Current and recent hurricane structure research at MSU

Pat Fitzpatrick, Yee Lau, Chris Hill, and Haldun Karan Geosystems Research Institute Mississippi State University

Intrinsically linked to hurricane intensity

- Recent hurricane research
- New results on relationship to environmental moisture

Posters

The Influence of Cyclones on the Fate and Transport of the Deepwater Horizon Oil Spill

Wetland Loss Associated with Hurricane Storm Surge near the Caernarvon Freshwater Diversion [paper submitted to International Journal of Remote Sensing] Recent research (detailed presentations available upon request)

Meteorological modeling – Fitzpatrick, MSU

Screen capture of wind accuracy scheme being used by operational hurricane centers in the Automated Tropical Cyclone Forecasting System (ATCF)

07.20	112 Southern Hemisphere -	ETHEI				
0, 20	The obdatern Hemisphere		Central Pressure Trend			
Dat	te-Time-Group: 201201	11918 🔻		1000 mb is your -24 h central pressure.		
	•			996 mb is your -18 h central pressure.		
				989 mb is your -12 h central pressure.		
Lat	Lon Max \	Nind (kt) Dir (deg)	Spd (kt)	989 mb is your -06 h central pressure.		
Past 24 hr: 13.7 S	68.7 E 3	30		982 mb is your current central pressure.		
Past 12 hr: 14.9 S	67.2 E 4	1 5 218	9	Central Pressure Guidance		
Current: 17.1 V \diamond N \diamond S	65.9 ▼ ◆ E €	55 🔻 210 🔻	11 🔻	992 mb,Courtney and Knaff (2009) - Accounts for size, lati 993 mb,Courtney and Knaff (2009), NHC 2011 version - Accou 982 mb,Knaff and Zehr (2007) Appendix A - Simple WP basin 994 mb,Dvorak (1984) - Suggested AL/EP central pressures.		
Eye Diameter:	0 🔻 nm	Gui	dance	Your central pressure of 982 mb is within +/-10 mb of Courtney		
Max Wind Radius:	15 👿 nm					
Vertical Extent of Circulation:	Medium 700 - 400 mb	V		Radius of Outermost Closed Isobar Trend		
Central Pressure:	092 T mb			180 nm is your -24 h ROCI.		
	302			180 nm is your -18 h ROCI.		
Outermost Closed Isobar:	1005 🔻 mb			200 nm is your -02 h ROCI. 200 nm is your -06 h ROCI.		
Radius Outermost Closed Isobar:	200 V nm			200 nm is your current ROCI.		
				Tour Koer hash e changed for 12 hours:		
Speed/Quadrant NE (nm)	SE (nm)	SW (nm)	NW (nm)	Holland B Guidance (Knaff et al. 2011)		
34 kt: 55 🛛 🔻	60	55 🔻 5	55	This parameter checks consistency of several bogus parameters:		
				982 mb is your central pressure.		
50 kt: 15 💌	15	15 🔻 1		55 kt is your outermost closed isobar.		
641t: 0	0	0	0	11 kt is your storm speed. 1.0 is your Holland B value.		
Help	ОК	Cancel		The climatological range for Holland B is 0.6 to 1.8. Your value is an average value.		

Automated Tropical Cyclone Forecasting System (ATCF)

- Used by the National Hurricane Center
- Used by the Joint Typhoon Warning Center
- A GUI with many operational purposes, including objective aids
- Further information: http://www.nrlmry.navy.mil/atcf_web/

J annexawp.	2009							
ie Font	NetLink Ap	pplications						
5	Statistics for JT	WC on st	orm WP	1209				
WRN	BEST TRACK	: P0	SITION	ERRORS		WI	ND ERRORS	PLATFORM
DTG NO.	LAT LONG w	rind 00	12 24	36 48 7	2 96 120	00 1	2 24 36 48 72 96	120
9082800 5	21.9N 148.5E	30 8	55 97	110 117	185 753	0 -	5 -5 -5 -10 -10 10	
9082806 6	22.6N 148.4E	40 0	36 66	92 119 3	251	0 0	0 0 10 10	
9082812 7	23.7N 148.2E	45 0	20 48	86 79 1	26	05	5 5 15 10	
9082818 8	24.8N 148.0E	50 0	24 63	83 45 2	09	0 0 1	0 10 10 0	
9082900 9	26.UN 147.6E	50 0	34 86	82 69 2	34	0 0 0	0 10 0 0	
9082906 1	U 27.4N 146.8	E 55 U	39 114	165 219	•	0.0	10 10 5	
9082912 1	1 28.6N 145.8	E 55 31	118 15	0 238 29	8	0 10	10 0 5	
9082918 1	2 29.6N 144.2	E 60 23	82 10	3 158 18	5	0 10	5 0 0	
9003000 1	3 30.4N 142.4I	C DU JU E EE E	73 13	3 100 121	' .	0 5-	-10-10-10	
0000010 1	4 31.1N 141.0	C 33 0	24 44	35	0	10 0		
0002012 1	5 31.7N 140.51 6 22 6N 140 0	C CO 0	25 71				-0	
9083100 1	7 33 5N 130 0	E 65 0	38 92		-10	0.5		
9083106 1	8 34 7N 140 6	F 60 0	43		-5 0	0.5		
9083112 1	9 36 3N 141 5	F 55 A	59					
9083118 2	0 38 4N 142.9	F 55 A			-5			
	AVERAGE 6	45 87	121 13	9 201 75	3 23	4 6	7 6 10	
	BIAS			-2 -1 1	032	10		
	# CASES 16	15 13	11 9	5 1	16 15 13	3 11 9	951	

Objective Aids - KROV	/ANH	wp122009		
Select profile:				
CONJ 🛆		Save New	Drofile	
CONU		SAAC INCM	FIUITE	
		Delete F	Profile	
TCON V			Tomoni	
Select DTG(s):		elect Object	tive Aids:	
2009082906 🔺	J	WC JTWC	official fore	
2009082912	C	ONW Conse	ensus; AVN	
2009082918	Al	WI AFWA N	MM5 (NHC I	
2009083000	A	NI NCEPA	VN TC vorte	
2009083006		GRI Brackni	ell (NHC int	
2003003012			r model (m E model (m	
2009003010	G	FNI Navy vi	ersion of GI	
2009083106		WI JITWC I	nternolated	
2009083112	J	SI JGSM (NHC interpo	
2009083118 💌	N	GPI NOGAP	S to vortex	
	T(CLI TC LAPS	6 (NHC Inter	
	W	BAL Harry V	Neber mod	•
-48 -36 -24				
-12 -6 0		Select D	efaulte	
Clear All			ciudito	
T				
Tuggie Bola Selea	ciea A	lus		
Display aid intens	sities			
GPCE				
GPCE Climatology	/			
GPCE-AX				
34 kt aid wind rad	ii			
50 kt aid wind rad	ii			
64 kt aid wind rad	ii			
Bold Lines (for pri	inting,	all aids)		
tool		Or] Canar	
Appi	y	UK	L Cance	

The Holland Wind Profile

 Holland, G.J., 1980: An analytic model of the wind and pressure profiles in hurricanes, MWR, 1212-1218

$$- P(r) = P_c + (P_n - P_c)exp(-A/r^B)$$

- P_c = minimum P, P_n = ambient P
- A, B = structure parameters
- Assume cyclostrophic balance with constant density ρ
- $V(r) = [AB(P_n P_c)exp(-A/r^B)/\rho r^B]^{1/2}$
 - A = (r_m)^B
 - $B = \rho e V_m^2 / \Delta P$
- Holland profile used extensively in damage modeling applications

Collaboration with NOAA CIRA and NRL

Note large differences in all 4 models. The diagnostic tool alerts forecasters that the initial wind field may be erroneous

Paper published in American Meteorological Society journal:

Knaff, J. A., P. J. Fitzpatrick, C. R. Sampson, Y. Jin, and C. Hill, 2011: Simple diagnosis of tropical cyclone structure via pressure gradients. *Wea. Forecasting*, **26**, 1020-1031.

Analysis of operational weather model wind profiles

Effect of hurricane intensity, size, and speed on storm surge

Cat 1, 3, 5 hurricanes, average size, average speed

Correction factors for speed and size

Size

Zone 2: ± 1.5 (Cat 3-5)

Zone	3:±1.0 (Ca	t 1–2),	± 1.8	(Cat 3),	\pm 2.5	(Cat	4–5)
Zone	4: ± 1.6 (Ca	t 1–2),	± 2.5	(Cat 3),	\pm 3.6	(Cat	4–5)
Zone	5: ± 2.3 (Cat	t 1–2).	± 3.3	(Cat 3),	± 4.3	(Cat	4-5)

Speed

Zone 4: \pm 1.5 (Cat 1–2), \pm 2.0 (Cat 3), \pm 2.6 (Cat 4–5) Zone 5: \pm 3.0 (Cat 1–2), \pm 3.9 (Cat 3), \pm 5.2 (Cat 4–5)

Paper in revision for *Nat. Hazards Earth Syst. Sci.*

Average rainfall is 3, 6, and 11 mm/hr for TS, Min Hurr, and Major Hurr – but large spread!

Radial structure of rainfall rate probability distribution functions for Category 3, 4 or 5 hurricanes

50 -68% (2 negative standard deviations) -34% (1 negative standard deviation) 40 -20% -10% 0% (average) Rainfall rate (mm/hr) 30 10% 20% 34% (1 standard deviation) 68% (2 standard deviations) 20 10 0 0 100 300 200 Radius (km)

From Fitzpatrick and Lau (2011) Based on Lonfat et al. (2007) Percentage of droughts ended by tropical storms or hurricanes

TC-affected ADE frequency (150 km range) 1960 - 2010

TC-affected ADE frequency (R34 range) 1988 - 2010

 $0.00 \ 0.05 \ 0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45 \ 0.50$

The frequency of ADEs contained within the $\{R = 150 \text{ km}\}$ circulation area of TC.

 $0.00 \ 0.05 \ 0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45 \ 0.50$

The frequency of ADEs contained within the R34 circulation area of TCs.

Data assimilation and numerical modeling

•Numerical models:

- Weather Research and Forecast model (WRF)
- Hurricane WRF (HWRF)
- Advanced Hurricane WRF (AHW)
- MM5 and COAMPS
- All require supercomputers
- Model data assimilation schemes:

> 3D Variational analysis (3DVAR). NCAR-3DVAR is used in WRF and HWRF, and NCEP-3DVAR is used by NCEP (called the Gridpoint Statistical Interpolation, or GSI) in all models, including AHW

4D Variational analysis (4DVAR; used in WRF and HWRF)

Data assimilation example

Katrina no data

Katrina with aircraft data MSLP-10 m WNDSPD ANA 6HCYCNCEPGSI 00UTC 08/27/2005

New research Tropical cyclone size changes

Motivation - Katrina

August 26, 08Z

August 26, 11Z

August 26, 14Z

August 26, 17Z

August 26, 20Z

August 26, 23Z

August 27, 02Z

August 27, 04Z

August 27, 07Z

August 27, 10Z

August 27, 12Z

August 27, 15Z

August 27, 18Z

August 27, 21Z

August 28, 00Z

August 28, 03Z

August 28, 07Z

Vortex merger ideas

(Lander, Holland, Dietachmayer 1993, 1994)

Ritchie and Elsberry 2000

Kuo, Chen, and Lin 2000

Color contour = specific humidity g/kg Solid contour=heights of 1000 mb isobaric level

NCEPSONDE FORCST SPF-HEIGHTS @1000mb 18Z00FH 08/26/2005

COLD_FORCST SPF-HEIGHTS @1000mb 18Z00FH 08/26/2005

HWRF GFSonly versus

GFSonly modified trough,

30

29.5 29 28.5

28 27.5 27

26.5 26 25.5 25

24.5

24 23.5 23 22.5

22 21.5 21 20.5

20

19.5

19 18.5

18 17.5

17 16.5 16 15.5

15 14.5

14

13.5 13 12.5

12 11.5 11

10.5

10 9.5 9

8.5 8

7.5 7 6.5

6 5.5 and GFS only with 25% and 50% reduced RH within the RGN,

NEXT SLIDE:

and 25%RH reduction where wspd <17 and distance<300km and >50 km,

and 50%RH reduction where wspd <17 and distance <300 km, >50km. COLD_50percent_reductionRH_WIND16_DIST300_FORCST SPF-HEIGHTS @1000mb 18Z00FH 08/26/2005

MSLP -WNDSPD@10m COLD_50percent_reductionRH_75W92W_265N45N_FORCST 08/26/2005 18UTC 24 FH

GFSonly 75%RH-RGN

MSLP -WNDSPD@10m COLD_25percent_reductionRH_75W92W_265N45N_FORCST 08/26/2005 18UTC 24 FH

MSLP -WNDSPD@10m COLD_50percent_reductionRH_WIND16_DIST300_FORCST 08/26/2005 18UTC 24 FH

MSLP -WNDSPD@10m COLD_25percent_reductionRH_WIND16_DIST300_FORCST 08/26/2005 18UTC 24 FH

Is there a predictive moisture signal?

We examined historical storms vs precipitable water

Definition of Precipitable Water: total water vapor contained in a column of the atmosphere.

Extended Best Track 2000-2010 Central Atlantic To Florida storms intensified more than 10 Kts in 24 Hrs 60 Kts <= MaxWind < 80Kts 30K Sq. Km cutoff PW scale 40 to 60

Extended Best Track 1988-2010Gulf of Mexico storms intensified more than 10 Kts in 24 Hrs60 Kts <= MaxWind < 80Kts</td>30K Sq. Km cutoffPW scale 20 to 70

Tentative Conclusions

- No support for vortex merger hypothesis
- But modeling and tentative dataset analysis supports environmental moisture sensitivity
- Work ongoing to examine storm size by intensity and initial size
- Predictability of tropical cyclone change may be possible using precipitable water fields