assessed.

280 To model the biaxial specimef409 particleswith radii between 0.1 um and1.42 um

281 were loosely placed inside tbEM-only domain.This placement was followed laycompressive

15
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292
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294
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297

consolidatiorwith externalstress appliedquallyto all four-boundarywalls. The final dimensions

of the walls werel01.5 ym x 101.5um. After reachingequilibrium under thedesired confining
stress, the LBM fluid was introduced into the calculation, and the boundary conditions shown in
Figure 3 weramposed Note that in Figure 3he boundary stress condition is actualljpece-
controlleddisplacement conditioapplied though rigid walls; the force applied to the wall is the
averagestresscomponent perpendicular to the whithes the contact aredo use the 3D LBM

with D3Q15 latticeshown in Figure 1, a periodic boundary condition was used in the in plane (z)
direction with enough spacing to minimizeplane stresse$he spherical particles are embedded

in the LBM grid giving a 3D geometrical configuration that creates flow paths around the spheres.
Thereforethefluid regime is threalimensional. Howevegiven that particle centers are aligned
along the xy planethe fluid force in the irection is negligible and does not create any particle
instability. No-slip boundary conditions weggpliedfor the fluid velocitiesat the walls. For the
biaxial tes, the vertical walls have an imposed velocity, andviiecity of thehorizontal wall is
determined by the interaction of the fluid and particle stresses on the wall. FevahgeBest, a
externalstress is applied to each wall, and the resultingoitgi of the wall is governed by thetal

stresses of the system.
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Figure 3. Boundary conditions and particle configurations for the a) Biaxial Test anevia)ug
Test wihaconpressive stress andi¥ a normal velocityNote that periodic boutary
conditions were used in thedrection.

At the shearing stage of thaaxial test the initial confining stress is applied to all four
walls while a displacement boundary conditismapplied to the top and bottom boundaries via a
normalvelocity Vn. Once théop and bottomwvalls startmoving, the fluidresistsvolumedecrease
by exerting stress on the left and right boundares. comparison purposes, tiEEM-CV
simulation waslso performedh whichthe left and right boundariegere displaced a ratethat
maintained a constadbmainvolumein a mannesimilar to Peters and Walizer [11]

The initial particle configuratiorfor this workwas takerfrom Peters and Walizdi 1]
effort that investigateddilative material under constawblume condions in a biaxial test
configuration.The largedomainsizein the referenag work resulted in stabilityproblems when
choosing appropriate parameters for the LBMkeep the Reynolds number Ipthe system size
from [11] was scaled down and a set of parametes Table 1 was applied The DEM

simulationsexhibits a dimensionless behaviavith respectto the particle and domain sizes.

17



315 Coupled snulations were performed faarying LBM grid sizes,with the grid spacingetto at
316 least6 LBM cells per particleAlso, the rigid walls are assumed to be frictionless so that the forces

317 between the particles and walls are purely normal forces [11].

318

319 Tablel. Model parameters used for the smaller particle simulations.
Property Units Value
Maximum diameter pum 1.42
Minimum diameter pum 0.71
Normal stiffness N/m 1.43E2
Shear stiffness N/m 2.86E3
Coefficient of restitution 0.1
Contact friction 0.5
Initial height pum 101.5
Initial width pum 101.5
Initial porosity 0.15
Fluid viscosity Pas 0.00112
Fluid density kg/m? 1000.0
Grid spacing pum 0.123

320

321 4.Results
322 To better understand the effects of the LBM compressilmiitythe biaxial simulation
323 Skemptonds por e Bpasérst simulaed andhenaomputedfar the coupled

324 DEM-LBM system The DEMLBM model of the biaxial test was then used to investigate the
18



325 effects of fluid compressibility and partislsize. For each case, the resulessecompared against
326 those attained from the DEKIV model. Theesults are presented and discussed in the following
327 sections. The effective stress path invagame used to represent the stress history of the system

328 for the biaxial case:

fee @7

N — (28

329 wherelh is the mosttompressive principal stress airds the leastompressive principal stress.

330 4.1.B-valueTest

331 Skempt onds por e Bpfsrraringdanigopentyathateseibedhe pore

332 pressure response an undraineghorous mediununder changein total stressesThe Bvalue

333 testis a type of compression test where the response of the fluid can be evaheatest is used

334 in laboratory to assess saturation of a specimen before shearifgeiretically, theB-value is

335 definedto be theratio of the induced pore pressunerementto the change imotal hydrostatic

336 stressincrementfor undrained condition§30]. In this study, e B-value test wasiumerically

337 simulated by applying an equal confining stress to all walls around the patiatle domain,

338 including the LBM fluid, as shown in Figure 3b. These applied stresses are total stresses. The
339 average hydrodynamic stress was computed by integrating the bflied pressuret the walls.

340 TheB-value was determined as the ratio &f Hveraged hydrodynamic stress to the applied total
341 stress. Th&-value test was performed for different values of LBM compressibility, as calculated
342 by Eq. 19, to understand the convergence of the LBMssure responseth respect to lattice
343 compressibity. The compressibility of the LBM fluid was varied by keeping the grid spaaiilg

344  fluid viscosity constantwhile changing the time stepndthe lattice relaxation parametdrhe

19
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359

simulatedtime for B-value testsvas choseitong enough for the forces exed on the boundaries

to reach a steadstatevalue.

To calculate theB-value of the DEMLBM system, the average hydrodynamic stress

exerted on the four boundaries was determiiiéd.forces exerted on the wsthitially oscillate

but after a long enough simulation time, the oscillations settle to a S&ddyalueasshown in

Figure 4a. As expected, by decreasing the LBM compressibilit-tledueapproachethe value

of unity as seen in Figure 41A theoreticalB-value wasc al cul at ed

by

det er mi

compressibilityunder the sammading conditionsexcept without the fluidThe obtainedsalue

wasthenused with the LBM compressibility to determine a theoret&gblue The results for

this comparison are shownTable2.
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Figure 4. Results from the-Baluetest. a) Average hydrodynamic forces on the confining walls.
b) B-value versus LBM compressibility showing the convergence ofta&B for the system.

Table2. Comparisonof the DEMLBM and a theoreticaB-value.

Fluid Compressibility (1/Pa)

DEM-LBM B-value

Theoretical Bvalue

9.65E7

0.94
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365

366
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369

370

2.70E6

7.39E6

1.50E5

2.40E5

0.91

0.85

0.75

0.68

0.994

0.982

0.965

0.946

4.2 Effects of Fluid Compressibilityn Biaxial Simulation

The stress paths and stress ratio versus strain plots for the simulations are shown in Figure
5a. The plots are annotated with the DIEBM B-values from Tabl€. Two main regions were
of interestfor the biaxial simulationAt the strainvalueslower than 4% the stress path and the
stress ratio for the DENIBM system had a strong dependence orBiwvalueof the systemAs
expected, fofower values oB, the system behaved more like a drained system. By decreasing
the LBM compressibilitythusincreaing theB-valug the DEMLBM converged to the values
generated by thBEM-CV model Figure 5 depicts the importanceimiposinga large enougB-

valueto capture the initial behavior of the system.
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Figure5. a) Stress path plot for low values of strédi®6) showing the effects of LBM
compressibility. Note that each marker represents 0.5% increments of strain. b) Stress ratio
versus strain plot for the first 4% of strain.
After reaching4d% of strain, the DEM.BM showed slightly larger values of stressm
the DEM-CV model. Although the stresses for small values of stress differ greatly depending on

the B-value, the DEMLBM model shows relatively good agreement after 4% strain for varying

values ofB as shown in Figuss6 and 7.
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Figure 6. Stress path plot for the full simulatian3 different Bvalues
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382
383 Figure 7. Stress ratio plots for the full simulation.
384 To analyzethe differences in the stress values between the {0&Vand DEMLBM

385 models for larger strain, plots for vectars the velocity fieldand interparticle stresses were

386 generated, as seen in Figures 8 and 9. When comparing the results of these plots, the shearing
387 zonesfrom the DEM-CV model arebetter delineateéind more abundant thathose fom the

388 DEM-LBM model, possbly explainingdifferences in the stress patishear band formation was

389 identified as linear regions where there are discontinuities in particle velocities. These regions are

390 delineatedy black lines shown in Figure 8.

7

.0.02
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391 (a) \ / i A ; (b) k .;.;. 0.0
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392  Figure8. Velocity vector for the particles at 10% strain for a) DEIW and b) DEMLBM. The

393 solid black lines shown in the figure represt locatiors of shear band

394

395

396 Figure 9. Interparticle stress at 10% strain for a)DERIV and b) DEMLBM. The solid black
397 lines shown in the figure represeéiné locations oghear band.

398

399 The pore water pressure is plotted in Figure 10. The pletikds representhe average

400 fluid pressure in the system. The initial pore pressua@psoximatelyl70 Pa.

401

402

403 Figure 10. Averge pore water pressure versus strain. Note the initial pressure of the system is
404 about 170 Pa.
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