
Abstract
A wide range of mathematical models are available for predicting 
phosphorus (P) losses from agricultural fields, ranging from 
simple, empirically based annual time-step models to more 
complex, process-based daily time-step models. In this study, we 
compare field-scale P-loss predictions between the Annual P Loss 
Estimator (APLE), an empirically based annual time-step model, 
and the Texas Best Management Practice Evaluation Tool (TBET), 
a process-based daily time-step model based on the Soil and 
Water Assessment Tool. We first compared predictions of field-
scale P loss from both models using field and land management 
data collected from 11 research sites throughout the southern 
United States. We then compared predictions of P loss from both 
models with measured P-loss data from these sites. We observed 
a strong and statistically significant (p < 0.001) correlation in both 
dissolved (r = 0.92) and particulate (r = 0.87) P loss between the 
two models; however, APLE predicted, on average, 44% greater 
dissolved P loss, whereas TBET predicted, on average, 105% 
greater particulate P loss for the conditions simulated in our 
study. When we compared model predictions with measured 
P-loss data, neither model consistently outperformed the other, 
indicating that more complex models do not necessarily produce 
better predictions of field-scale P loss. Our results also highlight 
limitations with both models and the need for continued efforts 
to improve their accuracy.
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Application of phosphorus (P) to agricultural lands 
can lead to increased offsite transport of P via surface 
runoff, erosion, and/or subsurface leaching to ground-

water. Delivery of this P to P-sensitive water bodies can lead to 
water quality deterioration, primarily by accelerating the natu-
ral eutrophication process. Notable examples where excess P 
loading is contributing to water quality degradation include the 
Baltic Sea, Chesapeake Bay, the Florida Everglades, the Gulf of 
Mexico, and Lake Erie (Richardson et al., 2007; Chesapeake 
Bay Program, 2009; Dale et al., 2010; Andersson et al., 2014; 
Schoumans et al., 2014). In response to concerns over P losses 
from agricultural fields, research has focused on improving our 
understanding of the processes controlling P movement through 
the landscape (Radcliffe and Cabrera, 2007). This in turn has led 
to the development, improvement, and testing of models for pre-
dicting P fate and transport in the environment. When properly 
developed and used, these models can be useful tools for evalu-
ating different management strategies for reducing P loss from 
agricultural fields (Sharpley et al., 2003; Radcliffe et al., 2009).

Models for describing P movement through the landscape range 
in complexity depending on the theoretical rigor of the governing 
equations, the number of processes included in the model, and the 
temporal and spatial scales of the model (Radcliffe and Cabrera, 
2007; Radcliffe et al., 2009; Vadas et al., 2013). Model complex-
ity will determine the amount of data required, the number of 
model parameters needed to be estimated, and the level of expertise 
required to properly run the model and interpret its results. While 
strong opinions often exist on the best model to use, no single model 
or modeling approach is appropriate for all settings. Rather, the 
most appropriate model in any given context will depend on several 
factors, including the amount, availability, and accuracy of the data; 
the level of accuracy and detail required in the model predictions; 
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core ideas

•	 We compared predictions of P loss between an empirically-
based and process-based model.
•	 Predictions from both models were well correlated with each other.
•	 The process-based model did not result in noticeably better 
predictions of P loss.
•	 APLE predicted greater DP loss and TBET predicted greater PP loss.
•	 Results indicate the need for improving accuracy of both models.
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the expertise of the model users and target audience; and the over-
all goal of the modeling effort. Tradeoffs will exist regardless of the 
complexity of the model. For instance, empirically based, annual 
time-step models generally have fewer data requirements and require 
less training to implement than more process-based models; how-
ever, because empirically based models are derived from measured 
data and not theoretical considerations, their application should 
be restricted to conditions similar to those in which the model was 
developed. Process-based models, on the other hand, are more theo-
retically rigorous and should, in principle, be more transferable in 
space and time, though all process-based models have some degree 
of empiricism in their governing equations. Process-based models, 
however, generally require significantly more data and technical 
expertise to run. While better accuracy is often assumed with more 
complex, process-based models, comparisons of empirically based 
models with process-based models for predicting field-scale P loss 
are few.

Two models for predicting P loss that differ notably in their 
complexity are the Annual P Loss Estimator (APLE) and the 
Texas Best Management Practice Evaluation Tool (TBET). The 
APLE model is an empirically based, annual time-step model 
(Vadas et al., 2009, 2012) designed to predict annual field-scale P 
loss without requiring a considerable amount of data or technical 
expertise to run. The Texas Best Management Practice Evaluation 
Tool (TBET) is a daily time-step model that uses the Soil and 
Water Assessment Tool (SWAT) at the field scale (White et al., 
2012). It was designed to be used by land managers and agency 
planners to evaluate the effects of best management practices for 
pasture and croplands and to be simple to use with readily available 
data, though the data requirements and level of expertise needed 
to run the model are considerably greater than those for APLE.

Two important differences exist between these models: the time 
step used and how incidental P losses from surface-applied P sources 
are simulated. Because APLE is an annual time-step model, it 
cannot directly account for time-dependent factors affecting P loss, 
such as the time interval between P application and the first runoff 
event. The TBET model, on the other hand, uses a daily time step 
and can therefore account for time-dependent factors when predict-
ing P loss. The current version of TBET, however, does not simulate 
direct interactions between runoff and surface-applied P; rather, all 
surface-applied P is assumed to be incorporated into the top 10 mm 
of soil, leading to an increase in soil P levels. In contrast, APLE uses 
a set of empirical equations to specifically describe P transformation 
and loss from a distinct surface layer of P.

The primary objective of this study was to evaluate whether a 
simple annual P-loss model such as APLE can provide similar esti-
mates of field-scale P loss as the more complex TBET model. A 
secondary objective was to assess the accuracy of both models for pre-
dicting field-scale P loss under a range of conditions representative of 
the southern United States. For the APLE model, we used runoff 
and erosion data calculated from the TBET model simulations 
summed over the year. This allowed us to focus on the differences 
in how the two models describe runoff P loss from surface-applied 
P sources and differences in their time steps. We first compared pre-
dictions of field-scale P loss using field and land management data 
collected from multiple locations throughout the southern United 
States (Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, 
and Texas) as model inputs. We then compared model predictions 
with measured P-loss data from these sites.

Materials and Methods
Annual P Loss Estimator (APLE)

The APLE model is an empirically based spreadsheet model 
developed to describe annual, field-scale P loss when surface 
runoff is the dominant P-loss pathway (Vadas et al., 2009). The 
model calculates annual particulate P (PP) loss from eroded soil 
and annual dissolved P (DP) loss from soil and applied manure 
and fertilizer. The model calculates P loss from these four path-
ways based on five empirically based equations developed from 
P-loss data collected from multiple studies ranging in scale, soil 
type, physiographic regions, and P application rates (Vadas et 
al., 2004, 2005, 2007, 2008). A primary difference in this model 
compared with other models is how it calculates DP loss from 
surface-applied P sources. The APLE model specifically accounts 
for a distinct surface layer of P and calculates annual DP loss 
from this layer using runoff-to-precipitation ratio (Vadas et al., 
2004, 2008). Because APLE does not predict runoff or erosion, 
we used runoff and erosion values calculated from the TBET 
simulations. See the Supplemental Materials for more details.

Texas Best Management Practice Evaluation Tool (TBET)
The TBET model was developed to use a modified version 

of SWAT 2009. The minimum inputs required to run TBET 
include field area, slope, distance to stream, soil type (maximum 
of three), daily weather (precipitation and temperature), and soil 
test P. User-defined options in the crop database include crop 
type, tillage, irrigation, grazing, stocking rate, and cover crop 
options. The TBET model was run on a single-year annual basis 
with a 2-yr warmup. All model predictions were conducted using 
uncalibrated (i.e., default) parameter values, with the exception of 
the simulations for the North Carolina sites in 2013, due to the 
unrealistically high erosion rates predicted by TBET (Forsberg et 
al., 2017). The default parameters initially chosen for Texas and 
Oklahoma by White et al. (2012) were used in the uncalibrated 
simulations. For the 2013 North Carolina sites, the manual cali-
bration of TBET was performed by individually calibrating the 
following parameters: curve number (CN), the Universal Soil 
Loss Equation soil erosion (K) and crop factors (Cmin), peak adjust-
ment factor (ADJ_PKR), subbasin slope length (SLSBBSN), the 
P percolation coefficient (PPERCO), and the soil P partitioning 
coefficient (PHOSKD) (Forsberg et al., 2017).

Study Sites
Data from 28 field sites were collected from several published 

and unpublished studies (Supplemental Fig. S1). The field sites 
were located in Arkansas (Sharpley, unpublished data, 2015), 
Georgia (Pierson et al., 2001a, 2001b), Mississippi, North 
Carolina (Larsen et al., 2014; Edgell et al., 2015), Oklahoma 
(Olness et al., 1975; Sharpley et al., 1985; Smith et al., 1991), 
and Texas (McFarland et al., 2000; Harmel et al., 2008). These 
sites represent a wide range in climate, soil type, land manage-
ment, and measured P losses (Supplemental Table S1). See the 
Supplemental Material for more details.

Annual measurements of DP and total P (TP) loss were 
obtained by aggregating measured P losses from individual events. 
For several sites, not all events were measured due to equipment 
failure or logistical problems. In these situations, the model pre-
dictions were modified as follows. For TBET, model predictions 
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for DP or TP for events in which one of these constituents was 
not measured were removed from the total annual predictions of 
P loss. For APLE, predicted annual P losses were reduced by the 
same percentage as the reductions in TBET predictions.

Evaluation of Model Predictions
Correlations in predictions of P loss between the two models 

and between model-predicted and observed values were evalu-
ated using Spearman’s rho (r). This nonparametric measure was 
chosen over the more commonly used Pearson’s correlation coef-
ficient because it is more resistant to outliers and does not assume 
a linear correlation or normally distributed data (Helsel and 
Hirsch, 2002). Model predictions were also evaluated using the 
Nash–Sutcliffe model efficiency (NSE), the RMSE, median abso-
lute percent error (MAPE), and percent bias (PBIAS) (see the 
Supplemental Material for equations). To prevent division by zero 
when calculating MAPE values, we assumed a value of 0.005 kg 
ha−1 when measured (n = 4) or predicted (n = 6) P losses were zero.

A considerable amount of error can be expected with both mea-
sured (Harmel et al., 2006, 2010) and modeled P-loss data (Bolster 
and Vadas, 2013; Bolster et al., 2016). Therefore, we also calculated 
goodness-of-fit statistics while accounting for uncertainties in both 
predicted and measured P loss using a modified residual term, dmi, 
based on the degree of overlap (DO) between the distributions for 
each paired measured and predicted P-loss values (Haan et al., 1995; 
Harmel et al., 2010; Bolster and Vadas, 2013):
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where o and y are the observed and predicted data, respectively, 
the subscripts l and u represent the lower and upper values of 
the 95% confidence intervals, respectively, and Pr is the cumula-
tive probability density function. Based on the work of Harmel 
(Harmel et al., 2006, 2010; Harmel and Smith, 2007), we 
assumed that the probable error range (PER) corresponding to 
±3.9 standard deviations for the measured data was ±30% of 
the measured value, resulting in a CV of 7.7%. For the model-
predicted values, we assumed three levels of uncertainty with 
CVs of ±6.4 (PER = 25%), 12.8 (PER = 50%), and 25.6% (PER 
= 100%) of the model-predicted values (Harmel et al., 2010; 
Bolster and Vadas, 2013; Bolster et al., 2016). Normally distrib-
uted errors were assumed for the predicted and observed data.

The two models were also compared by regressing model pre-
dictions on measured P-loss data. We calculated the slope of the 
best-fit line with the Kendall–Theil Robust (KTR) method using 
the USGS software program KTRLine version 1.0 (Granato, 
2006). This nonparametric method calculates the slope by taking 
the median value of all slopes that can be calculated between any 
two data points (Helsel and Hirsch, 2002). Unlike traditional 
linear regression, the KTR method is not based on the assump-
tion of normally distributed residuals and thus is less sensitive to 
outliers than traditional linear regression.

In addition to evaluating the correlation between mea-
sured and model-predicted P-loss values, we investigated how 
similarly the two models assigned risk of P loss to each field by 

assigning P-loss risk values of low, moderate, and high to both 
observed and model-predicted values of DP and TP loss. Values 
of P loss associated with each risk category were based on the 
example values provided by NRCS in their Title 190, National 
Instruction, Part 302 of the revised 590 Nutrient Management 
Standard (USDA–NRCS, 2012). The threshold values were 
<2.2 kg ha−1 yr−1 (low), 2.2 to 5.5 kg ha−1 yr−1 (moderate), and 
>5.5 kg ha−1 yr−1 (high). To test whether there was a significant 
correlation between how each model categorized P-loss risk and 
the actual risk associated with each field based on our assigned 
thresholds, Kendall’s modified Tau (tb) for ordinal data (Helsel 
and Hirsch, 2002) was calculated. Correlations were considered 
significant at a < 0.05.

The accuracy of each model in assigning the correct risk cat-
egory for each field was calculated using the Heidke skill score 
(HSS), a metric commonly used for evaluating accuracy of 
weather forecasts. The HSS is calculated as (Wilks, 2011):
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where o and y now refer to the risk associated with each field 
based on the observed or predicted data, respectively. The first 
term in the numerator is the joint distribution of observed and 
predicted risk ratings, and the second term is the marginal distri-
butions for each. A perfect forecast yields a score of one, whereas 
a value of zero indicates that all correct forecasts (i.e., categoriza-
tions) are due to random chance.

Results and Discussion
Comparing Predictions of Phosphorus Loss  
between Models

Correlations between predictions of DP loss from the APLE and 
TBET models ranged from 0.62 for the Mississippi sites to 0.98 for 
the Texas sites (Table 1). With the exception of the Mississippi sites 
(r = 0.62, p = 0.10), correlations were all statistically significant (p 
< 0.001). When data from all sites were combined, a strong correla-
tion (r = 0.92; p < 0.001) between the two models was observed 
(Table 1). Inspection of the residual plot shows that the differences 
between predicted DP loss for the two models generally increased 

Table 1. Spearman’s correlation coefficient (r) and percent bias (PBiAS) 
comparing predictions of dissolved (DP) and particulate (PP) P loss 
between the APle and TBeT models for the studied locations. Positive 
PBiAS values reflect greater predictions by the Annual Phosphorus 
loss estimator (APle) than the Texas Best management Practice 
evaluation Tool (TBeT).

r PBiAS r PBiAS
location DP PP

All sites 0.92*** 44 0.87*** −105
AR 0.88*** 50 0.98*** −103
GA 0.66*** 33 −0.47* −218
MS 0.62 89 0.71* −15
NC 0.73*** 71 0.89*** −110
OK 0.73*** 28 0.96*** −137
TX 0.98*** 76 0.89*** −71

* Significant at the 0.05 probability level.

*** Significant at the 0.001 probability level.
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with increasing APLE predictions, and this general trend was 
observed for all sites (Supplemental Fig. S2A). Residuals (TBET–
APLE) ranged from −6.9 to 0.09 kg ha−1, with 80% of the absolute 
values of the residuals being <2.2 kg ha−1 and 60% <0.81 kg ha−1. 
There were no consistent trends between the residuals and P appli-
cation rate (total applied P or surface water-extractable P) or annual 
runoff (Supplemental Fig. S3).

While predictions from both models were strongly correlated 
with each other, important differences were observed. For the major-
ity of sites, APLE predicted greater DP losses than TBET (Fig. 1A), 
as reflected in PBIAS values ranging from 28 to 89% for the indi-
vidual sites and 44% for all sites combined (Table 1). Both models 
describe DP loss from soil as a function of labile (or solution) P, runoff 
rate, and an extraction (or partition) coefficient for estimating the 
amount of dissolved P in runoff from the concentration of labile P. 
In the treatments in which no P was applied (a total of 18 field years 
in Arkansas, Georgia, and Mississippi), APLE predicted, on average, 
50% greater DP loss than TBET; differences between the P extrac-
tion coefficient of APLE (0.005) and the inverse of the P partition 
coefficient of TBET (175) cannot account for the greater predictions 
of P loss by APLE. The largest differences between the models was 
observed for the Mississippi sites, in which APLE predictions of DP 
loss ranged from 0.23 to 1.1 kg ha−1 (65–93%) more than TBET. At 
the Mississippi sites, two crops were grown concurrently. To account 
for this, TBET includes a distance to stream factor to predict DP loss 
for the portion of the field that does not drain directly to the sampling 
location. As a result, predicted DP losses are expected to be lower for 
this scenario, which explains, at least in part, the substantially lower 
predictions by TBET for this location.

One of the most important differences between the models is 
in how DP loss is calculated from surface-applied P sources. While 
studies have shown that direct runoff from surface-applied P can 
be a significant P-loss pathway (Kleinman et al., 2002; DeLaune et 
al., 2004; Schroeder et al., 2004; Sistani et al., 2009, 2010), the cur-
rent version of TBET does not simulate direct interactions between 
runoff and surface-applied P sources. Rather, all surface-applied P 
is assumed to be incorporated uniformly into the top 10 mm of 
soil and partitioned between the different P pools using a modified 
version of the Environmental Policy Integrated Climate P-cycling 

model (White et al., 2010). This, in effect, results in an extremely 
shallow incorporation of all surface-applied P; as a result, the 
amount of P available for surface runoff loss may be underestimated 
for recent surface P applications. A workaround to this limitation 
is to increase soil P values in excess of actual soil P values within the 
model inputs. This approach, however, may result in overpredictions 
of P loss in the future, as well as limit the model’s ability to accurately 
reflect changing manure management strategies on future P losses.

In contrast, APLE simulates P transformation and dissolution 
from a distinct surface layer of P using a set of empirically based 
equations. As a result, the amount of P vulnerable to runoff loss 
will generally be greater for APLE than TBET, potentially leading 
to greater predictions of P loss following manure application (Sen 
et al., 2012; Collick et al., 2016). Incorporating daily versions of the 
APLE manure P-loss routines into SWAT (revision 586), Collick 
et al. (2016) found that the new P routines better represented 
effects of different manure management practices on P losses at 
the small watershed scale (it is unclear when these modifications 
will be incorporated into TBET). Differences in how APLE and 
TBET simulate incidental P losses from surface-applied manures, 
however, cannot entirely account for the differences we observed 
in predictions of DP loss between the two models, as we did not 
find a strong correlation between residuals in predicted DP loss 
and surface-applied P rates (Supplemental Fig. S3).

Another important difference between the models is the time 
step used. Because APLE is an annual time-step model, it cannot 
directly account for time-dependent processes controlling P loss. 
For instance, several studies have shown that P loss following 
manure application tends to decrease with increasing time interval 
between manure application and first runoff event (Sharpley, 1997; 
Schroeder et al., 2004; Sistani et al., 2009). This has often been 
attributed to increased sorption of manure P to soil over time. Vadas 
et al. (2011), however, reanalyzed several of these studies and found 
that storm hydrology, specifically the ratio of runoff to precipitation, 
was the primary factor affecting P loss, rather than P sorption to 
soil. They concluded that greater runoff-to-rainfall ratios coincided 
with greater runoff at the beginning of a rainfall event when greater 
concentrations of DP are expected. Because their analysis applied a 
daily model to individual runoff events, it is unclear how well this 

fig. 1. Scatter plot of Annual Phosphorus loss estimator (APle) and Texas Best management Practice evaluation Tool (TBeT) predictions of (A) 
dissolved P (DP) and (B) particulate P (PP) loss. Also included is 1:1 line.
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translates to annual P losses, but the use of annual runoff ratio by 
APLE may help overcome some of the potential limitations of using 
an annual model to predict P loss from surface-applied manures. 
Moreover, results from Collick et al. (2016) suggest that the current 
P routines in TBET are insensitive to manure application timing. 
Thus, it is unclear whether differences in time steps between the two 
models is a significant contributor to the observed differences in pre-
dicted DP loss from fields receiving manure.

Similar to predictions of DP loss, a strong correlation was 
observed between predictions of PP loss for the combined data-
set (r = 0.87, p < 0.001, Fig. 1B, Table 1). For the individual loca-
tions, r ranged from −0.47 (indicating an inverse correlation) for 
the Georgia sites to 0.98 for the Arkansas sites (Table 1). The 
APLE model consistently predicted lower PP losses than TBET, 
as reflected in PBIAS values ranging from −15% for Mississippi 
to −218% for Georgia and −105% for all sites combined (Table 
1). Residual values for the PP predictions generally increased 
with increasing APLE predictions of PP loss (Supplemental Fig. 
S2B). Residuals ranged from −1.4 to 24 kg ha−1, with 80% of the 
absolute values being <1.4 kg ha−1 and 60% <0.45 kg ha−1. The 
residuals between the two model predictions generally increased 
with increasing predictions of erosion rate (Supplemental Fig. 
S4A). We did not observe any significant relationships between 
the residuals and soil test P (STP) (Supplemental Fig. S4B).

Both models describe PP loss as a function of total soil P, erosion 
rate, and a P enrichment ratio defined as the ratio of the P concentra-
tion in eroded soil to that in the underlying bulk soil. In calculating 
total soil P, APLE includes labile P, whereas TBET does not (White 
et al., 2012), though differences will be relatively minor, as labile P is 
only a small fraction of total soil P. Another difference in the models 
is in how the P enrichment ratio is calculated. The APLE model cal-
culates the enrichment ratio from annual sediment loading rates (kg 
ha−1) based on equations derived from storm-event data by Menzel 
(1980) and Sharpley (1980). The TBET model, on the other hand, 
calculates a P enrichment ratio for each individual erosion event using 
sediment concentration. For the erosion and runoff rates used in our 
study, P enrichment ratios calculated by TBET for individual storm 
events were generally greater than enrichment ratios calculated by 
APLE. While some of these differences can be attributed to the use of 
different equations, the more important difference between the two 
models is the time step used. Because P enrichment ratios decrease log-
linearly with increasing erosion rate, the use of annual erosion rates by 
APLE results in lower enrichment ratios than if the same equation 
were used with storm-event erosion rates. Depending on erosion rates 
and TP values, this generally resulted in greater predictions of PP loss 
with TBET compared with APLE. Another important difference 
between the models is that APLE calculates the P sorption parameter 
needed to partition added P between the labile and active P pools 
based on user inputs of soil properties. In contrast, TBET assumes 
a value of 0.4 unless otherwise specified by the user. Depending on 
soil texture and STP values, differences in the P sorption parameter 
between the models can be significant, potentially leading to large dif-
ferences in predicted PP loss between the two models.

Comparing Model Predictions  
with Measured Phosphorus-Loss Data

Predictions of DP loss from both models were generally well 
correlated with measured P loss, with r values for the combined 

sites of 0.68 (p < 0.001) and 0.70 (p < 0.001) for APLE and 
TBET, respectively (Table 2). Model efficiency for the combined 
dataset was slightly higher for APLE (0.52) than TBET (0.41). 
Surprisingly, when calculated for each separate location, NSE 
values for APLE were negative for five locations and for four loca-
tions for TBET, likely a result of the relatively small number of 
data points at each location. A significant amount of the observed 
variability in measured DP loss was not captured by either model 
(Fig. 2A). For instance, the MAPE between model-predicted and 
observed DP loss was 81% for APLE and 71% for TBET, with 
RMSE values of 2.4 and 2.6 kg ha−1, respectively. With the excep-
tion of the Georgia and Oklahoma datasets, APLE systematically 
overpredicted DP loss with an overall PBIAS of −9.6%, whereas 
TBET consistently underpredicted DP loss with an overall PBIAS 
of 40%. Including our estimated uncertainties in both the model-
predicted and measured data did not result in any meaningful 
improvements in our goodness-of-fit statistics, even with a model 
PER of 100% (Supplemental Table S2). Kendall–Theil Robust 
slopes between observed and predicted P loss were 0.74 (95% con-
fidence intervals of 0.47–0.99) and 0.35 (0.21–0.53) for APLE 
and TBET, respectively. These values are similar to slopes obtained 
using traditional linear regression (0.75 and 0.46, respectively).

Residuals for predicted DP ranged from −5.2 to 12.4 kg ha−1 
for APLE and from −3.6 to 15.4 kg ha−1 for TBET (Supplemental 
Fig. S5). There were no consistent trends between the residuals 
and P application rate (total applied P or surface water-extract-
able P) or annual runoff (Supplemental Fig. S6) for either model.

Consistent with our results for the DP predictions, pre-
dicted and observed TP losses were significantly correlated, 
with r values of 0.57 and 0.52 (p < 0.001, Table 3) for APLE 
and TBET, respectively. Model efficiencies, however, were nega-
tive for both models for the combined dataset, as well as for the 
majority of locations (Table 3). Similar to the DP predictions, 
a large amount of the observed variability in TP was not cap-
tured by either model (Fig. 3), as reflected in MAPE values of 77 
and 74% for APLE and TBET, respectively. Consistent with DP 
model predictions, goodness-of-fit statistics were similar for the 
two models, though RMSE values were 25% less for APLE (4.6 
kg ha−1) than TBET (6.0 kg ha−1). The PBIAS values calculated 
on the combined dataset indicate that both models generally 
underpredicted TP losses, though for TBET, PBIAS was close 
to zero (1.5%). As discussed previously, the underpredictions of 
TP by APLE are due in part to the use of annual rather than 
storm-event erosion rates in calculating the P enrichment ratio. 
Inclusion of model and measurement uncertainties did not result 
in any noticeable improvements in any of the goodness-of-fit sta-
tistics for TP (Supplemental Table S3). The KTR slopes between 
observed and predicted TP losses were 0.45 (0.25–0.65) and 
0.43 (0.26–0.59) for APLE and TBET, respectively. Slopes from 
traditional regression analysis were 0.30 and 0.31, respectively. 
Residuals ranged from −16 to 15 kg ha−1 for APLE and −29 to 
18 kg ha−1 for TBET, with both models generally overpredict-
ing TP loss from the North Carolina sites due to the high ero-
sion rates predicted by TBET (Supplemental Fig. S7). No trends 
were observed between model residuals for TP and predicted 
runoff and erosion, surface-applied water-extractable P, and STP 
(Supplemental Fig. S8).

Based on the model performance classification scheme pro-
posed by Moriasi et al. (2007), model efficiency for DP predictions 
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Table 2. Spearman’s correlation coefficient (r), model efficiency (nSe), median absolute percent error (mAPe), percent bias (PBiAS), and rmSe 
evaluating predictions of dissolved P (DP) losses for the Annual Phosphorus loss estimator (APle) and Texas Best management Practice evaluation 
Tool (TBeT) models against the measured DP loss data from each location.

r nSe mAPe PBiAS rmSe

location APle TBeT APle TBeT APle TBeT APle TBeT APle TBeT

——————————— % ——————————— ————  kg ha−1 ————

All 0.68*** 0.70*** 0.52 0.41 81 71 −9.6 40 2.4 2.6

AR 0.86*** 0.80*** −0.52 0.41 185 43 −89 3.6 1.4 0.84

GA 0.55* 0.33 0.18 −0.23 62 65 8.4 41 4.1 5.0

MS 0.69 0.98*** −18 −0.73 60 75 −158 72 1.3 0.40

NC 0.63** 0.63** −1.3 0.40 163 60 −107 34 1.7 0.86

OK 0.99*** 0.09 −0.44 −1.3 82 95 76 93 0.72 0.90

TX 0.35 0.60** −1.8 −0.36 99 81 −2.4 74 0.95 0.66

* Significant at the 0.05 probability level.

** Significant at the 0.01 probability level.

*** Significant at the 0.001 probability level.

fig. 2. Scatter plots of measured and (A) Annual Phosphorus loss estimator (APle)- and (B) Texas Best management Practice evaluation Tool 
(TBeT)-predicted dissolved P (DP) loss. Also included is 1:1 line.

Table 3. Spearman’s correlation coefficient (r), model efficiency (nSe), median absolute percent error (mAPe), percent bias (PBiAS), and rmSe 
evaluating predictions of total P (TP) losses for the Annual Phosphorus loss estimator (APle) and Texas Best management Practice evaluation Tool 
(TBeT) models against the measured TP loss data from each location.

r nSe mAPe PBiAS rmSe

location APle TBeT APle TBeT APle TBeT APle TBeT APle TBeT

———————————  % ——————————— ———  kg ha−1 ———

All 0.57*** 0.52*** −0.11 −1.0 77 74 7.7 1.5 4.5 6.0

AR 0.91*** 0.86*** −0.76 0.01 173 90 −93 −44 1.6 1.2

GA 0.55** 0.12 −0.20 −0.78 53 72 35 54 5.4 6.5

MS 0.76* 0.76* 0.32 0.36 30 26 −24 16 1.1 1.1

NC −0.21 −0.19 −2.1 −6.9 259 539 −65 −175 7.6 12

OK 0.89** 0.89** −0.17 0.53 77 43 78 49 4.7 3.0

TX 0.58** 0.61** −0.10 −0.06 91 91 40 67 2.5 2.5

* Significant at the 0.05 probability level.

** Significant at the 0.01 probability level.

*** Significant at the 0.001 probability level.
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by TBET (NSE = 0.41) was below the threshold of 0.5 considered 
to represent satisfactory model performance, whereas DP predic-
tions by APLE (NSE = 0.52) barely exceeded this threshold; this 
threshold, however, is based on monthly data—for annual data, 
Moriasi et al. (2007) suggest that their proposed thresholds be 
increased. For predictions of TP loss, both models clearly provided 
unsatisfactory model predictions based on NSE values. The PBIAS 
values, on the other hand, indicated very good (PBIAS < ±25%) 
model performance for both DP and TP for APLE, and good to 
satisfactory performance for DP and very good performance for 
TP for TBET. These results indicate that, while the model predic-
tions and observations fell far from a 1:1 line, the models provided 
predictions with relatively low overall bias.

The relatively poor performance of both of these models was 
unexpected given the relative success at predicting P loss reported 
for these models in other studies (Gassman et al., 2007; Vadas 
et al., 2009; Bolster et al., 2012). One potential explanation for 
this is that, by using an uncalibrated model, our predictions of 
both runoff and erosion were less accurate than the aforemen-
tioned studies in which calibrated (SWAT) or measured (APLE) 
runoff and erosion rates were used. Model efficiencies indicate 
borderline unsatisfactory predictions of runoff (NSE = 0.47) 
and extremely poor predictions of erosion (NSE = −2.4) for the 
uncalibrated TBET model used in our study (Supplemental Fig. 
S9). Forsberg et al. (2017) applied a calibrated TBET model to 
the Arkansas, Georgia, and North Carolina locations, and while 
they observed some significant improvements in predictions of 
event-based runoff and erosion rates from these fields, they only 
reported slight improvements in predictions of P loss for the 
Georgia sites, with no discernible improvements in predicting DP 
and TP losses for the Arkansas and North Carolina sites. To test 
whether poor predictions of the transport factors were the pri-
mary source of our relatively poor model performances for APLE, 
we reran APLE for each of these sites using measured runoff and 
erosion data. For the entire data set, NSE increased from 0.52 to 
0.62 for DP and from −0.13 to 0.43 for TP (Supplemental Table 
S4). The greatest improvement in NSE values for the TP predic-
tions was observed for the Mississippi and Texas sites, where NSE 

values increased from 0.32 to 0.91 and from −0.10 to 0.78, respec-
tively. The greatest improvement with predictions of DP was for 
the Arkansas dataset, with NSE increasing from −0.52 to 0.35. 
With the exception of PBIAS values, which increased from −9.8 
to 32% for DP and 7.6 to 45% for TP, all other goodness-of-fit 
statistics improved (Supplemental Table S4). Improvements in DP 
predictions were generally not as substantial as improvements in 
TP owing to the fact that our runoff predictions from the uncali-
brated model were much more accurate than our erosion predic-
tions. Notwithstanding these improvements in P-loss predictions 
using measured runoff and erosion values, there still exists a large 
amount of variability in measured P loss that APLE does not cap-
ture (MAPE values of 64 and 52% for DP and TP, respectively), 
indicating the need for continued refinement of the model.

Another factor that may have adversely affected the perfor-
mance of the models is the accuracy of the measured data. All 
measured data are susceptible to measurement and sampling 
errors (Harmel et al., 2006; Harmel and Smith, 2007). When we 
included our estimated uncertainties in both the measured and 
predicted data, we did not see any noticeable improvement in 
our goodness-of-fit statistics, even with a model PER of 100% 
(Supplemental Tables S2 and S3). Incorporation of measurement 
and model uncertainty has been shown to improve goodness-of-
fit statistics when model predictions are relatively good; how-
ever, in cases where model performance is poor, incorporation 
of measurement and prediction uncertainties will have minimal 
impact on these calculations due to minimal overlap in the error 
distributions between the measured and model-predicted data 
(Harmel et al., 2010; Bolster and Vadas, 2013; Forsberg et al., 
2017). While we took a very simplified approach to estimating 
our uncertainties in both the measured and predicted P-loss data, 
our uncertainty estimates are based on values reported in the 
literature and thus should be fairly representative of the actual 
errors in our data and model predictions.

Missed runoff events will also adversely affect the accuracy 
of the measured data and thus perceived model performance. 
Several runoff events were missed at the Arkansas, Georgia, and 
North Carolina locations, resulting in measured P loads being 

fig. 3. Scatter plots of measured and (A) Annual Phosphorus loss estimator (APle)- and (B) Texas Best management Practice evaluation Tool 
(TBeT)-predicted total P (TP) loss. Also included is 1:1 line.
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less than actual P loads. To account for these missed events, 
we modified our model predictions based on certain assump-
tions. For TBET, we removed the predicted P loss from these 
events from the annual P-loss total. For APLE, we reduced the 
predicted P loss by the fraction of P loss assumed to be missed 
with TBET. Certainly, our simplified approach of accounting 
for these missed events in the model predictions contributed to 
some of the modeling errors for these sites.

In addition to assessing the accuracy of the models in predict-
ing actual field-scale P losses, we evaluated how well each model 
assigned risk of P loss to each field. Correlations between risk rat-
ings assigned to each field based on predicted and measured DP 
loss were similar for both models (tb = 0.41 and 0.38 for APLE 
and TBET, respectively, p < 0.001), with APLE and TBET cor-
rectly assigning risks to 76 and 81% of the fields, respectively, 
resulting in HSS of 0.37 and 0.42. Applying the same risk thresh-
olds to our model predictions of TP loss, APLE correctly assigned 
risk to 54% of the fields, whereas TBET correctly assigned risk to 
62% of the fields, yielding HSS values of 0.25 and 0.35, respec-
tively. Correlations between model and measured risk ratings of 
TP loss were also similar for the two models (tb = 0.28 and 0.27 
for APLE and TBET, respectively; p < 0.001). Somewhat sur-
prisingly, Osmond et al. (2017) found that P Indices from several 
southern states were as accurate as these two models in assigning 
risk ratings to the same fields used in our study.

Differences in how these two models describe field-scale P 
loss may have important implications in the context of P man-
agement strategies. When applied to the same field, APLE will 
likely predict greater DP losses than TBET and thus may lead 
to more restrictive P application rates when DP is the primary 
source of P loss. For instance, compared with TBET, APLE 
categorized 14 more fields as moderate or high risk, ratings 
that may result in more restrictive P application to these fields. 
Conversely, because TBET generally predicted greater PP losses 
than APLE, under conditions where PP is the dominant form of 
P loss, TBET may result in more restrictive P application rates 
than APLE. The reason we did not see more of our fields rated in 
the higher risk categories with TBET than APLE based on TP 
losses is that, for the majority of our sites, predicted erosion, and 
therefore PP loss, was low; in those fields where predicted PP loss 
was high, these values were extremely high for both models, and 
thus both models predicted high risk for these fields.

Conclusion
Similar goodness-of-fit statistics for the two models indicate 

that when using the same runoff and erosion data, APLE, which is 
an annual, empirically based model, produced similarly accurate 
predictions of P loss for these sites as TBET, a more process-based 
daily time-step model. These results demonstrate that increasing 
model complexity does not necessarily lead to improved model 
predictions of field-scale P loss. Our findings thus indicate that, 
depending on the needs of the user and the availability and accu-
racy of the data, simple models that do not require a significant 
amount of technical expertise or data to execute may provide 
valuable insights into the relative risks of field-scale P loss and 
can serve as a useful tool to guide land management decisions. 
Additional testing, however, is required to determine if these 
findings are relevant to other locations throughout the United 
States. Furthermore, our results highlight important limitations 

with both models and the need to continually evaluate and 
update these models to improve their accuracy.
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