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INNOVATION STARTS WITH EDUCATION

Modern signal processing (SP) classes should provide a bal-
ance between theory and application as well as use active 
learning exercises to engage students and facilitate learn-

ing. A new sensor processing course, Sensor Processing for 
Autonomous Vehicles (SPAV), was designed with two specific 
objectives: 1) to successfully engage students using active and 
collaborative learning and 2) integrate a state-of-the-art, physics-
based autonomy simulator into the class. 

The course was delivered to local and asynchronous dis-
tance students in spring 2020 at Mississippi State University 
(MSU). The MSU Autonomous Vehicle Simulator (MAVS) 
was used in the class. We also utilized three miniprojects to 
bring together theory and practice. We evaluated the course 
through student feedback. Results indicated that students 
viewed active exercises and the simulator as beneficial and 
useful, with multiple students describing those aspects as their 
favorite part of the course. Nearly all students (39 of 40) report-
ed that they were engaged in the course.

Background
“Signal processing” is defined by the IEEE Signal Process-
ing Society as “. . . the enabling technology for the generation, 
transformation, and interpretation of information” [1]. Herein, 
we also consider SP in a broad context, not just the traditional 
sampled discrete-time series data processing. For instance, 
deep learning (DL) image processing as well as radar and lidar 
object detection all come under the general SP umbrella.

Traditional digital SP (DSP) classes often are very math 
intensive and focus on “traditional” approaches, such as 
Fourier-based processing, filter structures and design, and so 
on. There is still a strong need to teach the fundamentals of 
DSP given its ubiquitous nature, yet there is also the need for 
classes to expose students to modern data-driven methods; 
current research trends; industry challenges; and opportuni-
ties in diverse spaces, such as image processing, time series 
processing, and lidar point cloud processing, among others. 
DSP classes can be  rigorous, yet they can also have applica-
tion- and system-level content.
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Studies show that, in general, students learn better when 
they actively participate in meaningful learning experi-
ences [2]. Instructors should ask many questions [2, pp. 31, 
85–86] to engage students and allow them to obtain a deep-
er understanding. Active learning has various forms that 
are useful for college classrooms, including, for example, 
informal group discussion, think–pair–share, and minute 
papers. An overview of active learning can be found in [3] 
and [4], with a catalog of techniques in [5] and a discussion 
of opportunities and challenges for active learning in com-
puting courses in [6]. 

Many research efforts have shown the effectiveness of active 
learning [3], [7], [8] and student-centric learning [9] in engi-
neering classes. In addition to encouraging active participation, 
instructors should focus on creating meaningful learning situa-
tions for students. One way to make learning meaningful is to 
include real-world applications in the classroom. Examples and 
activities based on real-world applications support learning by 
being memorable, sparking interest, helping students connect 
new information to their prior understanding, and correcting 
misconceptions [10].

Class development
In recent years, there has been significant research and devel-
opment into autonomous vehicles (AVs). The Center for Ad-
vanced Vehicular Systems (CAVS), a research center at MSU, 
performs AV research and development with cameras, radars, 
and lidars. Camera systems are ubiquitous in automotive au-
tonomy due to high-resolution imagery, high data rates, and 
low cost. However, they struggle in rain, fog, and low-light 
situations. Radar and lidar are active tech-
nologies and, thus, allow more robust opera-
tion in fog, rain, and snow compared to red, 
green, blue (RGB) cameras. 

Radar and lidar are fundamentally dif-
ferent in the data they capture and how 
they are processed. After working with 
many students over several years at CAVS 
in AV processing, it was apparent students 
had fundamental knowledge gaps in areas 
such as camera calibration and radar/lidar processing and 
that classes that addressed these gaps were needed. MSU 
offers multiple classes on machine learning (ML), neural 
networks, visualization, (traditional) DSP, image process-
ing, and radar. However, prior to the spring 2020 semester, 
there was not a comprehensive introductory class on AV 
sensor processing.

This article outlines a special-topics class, SPAV, that was 
developed and delivered to 37 on-campus and 11 distance stu-
dents at MSU during the spring 2020 semester. The SPAV class 
was designed as a 3-h, split-level (senior/master’s degree-level) 
course focusing on sensor processing methods for cameras, 
radars, and lidars. To facilitate asynchronous distance students, 
the class did not require any hardware or equipment other than 
a Windows laptop (already required for all students by the MSU 
College of Engineering). 

The class was listed as an electrical and computer engineer-
ing class, but students from any major could enroll. The prereq-
uisite for the class is passing a junior-level signals and systems 
class or instructor consent. The overarching course goal was 
to provide a highly interactive course with both a breadth and 
depth of coverage in automotive autonomy topics, including 
terminology, the current state of the industry, state-of-the-art 
processing methods, strengths and weaknesses of each sensor 
modality, general autonomy frameworks, and control strate-
gies and methods.

Class objectives

Objective 1: Successfully engage students  
using active and collaborative learning
In the course, students were given a high-level overview of how 
each sensor modality operates, participated in detailed discus-
sions of the strengths and weaknesses of each sensor modal-
ity, and discussed state-of-the-art methods for sensor perfor-
mance evaluation. Examples of course concepts discussed 
include the following:

 ■ A camera requires demosaicing to get color imagery, cali-
bration to correct for imperfections, and coregistration to 
align its images with other sensors. 

 ■ Radars operate in all-weather conditions and are good at 
ranging and velocity estimation, but current-generation 
radars do not provide high-resolution imagery. 

 ■ Lidars provide dense and rich 3D data and are good at 
object localization, but they are color-blind since they 
operate at one wavelength. 

To get students involved and enhance 
learning, both active and collaborative learn-
ing exercises were heavily utilized in the 
class. Each class session incorporated two 
or three active or collaborative exercises, 
although there was one session with a data 
collection exercise that lasted about 45 min. 
These exercises engaged students, illustrated 
class material, helped students learn funda-
mental concepts, and allowed the instructor 

and other students to monitor the observations and conclusions 
of each student or student group. Since the class also had asyn-
chronous distance students, discussion board questions were uti-
lized to facilitate student interactions among local and distance 
students as well as allow the distance students to participate in 
active learning exercises. 

Objective 2: Utilize a state-of-the-art, physics-based 
autonomy simulator in the class
It is widely known that complex systems like AVs require not 
only real-world driving tests but also simulations to provide 
effective testing and cover rare edge cases [11]. Baraniuk and 
Padgett state that using interactive simulations provides an en-
vironment where students can explore and learn [12]. Students 
often relate well to visual-based simulations, especially when 
they can change parameters and see how the results change.

The Spav class was 
designed as a 3-hour, 
split-level (senior/
master’s degree-level) 
course focusing on sensor 
processing methods for 
cameras, radars, and lidars.
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Initially, three potential simulators were examined for inclu-
sion in the SPAV class: MAVS, a noncommercial, open source 
software library for simulating autonomous ground vehicles; 
Autonomous Navigation Virtual Environment (ANVEL); and 
Car Learning to Act (CARLA), an open source simulator for 
urban autonomy research [13]. Quantum Signal, ANVEL’s 
developer, was purchased by Ford, and the simulator is now not 
available for general use. Both MAVS and CARLA provide a 
Python application programming interface (API) and control 
over weather, sensors, simulation parameters, agents (vehicles 
and pedestrians), and so on. However, CARLA requires Linux, 
and most students in the class do not have 
Linux machines. For these reasons, MAVS 
was chosen to be the AV simulator and is 
discussed in detail in the “MAVS” section.

Class organization and content
The class met twice a week for 75 min per 
meeting. The instructor advised the class to 
spend 1–2 h outside of class for every hour 
spent in the lecture. The class was organized into seven mod-
ules, each having a specific focus, and are summarized in 
Table 1. To assess students’ progress, the class had one home-
work assignment for each module, three miniprojects, two ex-
ams, and a final exam.

In module 1, the students were introduced to automotive 
autonomy, discussed the Society of Automotive Engineer-
ing autonomy levels [14], and examined several car models 
to assess their autonomy levels. Module 2 gave time for the 
students to install the required software tools: Anaconda, Ten-
sorflow CPU, numpy, and matplotlib for Python; MAVS; and 
You Only Look Once (YOLO) [15]. Several after-hours ses-
sions were also provided to help students install the required 
software tools.

The fundamentals of DL were covered in module 3, includ-
ing deep convolutional neural network (CNN) building blocks. 
This module also addressed estimating the number of param-
eters in each layer, which is important for embedded appli-
cations. Students also ran a CNN version of MNIST using 
Tensorflow and learned how to write Tensorflow code. 

Module 4 covered decision, planning, and control. In this 
module, a proportional-integral-derivative (PID) controller was 

introduced, and the students examined how changing the  PID 
controller parameters affected the response. MPC was dis-
cussed in the context of path planning. The students had an 
exercise where they used MPC to enable a vehicle to avoid 
obstacles and successfully reach the destination. Finally, rein-
forcement learning was introduced, and they played a simple 
game, stepping through the reinforcement learning system as 
it learned to play.

Module 5 focused on camera processing and started with 
a discussion of the human eye and how cameras operate in a 
similar manner to human rods and cones. This module then 

covered the basics of image demosaic-
ing, the Bayer filter, the pinhole camera, 
coordinate transformation, camera calibra-
tion, stereo processing, and structure from 
motion. Several state-of-the-art meth-
ods were examined. Thermal and infra-
red (IR) cameras and how they might be 
used in autonomy were explained. During 
this module, a FLIR Systems Automotive 

Development Kit (ADK) (https://www.flir.com/products/adk/) 
long-wave IR (LWIR) camera was demonstrated to the class. 
The final lecture in this module was devoted to thermal imag-
ing, and the class reviewed results from studies dealing with 
thermal cameras [16] to understand issues facing regular RGB 
cameras and how different types of thermal cameras can help 
in poor weather conditions. 

Module 6 focused on radar processing and included topics 
on radar terminology, waveforms, and the radar range equa-
tion. Next, frequency-modulated continuous-wave (FMCW) 
radar signaling and processing were covered, including range 
estimation, range resolution, and maximum range calculations. 
The class then discussed the specifications of several automo-
tive radars. Finally, Kalman filtering was covered and dis-
cussed in the context of adaptive cruise control. 

Module 7 covered lidar processing. As most students had 
no previous experience with lidars, lidar architectures were 
explained, as were lidar terminology and design param-
eters (the number of beams, frame rate, maximum object 
range, and so on). Laser emitters, laser beam divergence, 
and laser detectors were discussed. Time-of-flight calcula-
tions, the lidar range equation, and atmospheric effects on 

Table 1. A summary of the class modules and learning objectives. 

Modules Learning Objectives 
1: Autonomy Discuss and explain autonomy levels and basic autonomy modes
2: Tool Install Install MAVS, Anaconda, and Python tools and utilize them in class 
3: DL Utilize DL to run advanced driver assistance systems (ADAS) processing algorithms

Discuss and evaluate state-of-the-art processing methods for radar, lidar, and cameras
4: Control Utilize proportional-integral-derivative and model predictive control 
5–7: Camera, Lidar, and Radar Explain the capabilities and limitations of radar, lidar, and camera systems

Process and analyze results from real-world and simulated autonomy data sets
Discuss and evaluate state-of-the-art processing methods for radar, lidar, and cameras
Understand and implement basic processing steps for radar, lidar, and camera data 
Understand the strengths and weaknesses of radar, lidar, and camera ADAS processing

The primary intent of MAVS 
is to serve as a software 
library for simulating the 
terrain, environment, 
sensors, and vehicle in 
autonomous navigation.
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lidar were discussed. State-of-the-art methods in object detec-
tion, free-space mapping, and road detection were discussed. 
A Velodyne HDL-32 and VeloView (https://www.paraview 
.org/veloview/) were demonstrated to the class. Several scenes 
were captured using VeloView and, to illustrate that visualiz-
ing objects in lidar data is difficult, the students were asked to 
guess what objects they were seeing.

MAVS
MAVS is an interactive, real-time, physics-based simulator for 
autonomous ground vehicles [17]. MAVS uses physics-based 
ray tracing [18] to accurately simulate sensors like lidar and 
cameras in addition to realistic simulations 
of GPS sensors and microelectromechani-
cal sensors, such as inertial measurement 
units and gyroscopes. Vehicle dynamics 
are simulated in MAVS using ReactPhys-
ics3D [19]; MAVS can also be interfaced 
with other vehicle dynamics software, such 
as Chrono [20]. 

MAVS is free and open source for non-
commercial use. The core MAVS libraries are written in C++, 
and the code can be integrated via the C++ API or Python 
interface. MAVS is available on GitLab. (It can be downloaded 
from https://gitlab.com/cgoodin/msu-autonomous-vehicle 
-simulator.) Additionally, precompiled binaries for Windows 10 
and Ubuntu 16.04 (MAVS precompiled binaries can be down-
loaded at http://www.cavs.msstate.edu/capabilities/mavs.php) 
and extensive online documentation are also available. (MAVS 
documentation is available at https://mavs-documentation 
.readthedocs.io/en/latest/.) 

The primary intent of MAVS is to serve as a software library 
for simulating the terrain, environment, sensors, and vehicle in 
autonomous navigation. MAVS is structured to either be inte-
grated into other applications or have other software components 

run in a cosimulation approach. MAVS features four basic simu-
lation modules: vehicles, sensors, environments, and scenes. 

The vehicle module provides a simulation of the vehicle 
motion and dynamics. The scene module defines the geom-
etry, color, and texture of objects within the scene as well 
as methods for querying scene geometry using ray tracing. 
MAVS uses several tire and terrain interaction models to sim-
ulate driving on a variety of pavement and soil conditions and 
can simulate a variety of weather and environmental effects 
and their influences on sensor performance. The impact of 
rain on lidar in MAVS has been shown to match real measure-
ments [21]. Lighting conditions based on time of day (includ-

ing night) and atmospheric haziness can 
also be simulated with MAVS.

MAVS is being used by students, fac-
ulty, and staff at MSU to perform research 
in many areas of off-road autonomous 
operation including navigation in rough ter-
rain, vegetation and terrain classification, 
negative obstacle detection, and stop sign 
detection. The class provided valuable dis-

tribution experience and feedback to the MAVS development 
team in preparation for the public release of the code (https://
www.cavs.msstate.edu/capabilities/mavs.php).

For students and researchers studying ML, MAVS can 
automatically generate semantically labeled data for training 
and testing ML algorithms. The automated labeling process 
has been used for testing neural network-based ML algo-
rithms for both camera [22] and lidar [23] data. Some labeled 
camera outputs are shown in Figure 1.

In addition to using MAVS data, students were also given 
databases of road scenery collected locally by the instructor 
and a student containing dirt and paved roads, various signage, 
and so on. These scenes covered highway, more country-like 
settings, and some urban (downtown) areas. 

(a) (b)

FIGURE 1. An example of MAVS automatic semantic labeling: the (a) raw and (b) labeled image. The white label is for buildings, purple indicates  
vehicles, blue represents sky, yellow shows road, and orange is for ground. A yield sign can be seen labeled in light green near the truck. In particular,  
the extension to noisy microwave networks is discussed in detail with respect to the interface with optimization algorithms, a topic that should attract  
a wide readership. 

For students and 
researchers studying ML, 
MAVS can automatically 
generate semantically 
labeled data for training 
and testing ML algorithms.
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Active and collaborative learning exercises
A total of 71 active and collaborative learning exercises were 
used in the class. Exercises included brainstorming activities, 
where the goal was to think of as many responses as possible; 
think–pair–share activities, where each student thought about 
a problem or question, discussed with the other students in the 
group, and finally came to a consensus; and various types of 
group exercises. Exercise lengths ranged from several minutes up 
to about 50 min. (The class runs for 75 min.) 
Most of the exercises were shorter and de-
signed to reinforce concepts. 

An example of a shorter exercise was 
listing challenges to implementing level 5 
autonomy. Example student responses are 
edge cases, price, ethics, handling construc-
tion, working with drivers in level 0 vehicles, 
malfunctions, handling aggressive drivers, and so on. This exercise 
took about 10 min. 

There were also more in-depth exercises in the class. Some 
examples include the following:

 ■ having student groups take processing steps, e.g., mapping, 
localization, traffic prediction, and so on; explain where 
these tasks fit into the Eliot artificial intelligence (AI) auto-
motive framework (a block diagram for an autonomous 
system); and give their rationale [24] (20 min)

 ■ a detailed analysis of a radar Blake sheet for an FMCW 
radar: an Excel spreadsheet was handed out, and students 
investigated how certain parameters affected the radar per-
formance) (20 min)

 ■ a Kalman tracker simulation, where the students examined 
the effects of changing two parameters in the Kalman filter 
in a filter simulation (25 min). 

In all of these cases, team results were posted to discussion 
boards.

Inevitably, there are gaps between theory and practice, and 
many algorithms or methods work well with small or limited 
data but might have issues in the real world. Several exercises 
were geared toward exploring these areas. A discussion board 
exercise asked students to review a paper and discuss potential 
difficulties encountered with using a lidar in the rain and, in a 
second exercise, with pedestrian detection in fog (with various 
types of thermal, IR, and color cameras). A different assign-
ment asked groups of students what difficulties there could 
be with road detection algorithms, especially considering the 
many dirt and gravel roads in rural Mississippi, snow-covered 
scenes in northern states, and flooded areas, to name a few. 
Another task asked students to consider what happens in the 
case of a free-space mapper and path planner where there is 
no free space in front of the vehicle (e.g., following someone or 
parked in a parking lot). 

There were a variety of collaborative exercises involving 
examining and running DL or sensor processing code. These 
involved groups of students and were performed in class for 
the local students. To facilitate asynchronous distance student 
involvement, the collaborative exercises culminated with the 
groups posting to discussion boards, where the distance stu-

dents would also review and post comments in the following 
few days. 

For example, in module 2, students examined code for a 
CNN to classify the MNIST digit data set. They trained the 
CNN and ran inference on the testing images. This exercise 
introduced them to DL and allowed the instructor to explain 
the basic MNIST CNN. A later miniproject allowed students 
to investigate using YOLO 9000 [15] for sign detection in sim-

ulated and real imagery.
In another instance, student groups ran 

two Python QT5 GUIs that demonstrated 
radar SP. The first GUI let them discover 
that, in FMCW processing, the distance 
of a reflecting object (we used a point tar-
get) after FMCW demodulation results 
in an intermediate frequency (IF) that is 

proportional to the object’s distance. Instead of first giving 
them the equation that relates the IF to the object distance, 
the students ran simulations and hypothesized that, as the 
distance increases, the IF increases also. They had a visual 
understanding, and then we confirmed that their hypothesis 
is correct and that there is a linear relationship between the 
IF and object distance. 

The second GUI gave insight into FMCW radar processing, 
and it allowed students to visualize automotive radar object 
detection. They could change the radar’s FMCW parameters 
as well as the object’s radar cross section, range, and velocity. 
This GUI is shown in Figure 2. The top plot on the right shows 
the range fast Fourier transform (FFT) results, and the bottom 
right plot shows the range–velocity results after velocity FFT 
processing. The class discussed the relationship of the IF to the 
object distance from the radar.

Other collaborative exercises focused on system-level infor-
mation. For example, in the radar module, students used a 
spreadsheet and modified radar parameters for a short-range 
radar. When specifications were met, cells turned from red to 
green. Also in the radar module, students ran a Kalman fil-
ter simulation and tuned the filter parameters to see how they 
affected the results. In the lidar module, students examined 
a lidar design that calculated the maximum lidar frame rate 
given the field of view (FOV), number of pulses, pulse widths, 
and number of receivers. 

In the decision, planning, and control module, students list-
ed challenges to an autonomous system as a vehicle approach-
es an intersection; they also took a set of software modules 
defined in [25] and mapped them into the Eliot automotive 
framework [24]. Students were asked to explain their choices 
in this exercise.

Miniprojects
The classwork included three miniprojects assigned by the in-
structor. In each of these, local and distance students worked 
in teams of up to four undergraduates or four graduates (with 
no mixed teams). Each miniproject required the software-
based assignment to be conducted. Each team submitted a re-
port with an introduction, methodology, results, conclusions, 

There were a variety of 
collaborative exercises 
involving examining and 
running DL or sensor 
processing code.
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references, and code listings. The miniprojects were designed 
to teach how to perform and write a small research project. 
Grading was based on following directions, technical content, 
proper IEEE citations, grammar, profession writing style, and 
code comment clarity. Each miniproject was worth 10% of the 
final grade. The timeframes were five, five, and four weeks for 
miniprojects 1–3, respectively. 

The first miniproject allowed students to run MAVS for the 
first time and utilize a pretrained YOLO 9000 [15] to allow 
them to see how well a state-of-the-art detector would work 
to detect stop and yield signs in high-fidelity simulated driv-
ing imagery. Students performed experiments and wrote their 
results in a final report for each miniproject. Figure 3 shows 
example MAVS imagery.

The second miniproject was given after students had dis-
cussed camera operation and learned about camera calibration 
as well as camera model intrinsic and extrinsic matrices. Stu-
dents collected data in class, and student groups performed an 
offline camera calibration procedure with the full data set and 
a partial data set. They then examined the calibration results 
and wrote a report on their findings. They discovered that you 
need a variety of poses and you must have samples all around 
the camera FOV to obtain a good calibration. 

Figure 4 shows three students collecting camera calibra-
tion data in class. Distance students participated in all exer-
cises. In the camera calibration exercise, they were not able to 

collect data; however, they posted their observations of how 
well the in-class students performed the calibration data col-
lection, e.g., whether they got images covering a variety of the 
image space, different orientations of the calibration board, 
and so on. 

Perhaps the most engaging for students was the third mini-
project. Most students in the class had no experience with 
lidar and lidar processing. After learning about laser emitters, 
laser detectors, scanning lidars, and so on, they used MAVS to 
simulate a lidar detecting a brick on the road. The simulations 
examined the following lidars: Velodyne VLP-16, HDL-32E 
and HDL-64E; Ouster OS1 and OS2; and a Quanergy M8. The 
simulation estimated the number of lidar points reflected from 
a brick at given distances from the vehicle. The students stud-
ied how the different lidars would behave.

Class assessment: Challenges faced
There were many challenges in preparing and administering 
the class. Most instructors who have had to prepare a class 
for the first time will agree that this is a daunting task by 
itself. The first challenge was the depth versus breadth of 
the class. We wanted it to not only contain sufficient depth 
but also breadth as well as to focus a majority of the class on 
sensor processing methods for the lidar, camera, and radar 
sensors. To prepare students for state-of-the-art discussions, 
which mostly involved DL methods, an early module on DL 

FIGURE 2. The radar FMCW processing GUI. FFT: fast Fourier transform; Max: maximum. RCS: radar cross section; IF: intermediate frequency; FFT: fast 
Fourier transform.
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was created. Though a single class cannot cover all topics, the 
idea was to briefly explain major topics, such as camera intrin-
sic and extrinsic matrices, and expose the class to image pro-
cessing topics, such as camera calibration, stereo processing, 
and structure from motion.

The second challenge was that there was no single book 
that covered the material. For a traditional DSP class, there 
are myriad books available. Traditional DSP is a very mature 
field, while automotive autonomy is changing rapidly and 
still in a developmental phase. Three books were selected. 
The first was Creating Autonomous Vehicle Systems [25], 
which  covered autonomy in general; localization; percep-
tion; prediction and routing; decision, planning, and control; 
and reinforcement learning. To cover autonomy complexity, 
system framework, graceful degradation, ML, ethical issues, 
and so on, Eliot’s book Introduction to Driverless Self-Driv-
ing Cars: The Best of the AI Insider [24] was chosen. Com-
puter Vision in Vehicle Technology: Land, Sea, and Air was 

chosen to cover computer vision and vision-based autonomy 
systems [26]. 

These books did not provide adequate coverage of radar 
and lidar. The class materials and supplemental journal articles 
were used to cover these topics. We note that a very good book 
on autonomous radar, Radar Signal Processing for Autonomous 
Driving [27], was published too late for our course offering,  
but we will use the book in future classes as it is written by a 
nonradar expert aimed at other nonradar experts.

Covering state-of-the-art methods meant students had 
to read journal papers. Most graduate students are accus-
tomed to doing this, but undergraduates are not. Having 
all of the students select and critique papers in a one-page 
writing assignment as part of each module homework 
gave students experience with literature reviews, how to 
scan a paper to find the key concepts and contributions, 
and how to effectively write a critique of the paper’s pros 
and cons.

(a) (b)

FIGURE 3. The MAVS-generated urban scenes used for class miniproject 1: (a) a yield sign and (b) a four-way intersection. 

FIGURE 4. The miniproject 2 camera calibration in-class exercise. 
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A third challenge is the sheer amount of materials required 
for the class: lectures, papers for the students to read and cri-
tique, and Python codes for in-class demos. Both the DL and 
autonomy fields are changing rapidly, and, since there were 
about six class days devoted to state-of-the-art methods, these 
sections will need to be revised each semester as new tech-
niques overtake the older approaches or existing methods are 
updated and significantly improved. 

A fourth challenge was asynchronous distance teaching. 
Distance students often have a highly varied background, are 
usually working full time, and, often, have 
families and other duties. Most distance 
students work asynchronously, so they lag 
behind the local students since they usu-
ally watch videos at night or on weekends. 
Distance students also do not have the ben-
efit of working directly with other students, 
unless there are several distance students 
who work at the same company. Keeping distance students 
engaged and having them feel involved is very challenging. 
We believed that utilizing discussion boards and having mixed 
groups (distance and local students) on the miniprojects helped 
to keep them involved.

The final—and very much unexpected—challenge was 
the COVID-19 pandemic, which moved all MSU post-spring 
break classes from in person to online. Since the course  
materials were organized as PowerPoint presentations planned 
for both in-person and distance  offerings, the challenges with 
the transition to fully online classes were somewhat mitigat-
ed. The course instructor (the first author) had never taught 
an online class. The distance class was taught in a special 
classroom and recorded for distance students to participate 
asynchronously. After the COVID-19 transition, a majority of 
the local students participated synchronously, with the active 
learning exercises continuing. 

Several approaches changed as the class met online: 
1) Before spring break, the instructor would annotate materi-

als using the SMART board display in the distance learn-
ing classroom. For the online class, the instructor utilized 
a second camera and wrote on paper. Students could see 
the writing, and scanned versions were distributed after 
the class.

2) After spring break, the instructor started using WebEx 
Polls to poll students.

3) Most students do not prefer to interact remotely with videos 
on, so the instructor could not see most of the students. 
Before the online class, the instructor would walk around and 
talk to students about the exercises and provide feedback.

Student feedback
The course was designed with the two specific objectives: 1) 
to successfully engage students using active and collabora-
tive learning and 2) integrate a state-of-the-art, physics-based 
autonomy simulator into the class. We evaluated the course 
through student feedback, which provided their perceptions of 
the course. Students provided informal feedback during the en-

tire semester as a regular part of the active learning exercises. 
During the semester, there were three opportunities for stu-
dents to give formal feedback to the instructor: an anonymous 
survey, a bonus question on the final exam, and the standard 
university-administered course evaluation. In this section, we 
discuss results from the formal survey and final exam question.

Final exam bonus question feedback
The final exam for the course included an open-ended “bonus” 
question that prompted, “What did you like the most about this 

class?” All student feedback via the bonus 
question was favorable. With regard to ob-
jective 1, students appreciated the active 
learning exercises for forcing engagement 
with the course topics. As an example, one 
student commented,

What I liked most about this class 
was that you forced the class to be 

involved. It is easy just to sit and “attend” a lecture, but 
you made it fun and interactive. I also think that the class 
exercises were a huge help. I loved that we were able 
to solve the problems in class instead of only working 
problems at home and being lost.

Another student highlighted that the active exercises, which 
included both demonstrations and tinkering, helped solidify 
course concepts:

My favorite part of the class was the demonstration of 
the various sensors and seeing them work in real time. 
Specifically, the in-class taking of camera calibration 
images, live demo of the thermal camera, and live lidar 
mapping of your office. To be able to visualize the out-
put of the sensors is critical to an intuitive understanding 
of a sensor system. Second to that, I liked the projects 
that showed us the output of the camera calibration and 
radar display programs. Playing with parameters and 
seeing the effects is very satisfying.

During the lectures, students were responsive to the active 
learning exercises. At the conclusion of the course, numerous 
students described the active exercises as their favorite part of 
the class. 

With regard to objective 2, student responses reflective 
positive perceptions of integrating real-world applications into 
the course. As expected, students highlighted how real-world 
applications helped them translate the theoretical course con-
cepts to specific engineering contexts. For example, one stu-
dent said,

The combination of theory and application is what every 
engineering course should consist of. This class purely 
shows your expertise in the field, and you have the abil-
ity to hand down parts of that knowledge to us. . . . The 
books and articles were nice to be able to read and inter-
pret. Getting exposure to Python, Anaconda, and MAVS 
are all transferable skills to take us to the next level of 
expertise within the field.

Another student agreed that the real-world applications en-
hanced the course:

At the conclusion of 
the course, numerous 
students described the 
active exercises as their 
favorite part of the class.
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I enjoyed the projects a lot. I like being able to see what 
we learn in class and being able to apply it in the real 
world. I am a very applicable and applied person, so I 
enjoy the applying side of the class more. Like I said, the 
projects allowed me to see and use what we learned in 
class works. I also really enjoyed learn-
ing the different ML algorithms and the 
image processing to track objects—that 
was super cool. I love how we can run 
these algorithms, and a computer can be 
trained to look at live images and pick 
out specific things to track or tell us is 
there with very high precision. 

One student discussed that the real-world 
activities help them connect and understand 
fundamental SPAV course concepts with 
ideas learned in other undergraduate engineering courses: 

My favorite part about this class was learning how to ap-
ply everything I’ve learned in my four years of under-
graduate study. This class took everything from Python 
code, linear algebra, circuits, and signal processing put a 
major application on it, the vehicle self-driving vehicle. It 
has given me a lot of appreciation towards where the ve-
hicle self-driving vehicle industry is and where it will go. 
Additionally, multiple student responses specifically men-

tioned the benefits of using the state-of-the-art, physics-based 
autonomy simulator in class. They appreciated that the MAVS 
software was currently used to solve automotive autonomy 
problems—for example, 

What I liked most about the class were the simulations 
with MAVS, demos, the Python executable codes, and 
the grad project. For miniproject 1, it was neat knowing 
that real applicable simulations could be executed with 
MAVS and its data could be valid to further develop ap-
proaches in automotive autonomy. The demos, such as 
the camera calibration, lidar point cloud analysis, and the 
FLIR thermal camera showcase, were very interesting.

By recalling specific aspects of the MAVS projects, such as 
changes to stop signs, one student indicated that the projects 
were memorable and achieved the goal of creating meaningful 
active learning: 

My favorite part of the class was working on the mini-
projects, especially with MAVS. The simulation of the 
ground vehicle was very fascinating to me, and I had 
a lot of fun interacting with the different variables and 
changing the vehicle paths and the environment vari-
ables. It was very interesting to see how slight changes 
to variables could greatly affect the image quality of the 
stop signs.

Numerous students specifically mentioned MAVS when 
describing their favorite aspects of the course. Several stu-
dents noted that is was helpful to be able to have “hands-on” 
experience that applied the concepts they learned in class. 
It also seemed that the segmentation project using MAVS 
with YOLO was popular because of the visual nature of 
the algorithm.

Survey assessment
In addition to the exam question, an anonymous Qualtrics sur-
vey was administered. The questions are listed in Table 2. Of 
the 48 students enrolled, 40 responded to the survey, for a re-
sponse rate of 83%. Overall, student responses indicate that the 

coverage of state-of-the-art methods and 
DL was beneficial (question 1). With regard 
to objective 1, 39 of the 40 students who re-
sponded to question 4 agreed that they felt 
engaged, which was a major goal for both 
the synchronous distance and local stu-
dents. All responses indicated that students 
enjoyed hardware demos (question 2), and 
38 of 39 students reported that the hardware 
demos improved their understanding of the 
course concepts. 

Questions 6–8 in Table 2 focused on the usefulness of 
the active exercises (objective 1) and the simulator (objec-
tive 2) for creating a meaningful, engaged learning experi-
ence. Thirty-five of 39 students reported that the active and 
collaborative learning exercises were extremely or very use-
ful for learning. When specifically asked about the MAVS 
software, 30 of 40 students viewed the software as useful 
for illustrating concepts and performing experiments (ques-
tion 7), and 29 of 39 viewed MAVS as useful for learning 
in the general context. A few students indicated that MAVS 
was not useful.

In addition to the questions in Table 2, the survey includ-
ed an optional open-ended question: “Briefly provide any 
reasoning for your views of the usefulness of visitors, stu-
dent exercises, or the MAVS simulator for learning.” In 
response to that prompt, one student noted that the active 
exercises and MAVS were more beneficial once students 
were required to connect concepts and implement automo-
tive autonomy tasks:

The exercises and MAVS always seemed useful during 
the class, but became clear just how beneficial they are 
during the final project. 

Another student perceived MAVS as useful because it allowed 
for students to further explore topics beyond the provided 
course content:

The exercises using tools and simulations really help 
drive the points home and to allow for experimentation 
with learned principles outside of class. 

Students did not provide reasoning for their unfavorable rat-
ings, but we believe negative views could be related to the 
specific challenges some of them encountered when using 
the software. While some students in the class had experience 
with Python programming, others did not. Additionally, dur-
ing the course, a few students suggested software improve-
ments, such as increasing the size of the simulation screen and 
providing more built-in file-type exports. We note that chal-
lenges like these when learning new software are not unique 
to MAVS.

In the course, the instructor tried to strike a balance in the-
ory and applications. Moreover, the class was designed to fit a 

The ideas of using active 
and collaborative learning, 
incorporating simulations, 
discussing state-of-the-
art methods, and using 
miniprojects can be 
incorporated into many 
engineering classes.
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need for an introductory class that covered the three major auton-
omy sensors, their operating principles, and writing DL code to 
understand sensor operations and limitations. Table 2 shows that, 
overall, students felt that there was a relatively good balance of 
theory and applications. Of the 40 respondents 
to that question, 34 said the balance was about 
right, three opined that the class was a little 
too theory oriented, and three rated the class 
as too application oriented. 

When designing the course, we viewed 
theory as a required element because we 
anticipated the course material would be 
new to most of the students. Topics such as 
how cameras capture data and use Bayer filters to generate 
RGB imagery, how camera intrinsic and extrinsic param-
eters are defined and how to estimate them, and how lidars 
and radars operate were all discussed in the class. Our ini-
tial assessment of students’ prior knowledge was correct, as 
shown by the responses in Table 2, where 27 students indicat-
ed limited prior knowledge (a little or none). Seven students 
indicated they had a moderate amount of prior knowledge, 
with six indicating they had a lot or a great deal of prior 
knowledge. We believe most students’ prior knowledge came 
from work experience at CAVS or a course on radars.

Student perceptions of the course were positive and encour-
aging. Through their survey responses, students reported that 
they were engaged in learning, enjoyed the hardware demos, and 
viewed the course concepts as beneficial. Students also reported 

that the active exercises and incorporation of the MAVS simu-
lator in class were very or extremely useful (35 out of 39 and 
29 out of 39, respectively). Students’ behaviors, including class 
attendance, participation in activities, and posting regularly to 

the discussion boards, further indicated that 
they valued the active exercises. 

Conclusions
A 3-semester-h class, SPAV, offered at the 
senior/master’s degree level, was developed 
from scratch for MSU. The class focused on 
automotive autonomy, DL, and sensor pro-
cessing for lidar, camera, and radar sensors. 

The class was designed to expose students to the three primary 
sensor systems in AVs and give them hands-on experience in 
sensor processing and state-of-the-art methods. 

Since this class was offered as a special topics class, it will 
undergo another revision and offering and then be submitted to 
the MSU curriculum committee for adoption as a permanent 
class. It is the intent of the authors to strongly pursue cross-
disciplinary enrollment. Currently, any engineering major can 
take this course as an elective. Emails advertising the new 
class offering will be sent to all engineering departments and 
researchers at CAVS so that interested students can have the 
opportunity to take the class.

This class was challenging to develop, and the authors do 
not recommend that a pretenured assistant professor under-
take a new-start class that is so demanding. However, the ideas 

Table 2. A summary of the survey question responses.

Question n Strongly Agree 
Somewhat 
Agree 

Neither Agree or 
Disagree Somewhat Disagree Strongly Disagree 

1)  The coverage of DL/modern state-of-
the-art methods is very beneficial. 

39 29 10 — — —

2)  I enjoy the hardware demos. 40 37 3 — — —
3)  The hardware demos help me under-

stand the sensors. 
39 33 5 1 — —

4)  I feel engaged as part of this class. 40 33 6 1 — —
5)  I feel challenged due to new material 

that is part of this class. 
38 21 14 3 — —

 Extremely Useful Very Useful Moderately Useful Slightly Useful Not at all Useful 
6)  The student exercises are beneficial 

(useful) for learning in the class. 
39 23 12 3 1 —

7)  The MAVS simulator is beneficial 
(useful) for illustrating concepts and 
performing experiments. 

40 25 5 6 2 2 

8)  The MAVS simulator is beneficial 
(useful) for learning in the class. 

39 21 8 7 1 2 

Too Theory 
Oriented

A Little Too 
Theory Oriented About Right 

A Little Too Application 
Oriented

Too Application 
Oriented

9)  How well does the course balance 
theory and applications? 

40 — 3 34 1 2 

A Great Deal A Lot A Moderate Amount A Little None at All 
10)  How much of the material in this 

class did you know prior to taking 
the class? 

40 3 3 7 21 6 

The n in column two indicates the total number of respondents. The largest response categories are shown in bold font.

“My favorite part 
about this class was 
learning how to apply 
everything I’ve learned 
in my four years of 
undergraduate study.”



132 IEEE SIGNAL PROCESSING MAGAZINE   |   May 2021   |

of using active and collaborative learning, incorporating simu-
lations, discussing state-of-the-art methods, and using mini-
projects can be incorporated into many engineering classes.

Using MAVS in the class was not only beneficial to students 
but also valuable to the MAVS developers, as it provided a group 
of testers with a diverse range of experience and technical back-
grounds. Students provided excellent actionable feedback for 
improving MAVS, pointing out the need to make the installation 
process easier and provide more examples and training.

The feedback on the use of active exercises and incorpora-
tion of the MAVS simulator in the class was overwhelmingly 
positive. Students provided informal feedback throughout the 
course as part of the active exercises, which was used to hone 
the classroom experience in real time to strengthen the learn-
ing experience.

Students also provided more formal perceptions of the 
course through the use of a feedback prompt and a 10-question 
survey. Multiple students described the active exercises or the 
MAVS simulator as their favorite part of the course. Student 
perceptions of the usefulness of the exercises and MAVS were 
nearly all positive. The results demonstrate that the course 
achieved the objectives of successfully 1) engaging students 
using active and collaborative learning and 2) integrating a 
state-of-the-art, physics-based autonomy simulator to create 
meaningful active learning in the classroom.
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