2022 Hypoxia Forecast 1

2022 Forecast:
Summer Hypoxic Zone Siza the
Northern Gulf of Mexico
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Abstract

A hypoxic water mass with oxygen concentratiorismg * forms in bottom waters of
the northern Gulf of Mexico continental shedchspring/summeand lasts into the fall butan
bedisrupted by strong stormblutrients from the Mississippi River watershed, particularly
nitrogen, fertilize the Gulf’'s surf athae waters
sink to the bottom layer and sediments wideomposition leads to oxygeepletion The low
oxygen conditiongn the Gulf'smost productivevatersstressesrganisns andmayevencause
theirdeathso thatliving resourcesre threatenedncludinghumans depemalg on the fish,
shrimp and crabs caught thev&arious models use the May nitrogen load of the Mississippi
River as the main driving force to predict the size of this hypoxic zone in lateT bigy.
prediction isfrom one ofthese modeland predicts the size of the late summer areaamth
accuracy oB%%.

The June022forecast of the hypoxic zorsgzefor late July2022is that it will cover
15233km? (5881 mi?) of the bottom of the continental shelf off Louisiana and Texas. The 95%
confidence interval is that it will be betwe&®,376and17,096km? (5164and6601mi?). This
estimate is based on the assumption that there are no significant tropicalostarosual wind
eventsan the two weeks before the monitoring cruise, or during the cruise. If a storm does occur,
then the size of the zone is predicted t&6% of the predicted size without the storm,
equivalent t530km? (3294 mi?).

The predicted hypoxic areaaboutthe size ofConnecticu(14,357km?) and111% of
thel9852021average of.3,791km? (n = 36 including years with storms$wo years had no
cruise. If the area of hypoxia becomes as large as predittedit will bethreetimes the size
of the Hypoxia Action Plagoalto reduce the zone to less tH&000 kn? (1931 mi?). No
reductions intie nitrate loadindrom the Mississippi River to the Gulf of Mexicoveoccurred
in the last few decadgethe interval since thi@rmulation of the Hypoxia Action Plan
environmental goal
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Hypoxic water masses in bottom waters occur whelxtlygen concentration falls below
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Introduction

2 mg 1. The hypoxic waterf the northern Gulf oMexicois distributedon the continentadhelf

west of the Mississippi River and onto th&rthernTexascontinental shelffrom near shore to as

faras 125 km offshore, and in water depthgauip0 m (Rabalais et al. 20QFarvis et al. 2021,
Figurel). It has been found in all months but is most persistent and severe in spring and summer
(Turner et al. 2005; Rabalais et al. 2007). The July distribution of hypoxic waters most often is a

single continuous zone along the Louisiana and adjacent Texad-Bhpkia also occurs east of

the Mississippi River delta but covers less area and is ephemeral. These areas are sometimes

cal

shrimp and fish in the bottom layesomehing that is of economic consequence to the fishery

| ed

‘“dead zones’ in the popul ar

press

beca

(Purcell et al. 201,7Smith et al. 2017 The numier of dead zones throughout the world has been
increasing in the last several decades and currently totals @v¢éb&z and Rosenberg 2008;
Rabalais eal. 2010; Conley et al. 201 Breitburget al. 2013 Thehypoxiczone off the

Louisiana coast is the second largest huwgaused coastal hypoxic area in the global ocean.
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Figure 1. Oxygen concentrations in bottom water across the Loui§iarasshelf from July 3
—31, 221 Data source: N.N. Rabalais.N. Glaspieand R.E. Turned,.ouisiana State
University, funded by NOAA National Centers for Coastal Ocean Science.
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Systematic mapping of the area gpbxia in bottom waters of the northe®Bulf began
in 1985at geographically fixed statioridppendix Figure 1)Its size from 1985 to 21 ranged
between 40 to 2220 kn? duringlate Julyto early Augustind average3863km? (5,616 mi?)
(Figure2). There are novalues for 1989 (no funding availabig) for 2016 (incompatible shipith
mechanical breakdownglata from 2017 ereincomplete athie end dsometransecs, data for 1978o
1984 are estimated from contemporary field data. The estimates for before 1978 assume that there was no
significant hypoxia then and are based on results from various models and sediment core Ahalsases.
wereno shelfvide cruisesin 1989 and 2016and the area was incompletely mapped in 2017
Monthly, and bimonthly monitoring on two transects off Terrebonne Bay, LA, and the
Atchafalaya delta, LA, ended in 20Itheannualnumber ofhypoxiafocusedcruises peaked 20
years ago anis nowat the bareninimum (Appendix Figure 2)
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Hypoxic water masses forbecause the consumptionafygen in bottom water layers
exceeds the rsupply of oxygen from the atmosphered photosynthesighe reaeration rate is
negatively influencedy stratification of the water column, which is primarily dependent on the
river ' s fr es hwaadnteated loyissnomér avarrgireg. Thenoderwhelming supply of
organic matter respired in the bottom layer is from the downward flux of organic matter
produced in the surface layer. The transport to the bottom layer is the result of sinking of
individualcellsas t he excretory products of the grazir
them as fecal pellets, or as aggregates of cells, detritus and mucus. The respiration of this organic
matter declines as it falls through the water column (Turner et al. , 1283he descent rate is
sufficiently rapidsothat most respiration occurs in the bottom layer and sedineottsithin
the water column

Theamount of organic matter procked in the surface waters is primarily limited by the
supply of nitrogen, ngthosphorus (Scavia and Donnelly 2007; Turner and Rabalais 2013), and
previous indicators of phosphorus deficiencyraseas reliable as they were once thought to be
(Fuentes et al. 2014). The evidence for this conclusion is that the glgagling of nitrogen
(primarily in the form of nitratéN) from the Mississippi River watershed to the continental shelf
within the last few decades is positively related to chloroghgtincentration (Walker and
Rabalais 2006; = 0.30—0.42), the rate of primagyroduction (Lohrenz et al. 19972R0.77;
Lohrenz et al. 2008), and the spatial extent of the hypoxic area in summer (Turner et al?2012; R
> 0.9). The size of the shelfwide hypoxic zone has increased since it began occurring in the
1970s simultaneouslyith 1) the rise in carbon sequestration in sedimet)tsydicators of
increased diatom production, aBpshifts inbenthicforaminiferal communities (Turner and
Rabalais 1994; Sen Gupta et al. 1996; Turner et al. 2008). There is, therefore, a satiss of
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and-effect arguments linking nitrogen loading in the river to phytoplankton production, bottom
water oxygen demand, and the formation and maintenance of the largestcausedtoastal
hypoxic zone in the western Atlantic Ocean.

The oxygerconsumption creates a zone of hyjacthat is constrained by the
geomorphology of the shelf, horizontal water movement, stratifigadiwhvertical mixing
(Obenour et al. 2012; Justi ¢ and Wang 2014) .
these castal waterss basedn the couplingetween the organic matter produced in response to
these nutrients and its respiration in the bottom layer (MRNGoM HTF 2001, 2008; Rabalais et
al. 2002, 2007, 2010; SAB 2007Mhe nutrient controlling the hypoxia zoseein late Julyin
our model is nitratéoading in May which is about 70% of the total nitrogen delivered to the
northern Gulf of Mexico by the Mississippi Rivdihere is a known period of loading to the Gulf
of Mexico, then phytoplankton productiomising of organ matter, and benthic respiration that
links the May nutrient loading to the period of bottarater in the northern Gulf of Mexico.

Mississippi River Dischargeand Nitrogen Loading

Hypoxic conditions are dependent on river discharge tsecaiithe influence that water
volume and salinity have on the physical structure of the water column and on the swutrient
delivered to the coastal zorkhe US Geological Survey (USG@ovidesmonthly estimates of
river dischargeindnitrogen concentrain (http://toxics.usgs.gov/hypoxia/mississippuhich
are used to calculate tihhé@rogen loadindgor the Missssippi River watershed into the Gulf of
Mexico. The nutrient loads calculated by multiplication of the discharge volume and the
concentrationsf nutrients, particularly nitrogen.

Thedischarge from th#lississippi River watershed in M@p22 was31,900m? s!
(cms) which is the24th largest in37 years from 185to 2022 and equal to abod0%% of the
averageMay dischargeThe concentration of nitrate has been declirsightly over the last 20
years, but the increase in river discharge means that the total loading has remained ithe same
recent decades or is increasifgglre 3;Sprague et al. 201 Crawford et al. 2019
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Figure3. Thedischarge of the Mississippi River (A), the concentration of nitrateafi?) the
resultantitrateload (C)in May. Thedischarge and nitrate concentrati@me from the
United States Geological Survey
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Figure4. Theyield of nitrogen (kg kmt) from land in the Mississippi River watershed (from

Robertson and Saad 2021).
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Figure 5. The percent of nitrogen loading
in the watershed that is sourced to
wastewater treatment plants (WWTP),
fertilizers, atmospheric deposition and
manure in 2012 and 2002 (from Robertson
and Saad 2021).

2012
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W Manure (-3.5%)

O Atmosphere (-2.7%)

Some consequences of water quality degradatitinnitrate contaminatiomclude
higher sewage treatment cofllearmont et al. 1998), seafood price increases (e.g., Smith et al.
2017),compromises to fish reproductiofuckey and Fabrizio 20)&nd increased frequency
and duration of harmful algae events inshore and offfhoez et al. 2008 There are links
between nitrate in drinking water and birth defects [neural tube and sprdahcluding spina
bifida, oral cleft defects and limb deficiencies (Brender et al. 2013)], and bladder and thyroid
cancer (Ward et al. 2018)he strictly nutrientelated issues are -@eveloping with ocean
acidification and climate change whose cumuéaand synergistic interactions may be even
more socially and ecologically significatian just nitrate contaminatigioss et al. 2011).
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Plastics fill ocean§Lavers and Bond 201/pharmaceuticals are distributed in sewage
(KasprzykHordern 2009; Wilkason et al. 2022jhe COVID-19 virus and other viruses spread
in partially treated sewerage wastes fr@aaging septic tanks (Farkas et al. 202Y0),
unconstrained wetland treatment systems with insufficient hydrologic cqranols)
overloadedreatment systems.

Hypoxic Zone Size

Models for predicting the size of the hypoxic zone rely on July cruise mtatearily
because there are no comparable shelf@ata for other months. Data on the size of the hypoxic
zone in late July from 1985 to 2Dare based on annual field measurements (data available at
http://www.gulfhypoxia.net)Data for10 yearswere not included in the analysis because there
were strongstormsor urusual wind conditiongust before or during the cruise (1998, 2003,
2005, 2008, 2010, 2012013 and2018- 2020). These stormsr unusual wind condition®y
comparison of preruise and postruise sampling to data collected during ¢thaise, changed
currents, disrupted the stratified water column, argerated the water column. It may take a
few days to several weeks, depending oteweemperature and initial dissolved oxygen
concentration, for respiration to reduce the dissolvegienx concentration t© 2 mg I after the
water column stratification is festablished. The average reduction in hypoxia size in years with
storms compad to years without storms5§%. Storm frequency has been increasamgmore
than half of the crues in recent yeal$igure6).

100+ Storm frequency
80-

604
Figure6. Storm frequencwyn cruises binned into-5

year increments from 1985 to 2D

Percent (%)

Interval

Prediction for 2022

We use several models to forecast the hypoxic zone in the northern Gulf of Mexico in
July2022 The most accurate model prediction, we think, is that itaeiler15,233km? (5881
mi?) of the bottom of the continental shelf off Louisiana and Texas. The 95% confidence interval
is that it will bebetweenl3,776and17,096km? (5164and6601mi?) (Figure7).

This estimate is based on the assumption that there are no signifipécal storms
occurring in the two weeks before the monitoring cruise, or during the cruise. If a storm does
occur, then the size of the zone is predicted t6@€ of the predicted size without tetorm,
equivalent t499km? (3294 mi?).
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Hypoxia Models and Model Accuracy

We use several models pyedict the size of the hypoxic zone in Jiilgit arebased on
the May total nitrite+nitrate nitrogen loddote: concentration x discharge equals the ltathe
Gulf from the main stem of the Mississippi River and the Atchafalayer R he nitrite+nitrate
l oading wil |l be referred to here as “nitrate?”
component of the twd he residence time of the surface waters along this coast is about 2 to 3
months in the summer, hence the 3taonth lag between the loading rate calculated in May
and the size of the hypoxic zone in late July. The stability of these models, however, is not fixed,
because the ecosystem is evolving. For example, the size of the hypoxic zone for the same
amount ofnitrateloading is increasingt abouthreetimes over the last 40 yediSigure8A;
Turner et al. 2012 Further, the models will eventually be adjusted to account for the limited
space on the shelf for hypoxia to occugémgraphiconstraint).The proces$ased ecosystem
models are a platform to greatly expand understarftmgthe physical andiological factors
interactover all monthsreincreasingly accuratendvisually-appealingbut alsorequire
additionalseasonatlata to validate thems conditions changlroughout the yeaand among
years
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Figure 8. The relationship between nitedbading in May and theize of the hypoxic zone in
July. A. The anmid hypoxic zone area per nitrogen loading in May each yearhB sizeof the
hypoxic onein different intervad. The red dots the predicted size in 2022.
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The unstated hypothesis implied by these models is that the system can be treated as a
chemostat limited by N, in the same way that the chlorophgdincentration oalgal biomass
in lakes might be modeled by P loading to the lake. The Str&¢telps type models initiated
by Scavia and colleagues also incorporate this nutrient dose:response framework (Scavia et al.
2003, 2004; Scavia and Donnell§@7) in their preditive schemes. Tlsemodek assume that
the size of the zone is driven mostly by what happetise currenyear and that other
influences cause variation around a relatively stable baseline suite of factors. An example of
seconday influences might be seasonal or annual variations in wind speed and direction or
freshwater volumeOur model is based on thetrateload ofonly thecurrent year. The
reference point for calibrating the model is the behavior of the system in re¢ent.Aige use
the lastseveralyears of data on the relationship between hypoxic zone size and nutrient
loading for this model. Others do something similar. The USGS uses the last five years of data
to calibrate the *“ LOADSET (200 apmtlad the caefficeentsSrc av i a
their model annually by using rolling 8 5year averages for coefficients (Evans and Scavia
2010). Their recent numerical adaptation has the effect of adjusting model input with each
year, but not explaining the biolagil/physical basis for these changes any better than one of
ourearliermodaldi d wi t h t he ‘ ye aourmodekis, imotheriwords, year t er
descriptive, but not explanatory beyond the simple nitrogen loading = oxygen deficit
relationship.

The estimate fo2022in Figure8B usesnitratedatathatwere transformed into their
log10 equivalents to avoid the problem encountered in 2012 when the prediction was much
larger than the actual size, which is attributable toguaisimple linear regrs®n analysis to
fit a curvilinear relationship. If there is significant curvature (bodednward without this
transformation, then both the lower and upper ends of the data field are overestimated. This
effect is more dramatic when the relationshipamb extended into a sparse data field at the
extremes of nitrogen loading, as happened during 2012, which was a dreaghith low
nitrateloading.

Some of the sensitivity to nitrate loading is carried over from one interval to theonext
creat e’ a e'tHatemgydastylecades. A legacy effean be explained as the result of
incremental changes in organic matter accumulated in the sediments one year and metabolized in
later years (Turner and Rabalais 1994), by changes irether nitrate of the total nitrogen
pool, or by bngtermincreases in bottorwatertemperature (Turner et al. 2017)

Our statistical modelsand their predecessors, are fairly accurate models based on past
performance (Turner et al. 2008, 20Ihe model used hergescribes89% of the variation
since 200@non-storm years)The equivalent model for the Baltic Sea low oxygen conditions
explains 49 to 52% of thater-annualvariatiors in bottomwater oxygen concentration (Conley
et al. 2007).

Nutrient load models are robust for leteym management purposes, but theyless
robust when shoiterm weather patterns move water masses or mix up the water column
(Rabalais et al. 2018 he size of the hypoxic zone this year is expected to fahew
relaionship with nitrogen loadingasl ong as there is no ‘wildcard’
a tropical stornbefore orat the time of the annual summer cruise. Some of the variations in the
size of the Gulf hypoxic zonesult fromre-aeration othe water column during storms. The size
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of the summer hypoxic zone in 2008, for example, was less than predicted because of the
influence of Hurricane Dolly. Tropical Storm Don was a similar complication in Z0lirhate
changes may alter the spring iatton of hypoxia formation, duration and fresqicy. The timing
of hypoxia in the Chesapeake Bay, for example, is earlier with climate warming (Testa et al.
2018). The needed detailed seasonal data necessary to make phermagieaisos for Gulf

of Mexico are not known.

Theprediction in2018 was noteworthfpr the great disparity between the much larger
size of the hypoxic zone predicted &y models and the actual siZéhe predictecize of the
forecastfrom four modelsranged from 12,949 to J523km?, but the measured size wag40
km2. Wind data collected during the research cruise indicastdong change in wind patterns
(i.e., from the west instead of the southeast) and elevated wind speeds at the beginning of the
cruise.These influencesesulted in a shoiltved decrease in water column stratification and then
oxygenation of the bottom laygarticularly on the eastern end of the mapped svaads from
the west push the bottemater hypoxic area more to the east and decreasmtteenwater
footprint overall.

Other models predirtg oxygen dynamics on this shelf are in Bierman et al. (1994),
Just i ¢ e $cavaland Dgn@edyq2B0()7), Forest et al. (2011), Scavia et al. (2003, 2004)
Justi ¢ @014, Fameeneyal.2016),J u st i (201% Testa ét al. (20)7Laurent et al.
(2018) Fennel and Laurent (201&ndOu and Xug2022). Otherforecasts for this yeawill be
from theUniversity of Michigan(http://scavia.seas.umich.edu/hypoefiaecasts), Dalhousie
University (http://memg.ocean.dal.ca/newslprth Carolina State University
(https://obenour.wordpress.ncsu.edu/ngvesid the Virginia Institute of Marine Science
(http://www.vims.edu/research/topics/dead_zones/forecasts/gom/index.php). The NOAA
ensemble predictions are based on these models (http://www.noaa.gowiehesbas)These
models do not always produsinilar results, and model improvement is one focus of ongoing
research efforts supported by the NOAA National Centers for Coastal Scisgate. The
general result from an ensemble analysis usinfithenodel results indicates that a 60%
reduction in Mississippi River nitrogen load is required to reach the Hypoxia Task Force
environmentagoal, and that a 25% load reduction is requicekdave a 95% certainty of
observing a hypoxic area reduction within a consecutiyead assessment period (Scavia et al.
2017).

A recentdescription of hypoxi@evelopmenin the northern Gulf of Mexics in
Rabalais and Turner (20L%Ve review theast, present, amubssible future conditions of
hypoxia inthe northerrGulf of Mexico and providesomeinsight into possiblenanagement
actions Kirchman (2021) is avell-written and recenbverview of low oxygen zones in rivers,
lakes, estuaries and @oes

Beyond the Coast

Hypoxic zones in a dynamic equilibrium of forces, some of which are known or
suspectedand others are unexplored or get realizedAcidification, climate change, climate
change gases, temperature, andefighargeting are beg explored with financial support
ranging from meagre tmoderate levelsThe conditions driving the size of the hypoxic zone in
all of these modelscludesnutrient loading in the Mississippi Rivéutrient loading is
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2022 Hypoxia Forecast 10

predominantly driven by land ushoicesin the river watershed here has been no reduction in
the quantity of nitrogen in the river aftdre Hypoxia Action Pla(MRNGoM HTF 2001yvas
forwarded to Congress 2001

Restorabn of the coastal watersquiresreducing nutrient loading to the coastal zone
and this requireshanging farming practices the Mississippi River watershed (Rabotyagov et
al. 2014) Nitrogen loadingcan be reduced with both agronomic and frelrientreduction
techniques thatovercrops, crop rotation arghifts inland under tile drainage (Randall and
Mulla 2001; Dinnes et al. 2002). Tile drainage can go into buffer strips befesclesstreams,
drairsinto wetlands, or even not be used if row cropped fields are convertecetinalsThe
replacement of deeqwoted perennials giving continuous living cover with siiodted annuals
leaving the ground bare for more than half the year results in more soil erosion (Heathcote et al.
2013) Putting perennials back into the landgeavill reduce soil erosioand nutrient losses
from farm fields

An excellentexampleof the use of perennial grairssprovided by Liebmann et al. (2013)
and Dauvis et al. (2012) who conducted-gear field trial of alternative cropping systems for
cornsoybean rotations at lowa State University. Some key findings were that by oxérg c
crops for 4 yearthere was150% or more reduction in fossil fuel use, a doubling of
employment, and the profits remained unchanged. diversification of crop aerage with
small grains and legumes ha®1% reduction in fertilizer us87% reduction in herbicide use
and increased carbon storatyeplementing these strategies requires changing significant
embedded social, agronomic and political condgitwat will benefit the agronomic community,
the soil upon which it depends and niepa positive component of climate change adaptation.
Maintaining the status quo will not be so helpful.

Postcruise Assessment

The2022mapping cruise is scheduled for Jalyto August 1.The data will be posteals
close todaily as possiblat http://www.gulfhypoxia.netDelays will be related to QA/QC of
dissolved oxygen datgainst Winkler titratonsT he data from this year’ s
guantify the relative merits of the assumptions of the models, and to compare them with other
models. This is an example lmdw longterm observations are one of the best ways to test and
calibrate ecosystemodels, to recognize the dynamic nature of our changing environment(s),
and to improve the basis for sound management decidibapostcruise assessment will be
providedat the end of the summer shelfwide hypoxia cruise and posted on the same website
where this report agars
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Appendix Figure 1. Location of hypoxia monitoring stations sampled in sun(merevery

year, depending on location of hypoxic ar¢hg transects off Terrebonne Bay (transect C) and
Atchafalaya Bay (transect F), and the ocean observing system (asterisk) off Terigap(me
longer in operation)
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Appendix Figure 2. The number of State, Federal and university cruises associated with
hypoxia measurements in the northern Gulf of Mexico from 1985 to 2016. LUMCON =
Louisiana Universities Marine ConsortiuREAMAP =Southeast Area Monitoring and
Assessment Program; TAMU = Texas A&M Warsity; UMCES = University oMaryland
Center for Environmental Studies; EPA = U.S. Environmental Protection AgRESOP =
Nutrient Enhanced Coastal Ocean Productivity; LDWBbgisiana Department of Wildlife
Research; LUMCON = transects sampled dugithe year by LUMCONSource: M#i et al.
2018;used with permission.



