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Abstract

MPI (Message Passing Interface) is a specification for a standard library for message
passing that was defined by the MPI Forum, a broadly based group of parallel com-
puter vendors, library writers, and applications specialists. Multiple implementations
of MPI have been developed. In this paper, we describe MPICH, unique among existing
implementations in its design goal of combining portability with high performance. We
document its portability and performance and describe the architecture by which these
features are simultaneously achieved. We also discuss the set of tools that accompany
the free distribution of MPICH, which constitute the beginnings of a portable parallel
programming environment. A project of this scope inevitably imparts lessons about
parallel computing, the specification being followed, the current hardware and software
environment for parallel computing, and project management; we describe those we
have learned. Finally, we discuss future developments for MPICH, including those nec-
essary to accommodate extensions to the MPI Standard now being contemplated by
the MPI Forum.

1 Introduction

The message-passing model of parallel computation has emerged as an expressive, effi-
cient, and well-understood paradigm for parallel programming. Until recently, the syntax
and precise semantics of each message-passing library implementation were different from
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the others, although many of the general semantics were similar. The proliferation of
message-passing library designs from both vendors and users was appropriate for a while,
but eventually it was seen that enough consensus on requirements and general semantics
for message-passing had been reached that an attempt at standardization might usefully be
undertaken.

The process of creating a standard to enable portability of message-passing applica-
tions codes began at a workshop on Message Passing Standardization in April 1992, and
the Message Passing Interface (MPI) Forum organized itself at the Supercomputing ’92
Conference. During the next eighteen months the MPI Forum met regularly, and Version
1.0 of the MPI Standard was completed in May 1994 [16, 36]. Some clarifications and re-
finements were made in the spring of 1995, and Version 1.1 of the MPI Standard is now
available [17]. For a detailed presentation of the Standard itself, see [42]; for a tutorial
approach to MPI, see [29]. In this paper we assume that the reader is relatively familiar
with the MPI specification, but we provide a brief overview in Section 2.2.

The project to provide a portable implementation of MPI began at the same time as
the MPI definition process itself. The idea was to provide early feedback on decisions being
made by the MPI Forum and provide an early implementation to allow users to experiment
with the definitions even as they were being developed. Targets for the implementation were
to include all systems capable of supporting the message-passing model. MPICH is a freely
available, complete implementation of the MPI specification, designed to be both portable
and efficient. The “CH” in MPICH stands for “Chameleon,” symbol of adaptability to
one’s environment and thus of portability. Chameleons are fast, and from the beginning a
secondary goal was to give up as little efficiency as possible for the portability.

MPICH is thus both a research project and a software development project. As a
research project, its goal is to explore methods for narrowing the gap between the program-
mer of a parallel computer and the performance deliverable by its hardware. In MPICH,
we adopt the constraint that the programming interface will be MPI, reject constraints on
the architecture of the target machine, and retain high performance (measured in terms of
bandwidth and latency for message-passing operations) as a goal. As a software project,
MPICH’s goal is to promote the adoption of the MPI Standard by providing users with
a free, high-performance implementation on a diversity of platforms, while aiding vendors
in providing their own customized implementations. The extent to which these goals have
been achieved is the main thrust of this paper.

The rest of this paper is organized as follows. Section 2 gives a short overview of MPI
and briefly describes the precursor systems that influenced MPICH and enabled it to come
into existence so quickly. In Section 3 we document the extent of MPICH’s portability and
present results of a number of performance measurements. In Section 4 we describe in some
detail the software architecture of MPICH, which comprises the results of our research in
combining portability and performance. In Section 5 we present several specific aspects
of the implementation that merit more detailed analysis. Section 6 describes a family of
supporting programs that surround the core MPI implementation and turn MPICH into a
portable environment for developing parallel applications. In Section 7 we describe how we
as a small, distributed group have combined a number of freely available tools in the Unix
environment to enable us to develop, distribute, and maintain MPICH with a minimum
of resources. In the course of developing MPICH, we have learned a number of lessons
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from the challenges posed (both accidentally and deliberately) for MPI implementors by
the MPI specification; these lessons are discussed in Section 8. Finally, Section 9 describes
the current status of MPICH (Version 1.0.12 as of February 1996) and outlines our plans
for future development.

2 Background

In this section we give an overview of MPI itself, describe briefly the systems on which
the first versions of MPICH were built, and review the history of the development of the
project.

2.1 Precursor Systems

MPICH came into being quickly because it could build on stable code from existing systems.
These systems prefigured in various ways the portability, performance, and some of the other
features of MPICH. Although most of that original code has been extensively reworked,
MPICH still owes some of its design to those earlier systems, which we briefly describe
here.

P4 [8] is a third-generation parallel programming library, including both message-passing
and shared-memory components, portable to a great many parallel computing environments,
including heterogeneous networks. Although p4 contributed much of the code for TCP/IP
networks and shared-memory multiprocessors for the early versions of MPICH, most of that
has been rewritten. P4 remains one of the “devices” on which MPICH can be built (see
Section 4), but in most cases more customized alternatives are available.

Chameleon [31] is a high-performance portability package for message passing on par-
allel supercomputers. It is implemented as a thin layer (mostly C macros) over vendor
message-passing systems (Intel’s NX, TMC’s CMMD, IBM’s MPL) for performance and
over publicly available systems (p4 and PVM) for portability. A substantial amount of
Chameleon technology is incorporated into MPICH(as detailed in Section 4).

Zipcode [41] is a portable system for writing scalable libraries. It contributed several
concepts to the design of the MPI Standard—in particular contexts, groups, and mailers (the
equivalent of MPI communicators). Zipcode also contains extensive collective operations
with group scope as well as virtual topologies, and this code was heavily borrowed from in
the first version of MPICH.

2.2 Brief Overview of MPI

MPI is a message-passing application programmer interface, together with protocol and
semantic specifications for how its features must behave in any implementation (such as
a message buffering and message delivery progress requirement). MPI includes point-to-
point message passing and collective (global) operations, all scoped to a user-specified group
of processes. Furthermore, MPI provides abstractions for processes at two levels. First,
processes are named according to the rank of the group in which the communication is being
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performed. Second, virtual topologies allow for graph or Cartesian naming of processes
that help relate the application semantics to the message passing semantics in a convenient,
efficient way. Communicators, which house groups and communication context (scoping)
information, provide an important measure of safety that is necessary and useful for building
up library-oriented parallel code.

MPI also provides three additional classes of services: environmental inquiry, basic
timing information for application performance measurement, and a profiling interface for
external performance monitoring. MPI makes heterogeneous data conversion a transparent
part of its services by requiring datatype specification for all communication operations.
Both built-in and user-defined datatypes are provided.

MPI accomplishes its functionality with opaque objects, with well-defined constructors
and destructors, giving MPI an object-based look and feel. Opaque objects include groups
(the fundamental container for processes), communicators (which contain groups and are
used as arguments to communication calls), and request objects for asynchronous opera-
tions. User-defined and predefined datatypes allow for heterogeneous communication and
elegant description of gather/scatter semantics in send/receive operations as well as in col-
lective operations.

MPI provides support for both the SPMD and MPMD modes of parallel programming.
Furthermore, MPI can support interapplication computations through intercommunicator
operations, which support communication between groups rather than within a single group.
Dataflow-style computations also can be constructed from intercommunicators. MPI pro-
vides a thread-safe application programming interface (API), which will be useful in multi-
threaded environments as implementations mature and support thread safety themselves.

2.3 Development History of MPICH

At the organizational meeting of the MPI Forum at the Supercomputing ’92 conference,
Gropp and Lusk volunteered to develop an immediate implementation that would track
the Standard definition as it evolved. The purpose was to quickly expose problems that
the specification might pose for implementors and to provide early experimenters with an
opportunity to try ideas being proposed for MPI before they became fixed. The first version
of MPICH, in fact, implemented the prespecification described in [46] within a few days.
The speed with which this version was completed was due to the existing portable systems
p4 and Chameleon. This first MPICH, which offered quite reasonable performance and
portability, is described in [30].

Starting in spring 1993, this implementation was gradually modified to provide increased
performance and portability. At the same time the system was greatly expanded to include
all of the MPI specification. Algorithms for the collective operations and topologies, together
with code for attribute management, were borrowed from Zipcode and tuned as the months
went by.

What made this project unique was that we had committed to following the MPI spec-
ification as it developed—and it changed at every MPI Forum meeting. Most system im-
plementors wait for a stable specification. The goals of this project dictated that, in the
short term, we deliberately choose a constantly changing specification. The payoff came,
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of course, when the MPI Standard was released in May 1994: the MPICH implementation
was complete, portable, fast, and available immediately. It is worthwhile to contrast this
situation with what happened in the case of the High-Performance Fortran (HPF) Stan-
dard. The HPF Forum (which started and finished a year before the MPI Forum) produced
their standard specification in much the same way that the MPI Forum did. However, since
implementation was left entirely to the vendors, who naturally waited until the specification
was complete before beginning to invest implementation effort, HPF implementations are
only now (February 1996) becoming available, whereas a large community has been using
MPI for over a year.

For the past year, with the MPI Standard stable, MPICH has continued to evolve in
several directions. First, the Abstract Device Interface (ADI) architecture, described in
Section 4 and central to the performance, has developed and stabilized. Second, individual
vendors and others have begun taking advantage of this interface to develop their own highly
specialized implementations of it; as a result, extremely efficient implementations of MPI
exist on a greater variety of machines than we would have been able to tune MPICH for
ourselves. In particular, Convex, Intel, SGI, and Meiko have produced implementations of
the ADI that produce excellent performance on their own machines, while taking advantage
of the portability of the great majority of the code in MPICH above the ADI layer. Third,
the set of tools that form part of the MPICH parallel programming environment has been
extended; these are described in Section 6.

2.4 Related Work

The publication of the MPI Standard provided many implementation groups with a clear
specification; and several freely available, partially portable implementations have appeared.
Like MPICH, their initial versions were built on existing portable message-passing systems.
They differ from MPICH in that they focus on the workstation environment, where software
performance is necessarily limited by Unix socket functionality. Some of these systems are
as follows:

• LAM [7] is available from the Ohio Supercomputer Center and runs on heterogeneous
networks of Sun, DEC, SGI, IBM, and HP workstations.

• CHIMP-MPI [5] is available from the Edinburgh Parallel Computing Center and runs
on Sun, SGI, DEC, IBM, and HP workstations, the Meiko Computing Surface ma-
chines, and the Fujitsu AP-1000. It is based on CHIMP [9].

• At the Technical University of Munich, research has been done on a system for check-
pointing message-passing jobs, including MPI. See [43] and [44].

• Unify [45], available from Mississippi State University, layers MPI on a version of
PVM [20] that has been modified to support contexts and static groups. Unify allows
mixed MPI and PVM calls in the same program.

Proprietary and platform-specific implementations provided by vendors are described in
Section 9.

5



3 Portability and Performance

The challenge of the MPICH project is to combine both portability and performance. In
this section we first survey the range of environments in which MPICH can be used, and
then present performance data for a representative sample of those environments.

3.1 Portability of MPICH

The MPI standard itself addresses the message-passing model of parallel computation. In
this model, processes with separate address spaces (like Unix processes) communicate with
one another by sending and receiving messages. A number of different hardware platforms
support such a model.

3.1.1 Exploiting High-Performance Switches

The most obvious hardware platform for MPI is a distributed-memory parallel supercom-
puter, in which each process can be run on a separate node of the machine, and com-
munication occurs over a high-performance switch of some kind. In this category are the
Intel Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2, and Cray T3D.
(Although the Cray T3D provides some hardware that allows one to treat it as a shared-
memory machine, it falls primarily into this category; see [4].) Details of how MPICH is
implemented on each of these machines are given in Section 4, and performance results for
the Paragon and SP2 are given in Section 3.2.

3.1.2 Exploiting Shared-Memory Architectures

A number of architectures support a shared-memory programming model, in which a mem-
ory location can be both read and written to by multiple processes. Although this is
not part of MPI’s computational model, an MPI implementation may take advantage of
capabilities in this area offered by the hardware/software combination to provide partic-
ularly efficient message-passing operations. Current machines offering this model include
the SGI Onyx, Challenge, Power Challenge, and Power Challenge Array machines, IBM
SMP’s (symmetric multiprocessors), the Convex Exemplar, and the Sequent Symmetry.
MPICH is implemented using shared memory for efficiency on all of these machines (details
in Section 4). Performance measurements for the SGI are given in Section 3.2.6.

3.1.3 Exploiting Networks of Workstations

One of the most common parallel computing environments is a network of workstations.
Many institutions use Ethernet-connected personal workstations as a “free” computational
resource, and at many universities laboratories equipped with Unix workstations provide
both shared Unix services for students and an inexpensive parallel computing environment
for instruction. In many cases, the workstation collection includes machines from multiple
vendors. Interoperability is provided by the TCP/IP standard. MPICH runs on worksta-
tions from Sun (both SunOS and Solaris), DEC, Hewlett-Packard, SGI, and IBM. Recently,
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the Intel 486 and Pentium compatible machines have been able to join the Unix worksta-
tion family by running one of the common free implementations of Unix, such as FreeBSD,
NetBSD, or Linux. MPICH runs on all of these workstations and on heterogeneous collec-
tions of them. Details of how heterogeneity is handled are presented in Section 4, and some
performance figures for Ethernet-connected workstations are given in Section 3.2.

An important family of non-Unix operating systems is supported by Microsoft. MPICH
has been ported to Windows 3.1 (where it simulates multiprocessing on a single processor);
the system is called WinMPI [37, 38].

3.2 Performance of MPICH

The MPI specification was designed to allow high performance in the sense that semantic
restrictions on optimization were avoided wherever user convenience would not be severely
impacted. Furthermore, a number of features were added to enable users to take advantage
of optimizations that some systems offered, without affecting portability to other systems
that did not have such optimizations available. In MPICH we have tried to take advantage
of those features in the Standard that allow for extra optimization, but we have not done
so in every possible case.

Performance on one’s own application is, of course, what counts most. Nonetheless,
useful predictions of application performance can be made, based on the results of specially
constructed benchmark programs. In this section, we first describe some of the difficulties
that arise in benchmarking message-passing systems, then discuss the programs we have de-
veloped to address these difficulties and finally present results from running the benchmarks
on a representative sample of the environments supported by MPICH.

The MPICH implementation includes two MPI programs, mpptest and goptest, that
provide reliable tests of the performance of an MPI implementation. The program mpptest
provides testing of both point-to-point and collective operations on a specified number of
processors; the program goptest can be used to study the scalability of collective routines
as a function of number of processors.

3.2.1 Performance Measurement Problems and Pitfalls

One common problem with simple performance measurement programs is that the results
are different each time the program is run, even on the same system. A number of factors are
responsible, ranging from assuming that the clock calls have no cost and infinite resolution
to the effects of other jobs running on the same machine. A good performance test will
give the same (to the clock’s precision) answer each time. The mpptest and goptest
programs distributed with MPICH compute the average time for a number of iterations of
an operation (thus handling the cost and granularity of the clock) and then run the same
test over several times and take the minimum of those times (thus reducing the effects of
other jobs). The programs can also provide information about the mean and worst-case
performance.

More subtle are issues of which test to run. The simplest “ping-pong” test, which sends
the same data (using the same data buffer) between two processes, allows data to reside
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entirely in the memory cache. In many real applications, however, neither buffer will al-
ready be mapped into cache, and this situation can affect the performance of the operation.
Similarly, data transfers that are not properly aligned on word boundaries can be more
expensive than those that are. MPI also has noncontiguous datatypes; the performance
of an implementation with these datatypes may be significantly slower than for contiguous
data. Another parameter is the number of processors used, even if only two are communi-
cating. Certain implementations will include a latency cost proportional to the number of
processors. This gives the best performance on the two-processor ping-pong test at the cost
of (possibly) lower performance on real applications. Mpptest and goptest include tests to
measure these effects.

3.2.2 Benchmarks for Point-to-Point Operations

In this section we present some of the simplest benchmarks for performance of MPICH on
various platforms. The performance test programs mpptest and goptest can produce a
wealth of information; the script basetest, provided with the MPICH implementation, can
be used to get a more complete picture of the behavior of a particular system. Here, we
present only the most basic data: short- and long-message performance.

For the short-message graphs, the only options used with mpptest are -auto and -size
0 1000 40. The option -auto tells mpptest to choose the sizes of the messages so as to
reveal the exact message size where there is any sudden change in behavior (for example,
at an internal packet-size boundary). The -size option selects messages with sizes from 0
to 1000 bytes in increments of 40 bytes. The short-message graphs give a good picture of
the latency of message passing.

For the long-message graphs, a few more options are used. Some make the test runs
more efficient. The size range of message is set with -size 1000 77000 4000, which selects
messages of sizes between about 1K and 80K, sampled every 4000 bytes.

These tests provide a picture of the best achievable bandwidth performance. More
realistic tests can be performed by using -cachesize (to force the use of different data
areas), -overlap (for communication and computation overlap), -async (for nonblocking
communications), and -vector (for noncontiguous communication). Using
-givedy gives information on the range of performance, displaying both the mean and
worst-case performance.

3.2.3 Performance of MPICH Compared with Native Vendor Systems

One question that can be asked about MPI is how its performance compares with propri-
etary vendor systems. Fortunately, the mpptest program was designed to work with many
message-passing systems and can be built to call a vendor’s system directly. In Figure 1,
we compare MPI and Intel’s NX message-passing. The MPICH implementation for the In-
tel Paragon, while implemented with a special ADI, still relies on message-passing services
provided by NX. Despite this fact, the MPI performance is quite good and can probably
be improved with the second-generation ADI, planned for a later release of MPICH. We
use this as a representative example to demonstrate that the apparently elaborate structure
shown in Figures 7 and 8 does not impose serious performance overheads beyond those of
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Figure 1: MPICH vs. NX on the Paragon

the underlying, vendor-specific message-passing layer.

3.2.4 Paragon Measurements

The Intel Paragon has a classic distributed-memory architecture with a (cut-through routed)
2-D mesh topology. Latency and bandwidth performance are shown in Figure 2. The
Paragon performance measurements shown in Figure 2 were taken while other users were
on the system. This explains why the right side of Figure 2 is “rougher” than the curve in
Figure 1, although the peak bandwidth shown is similar.

3.2.5 IBM SP2 measurements

The IBM SP2 at Argonne National Laboratory has Power-1 nodes (the same as in the IBM
SP1) and the SP2 high-performance switch. Measurements on IBM SP2 with Power-2 nodes
(thin or wide) will be different. The latencies shown in Figure 3 reflect the slower speed of
the Power-1 nodes. Note the obvious packet boundaries in the short-message plot.

3.2.6 SGI Power Challenge Measurements

The SGI Power Challenge is a symmetric multiprocessor. The latency and bandwidth
performance as shown in Figure 4 indicate the performance for the ch_shmem device, a
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Figure 2: Short and long messages on the Paragon

Figure 3: Short and long messages on the IBM SP2

generic shared-memory device supplied with the MPICH implementation.

3.2.7 Cray T3D Measurements

The Cray T3D supports a shared memory interface (the shmem library). For MPICH, this
library is used to support MPI message-passing semantics. The latency and bandwidth
performance are shown in Figure 5.
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Figure 4: Short and long messages on the SGI Power Challenge

Figure 5: Short and long messages on the Cray T3D

3.2.8 Workstation Network Measurements

Workstation networks connected by simple Ethernet are common. The performance of
MPICH for two Sun SPARCStations, on a shared Ethernet, are shown in Figure 6.
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Figure 6: Short and Long Messages on a workstation network

4 Architecture of MPICH

In this section we describe in detail how the software architecture of MPICH supports
the conflicting goals of portability and high performance. The design was guided by two
principles. First, we wished to maximize the amount of code that can be shared without
compromising performance. A large amount of the code in any implementation is system
independent. Implementation of most of the MPI opaque objects, including datatypes,
groups, attributes, and even communicators, is platform-independent. Many of the complex
communication operations can be expressed portably in terms of lower-level ones. Second,
we wished to provide a structure whereby MPICH could be ported to a new platform
quickly, and then gradually tuned for that platform by replacing parts of the shared code
by platform-specific code. As an example, we present in Section 4.3 a case study showing
how MPICH was quickly ported and then incrementally tuned for peak performance on SGI
shared-memory systems.

The central mechanism for achieving the goals of portability and performance is a specifi-
cation we call the abstract device interface (ADI) [24]. All MPI functions are implemented
in terms of the macros and functions that make up the ADI. All such code is portable.
Hence, MPICH contains many implementations of the ADI, which provide portability, ease
of implementation, and an incremental approach to trading portability for performance.
One implementation of the ADI is in terms of a lower level (yet still portable) interface we
call the channel interface [28]. The channel interface can be extremely small (five functions
at minimum) and provides the quickest way to port MPICH to a new environment. Such
a port can then be expanded gradually to include specialized implementation of more of
the ADI functionality. The architectural decisions in MPICH are those that relegate the
implementation of various functions to the channel interface, the ADI, or the application
programmer interface (API), which in our case is MPI.
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4.1 The Abstract Device Interface

The design of the ADI is complex because we wish to allow for, but not require, a range of
possible functions of the device. For example, the device may implement its own message-
queuing and data-transfer functions. In addition, the specific environment in which the
device operates can strongly affect the choice of implementation, particularly with regard
to how data is transferred to and from the user’s memory space. For example, if the device
code runs in the user’s address space, then it can easily copy data to and from the user’s
space. If it runs as part of the user’s process (for example, as library routines on top of a
simple hardware device), then the “device” and the API can easily communicate, calling
each other to perform services. If, on the other hand, the device is operating as a separate
process and requires a context switch to exchange data or requests, then switching between
processes can be very expensive, and it becomes important to minimize the number of such
exchanges by providing all information needed with a single call.

Although MPI is a relatively large specification, the device-dependent parts are small.
By implementing MPI using the ADI, we were able to provide code that can be shared
among many implementations. Efficiency could be obtained by vendor-specific proprietary
implementations of the abstract device. For this approach to be successful, the semantics of
the ADI must not preclude maximally efficient instantiations using modern message-passing
hardware. While the ADI has been designed to provide a portable MPI implementation,
nothing about this part of the design is specific to the MPI library; our definition of an
abstract device can be used to implement any high-level message-passing library.

To help in understanding the design, it is useful to look at some abstract devices for
other operations, for example, for graphical display or for printing. Most graphical displays
provide for drawing a single pixel at an arbitrary location; any other graphical function
can be built by using this single, elegant primitive. However, high-performance graphical
displays offer a wide variety of additional functions, ranging from block copy and line draw-
ing to 3-D surface shading. One approach for allowing an API (application programmer
interface) to access the full power of the most sophisticated graphics devices, without sac-
rificing portability to less capable devices, is to define an abstract device with a rich set of
functions, and then provide software emulations of any functions not implemented by the
graphics device. We use the same approach in defining our message-passing ADI.

A message-passing ADI must provide four sets of functions: specifying a message to be
sent or received, moving data between the API and the message-passing hardware, managing
lists of pending messages (both sent and received), and providing basic information about
the execution environment (e.g., how many tasks are there). The MPICH ADI provides all
of these functions; however, many message-passing hardware systems may not provide list
management or elaborate data-transfer abilities. These functions are emulated through the
use of auxiliary routines, described in [24].

The abstract device interface is a set of function definitions (which may be realized as
either C functions or macro definitions) in terms of which the user-callable standard MPI
functions may be expressed. As such, it provides the message-passing protocols that dis-
tinguish MPICH from other implementations of MPI. In particular, the ADI layer contains
the code for packetizing messages and attaching header information, managing multiple
buffering policies, matching posted receives with incoming messages or queuing them if
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necessary, and handling heterogeneous communications. For details of the exact interface
and the algorithms used, see [24].

MPI

          MPI
point−to−point

The Channel
�

   Interface

   The Abstract
Device Interface

MPI_Reduce

MPI_Isend

(implementations of the channel interface)

SGI(3)T3D
�

Meiko

MPID_Post_Send    SGI(4)

NXMPID_SendControl

Figure 7: Upper layers of MPICH

A diagram of the upper layers of MPICH, showing the ADI, is shown in Figure 7. Sample
functions at each layer are shown on the left. Without going into details on the algorithms
present in the ADI, one can expect the existence of a routine like MPID SendControl, which
communicates control information. The implementation of such a routine can be in terms
of a vendor’s own existing message-passing system or new code for the purpose or can be
expressed in terms of a further portable layer, the channel interface.

4.2 The Channel Interface

At the lowest level, what is really needed is just a way to transfer data, possibly in small
amounts, from one process’s address space to another’s. Although many implementations
are possible, the specification can be done with a small number of definitions. The chan-
nel interface, described in more detail in [28], consists of only five required functions.
Three routines send and receive envelope (or control) information: MPID_SendControl,1

MPID_RecvAnyControl, and MPID_ControlMsgAvail; two routines send and receive data:
MPID_SendChannel and MPID_RecvFromChannel. Others, which might be available in spe-
cially optimized implementations, are defined and used when certain macros are defined

1One can use MPID SendControlBlock instead of or along with MPID SendControl. It can be more efficient
to use the blocking version for implementing blocking calls.
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that signal that they are available. These include various forms of blocking and nonblock-
ing operations for both envelopes and data.

These operations are based on a simple capability to send data from one process to
another process. No more functionality is required than what is provided by Unix in the
select, read, and write operations. The ADI code uses these simple operations to provide
the operations, such as MPID_Post_recv, that are used by the MPI implementation.

The issue of buffering is a difficult one. We could have defined an interface that assumed
no buffering, requiring the ADI that calls this interface to perform the necessary buffer
management and flow control. The rationale for not making this choice is that many of the
systems used for implementing the interface defined here do maintain their own internal
buffers and flow controls, and implementing another layer of buffer management would
impose an unnecessary performance penalty.

The channel interface implements three different data exchange mechanisms.

Eager In the eager protocol, data is sent to the destination immediately. If the destination
is not expecting the data (e.g., no MPI_Recv has yet been issued for it), the receiver
must allocate some space to store the data locally.

This choice often offers the highest performance, particularly when the underlying
implementation provides suitable buffering and handshakes. However, it can cause
problems when large amounts of data are sent before their matching receives are
posted, causing memory to be exhausted on the receiving processors.

This is the default choice in MPICH.

Rendezvous In the rendezvous protocol, data is sent to the destination only when re-
quested (the control information describing the message is always sent). When a
receive is posted that matches the message, the destination sends the source a request
for the data. In addition, it provides a way for the sender to return the data.

This choice is the most robust but, depending on the underlying system software, may
be less efficient than the eager protocol. Some legacy programs may fail when run
using a rendezvous protocol if an algorithm is unsafely expressed in terms of MPI_Send.
Such a program can be safely expressed in terms of MPI_Bsend, but at a possible cost in
efficiency. That is, the user may desire the semantics of an eager protocol (messages
are buffered on the receiver) with the performance of the rendezvous protocol (no
copying) but since buffer space is exhaustible and MPI_Bsend may have to copy, the
user may not always be satisfied.

MPICH can be configured to use this protocol by specifying -use_rndv during con-
figuration.

Get In the get protocol, data is read directly by the receiver. This choice requires a
method to directly transfer data from one process’s memory to another. A typical
implementation might use memcpy.

This choice offers the highest performance but requires special hardware support such
as shared memory or remote memory operations. In many ways, it functions like the
rendezvous protocol, but uses a different set of routines to transfer the data.
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To implement this protocol, special routines must be provided to prepare the address
for remote access and to perform the transfer. The implementation of this protocol
allows data to be transferred in several pieces, for example, allowing arbitrarily sized
messages to be transferred using a limited amount of shared memory. The routine
MPID_SetupGetAddress is called by the sender to determine the address to send to
the destination. In shared-memory systems, this may simply be the address of the
data (if all memory is visible to all processes) or the address in shared-memory where
all (or some) of the data has been copied. In systems with special hardware for moving
data between processors, it may be the appropriate handle or object.

MPICH includes multiple implementations of the channel interface (see Figure 8).

The Channel
�

     Interface

SCI

SGI(2)p2Chameleon

Convex SGI(1) Solaris

CMMD

tcp

p4

nx mpl
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isend

p4_send
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Figure 8: Lower layers of MPICH

Chameleon Perhaps the most significant implementation is the Chameleon version, which
was particularly important during the initial phase of MPICH implementation. By
implementing the channel interface in terms of Chameleon [31] macros, we provide
portability to a number of systems at one stroke, with no additional overhead, since
Chameleon macros are resolved at compile time. Chameleon macros exist for most
vendor message-passing systems, and also for p4, which in turn is portable to very
many systems. A newer implementation of the channel interface is a direct TCP/IP
interface, not involving p4.

Shared memory A completely different implementation of the channel interface has been
done (portably) for a shared-memory abstraction, in terms of a shared-memory malloc
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and locks. There are, in turn, multiple (macro) implementations of the shared-memory
implementation of the channel interface. This is represented as the p2 box in Figure 8.

Specialized Some vendors (SGI and HP-Convex, at present) have implemented the chan-
nel interface directly, without going through the shared-memory portability layer.
This approach takes advantage of particular memory models and operating system
features that the shared-memory implementation of the channel interface does not
assume are present.

SCI A specialized implementation of the channel interface has been developed for an imple-
mentation of the Scalable Coherent Interface [40] from Dolphin Interconnect Solutions,
which provides portability to a number of systems that use it [39].

Contrary to some descriptions of MPICH that have appeared elsewhere, MPICH has
never relied on the p4 version of the channel interface for portability to massively parallel
processors. From the beginning, the MPP (IBM SP, Intel Paragon, TMC CM-5) versions
used the macros provided by Chameleon. We rely on the p4 implementation only for the
workstation networks, and a p4-independent version for TCP/IP will be available soon.

4.3 A Case Study

One of the benefits of a system architecture like that shown in Figures 7 and 8 is the flex-
ibility provided in choosing where to insert vendor-specific optimizations. One illustration
of how this flexibility was used is given by the evolution of the Silicon Graphics version of
MPICH.

Since Chameleon had been ported to p4 and p4 had been ported to SGI workstations long
before the MPICH project began, MPICH ran on SGI machines from the very beginning.
This is the box shown as SGI(0) in Figure 8. This implementation used TCP/IP sockets
between workstations and standard Unix System V shared memory operations for message
passing within a multiprocessor like the SGI Onyx.

The SGI(1) box in Figure 8 illustrates an enhanced version achieved by using a simple,
portable shared-memory interface we call p2 (half of p4). In this version, shared memory
operations use special SGI operations for shared-memory functions instead of the less robust
System V operations.

SGI(2) in Figure 8 is a direct implementation of the channel interface that we did in
collaboration with SGI. It uses SGI-specific mechanisms for memory sharing that allow
single-copy data movement between processes (as opposed to copying into and out of an
intermediate shared buffer), and it uses lock-free shared queue management routines that
take advantage of special assembler language instructions of the MIPS microprocessor.

SGI next developed a direct implementation of the ADI that did not use the channel in-
terface model (SGI(3) in Figure 7), and then bypassed the ADI altogether to produce a very
high-performance MPI implementation for the Power Challenge Array product, combining
both shared-memory operations and message-passing over the HiPPI connections between
shared-memory clusters. Even at this specialized level, it retains much of the upper lev-
els of MPICH that are implemented either independently of, or completely on top of, the
message-passing layer, such as the collective operations and topology functions.
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At all times, SGI users had access to a complete MPI implementation, and their pro-
grams did not need to change in any way as the implementation improved.

5 Selected Subsystems

A detailed description of all the design decisions that went into MPICH would be tedious.
Here we focus on several of the salient features of this implementation that distinguish it
from other implementations of MPI.

5.1 Groups

The basis of an MPICH process group is an ordered list of process identifiers, stored as an
integer array. A process’s rank in a group refers to its index in this list. Stored in the list
is an address in a format the underlying device can use and understand. This is often the
rank in MPI_COMM_WORLD, but need not be.

5.2 Communicators

The Standard describes two types of communicators, intracommunicators and intercommu-
nicators, which consist of two basic components, namely process groups and communication
contexts. MPICH intracommunicators and intercommunicators use this same structure.

The Standard describes how intracommunicators and intercommunicators are related
(see Section 5.6 of the Standard). We take advantage of this similarity to reduce the com-
plexity of functions that operate on both intracommunicators and intercommunicators (e.g.,
communicator accessors, point-to-point operations). Most functions in the portable layer
of MPICH do not need to distinguish between an intracommunicator and an intercommu-
nicator. For example, each communicator has a local group (local_group) and a remote
group (group) as described in the definition of an intercommunicator. For intracommu-
nicators, these two groups are identical (reference counting is used to reduce the amount
of overhead associated with keeping two copies of a group; see Section 5.1); however, for
intercommunicators, these two groups are disjoint.

Another similarity between intracommunicators and intercommunicators is the use of
contexts. Each communicator has a send context (send_context) and a receive context
(recv_context). For intracommunicators, these two contexts are equal; for intercommu-
nicators, these contexts may be different. Regardless of the type of communicator, MPI
point-to-point operations attach the send_context to all outgoing messages and use the
recv_context when matching contexts upon receipt of a message.

For most MPICH devices, contexts are integers. Contexts for new communicators are
allocated through a collective operation over the group of processes involved in the com-
municator construction. Through this collective operation, all processes involved agree on
a context that is currently not in use by any of the processes. One of the algorithms used
to allocate contexts involves passing the highest context currently used by a process to an
MPI Allreduce with the MPI MAX operation to find the smallest context (an integer) unused
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by any of the participants.

In order to provide safe point-to-point communications within a collective operation, an
additional “collective” context is allocated for each communicator. This collective context
is used during communicator construction to create a “hidden” communicator (comm_coll)
that cannot be accessed directly by the user. This is necessary so that point-to-point
operations used to implement a collective operation do not interfere with user-initiated
point-to-point operations.

Other important elements of the communicator data structure include the following:

np, local rank, lrank to grank Used to provide more convenient access to local group
information.

collops Array of pointers to functions implementing the collective operations for the com-
municator (see Section 5.3).

5.3 Collective Operations

As noted in the preceding section, MPICH collective operations are implemented on top
of MPICH point-to-point operations. MPICH collective operations retrieve the hidden
communicator from the communicator passed in the argument list and then use standard
MPI point-to-point calls with this hidden communicator. We use straightforward “power-of-
two”-based algorithms to provide scalability; however, considerable opportunities for further
optimization remain.

Although the basic implementation of MPICH collective operations uses point-to-point
operations, special versions of MPICH collective operations exist. These special versions
include both vendor-supplied and shared-memory versions. In order to allow the use of these
special versions on a communicator-by-communicator basis, each communicator contains a
list of function pointers that point to the functions that implement the collectives for that
particular communicator. Each communicator structure contains a reference count so that
communicators can share the same list of pointers.

typedef struct MPIR_COLLOPS {
int (*Barrier) (MPI_Comm comm );
int (*Bcast) (void* buffer, int count, MPI_Datatype datatype,

int root, MPI_Comm comm );

... other function pointers ...

int ref_count; /* So we can share it */
} MPIR_COLLOPS;

Each MPI collective operation checks the validity of the input arguments, then forwards
the function arguments to the dereferenced function for the particular communicator. This
approach allows vendors to substitute system-specific implementations for all or some of
the collective routines. Currently, Meiko, Intel, and Convex have provided vendor-specific
collective implementations. These implementations follow system-specific strategies; for
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example, the Convex SPP collective routines make use both of shared memory and of the
memory hierarchies in the SPP.

5.4 Attributes

Attribute caching on communicators is implemented by using a height-balanced tree (HBT
or AVL tree) [35]. Each communicator has an HBT associated with it, although initially
the HBT may be an empty or null tree. Caching an attribute on a communicator is simply
an insertion into the HBT; retrieving an attribute is simply searching the tree and returning
the cached attribute.

MPI keyvals are created by passing the attribute’s copy function and destructor as well
as any extra state needed to the keyval constructor. Pointers to these are kept in the
keyval structure that is passed to attribute functions.

Additional elements of a keyval include a flag denoting whether C or Fortran calling
conventions are to be used for the copy function (the attribute input argument to the copy
function is passed by value in C and passed by reference in Fortran).

Caching on other types of MPI handles is being considered for inclusion in the MPI-2
standard. The MPICH HBT implementation of caching can be used almost exactly as is
for implementing caching on other types of MPI handles by simply adding an HBT to the
other types of handles.

5.5 Topologies

Support for topologies is layered on the communicator attribute mechanism. Because of
this configuration, the code implementing topologies is almost entirely portable even to
other MPI implementations. For communicators with associated topology information,
the communicator’s cache contains a structure describing the topology (either a Cartesian
topology or a graph topology). The MPI topology functions access the cached topology
information as needed (using standard MPI calls), then use this information to perform the
requested operation.

5.6 The Profiling Interface

The MPI Forum wished to promote the development of tools for understanding program
behavior, but considered it premature to standardize any specific tool interface. The MPI
specification provides instead a general mechanism for intercepting calls to MPI functions.
Thus both end users and tool developers can develop portable performance analyzers and
other tools without access to the MPI implementation source code. The only requirement
is that every MPI function be callable (in both C and Fortran) by an alternate name
(PMPI Xxxx as well as the usual MPI Xxxx.). In some environments (those supporting “weak
symbols”) the additional entry points can be supplied in the source code. In MPICH we
take the less elegant but more portable approach of building a duplicate MPI library in
which all functions are known by their PMPI names. Of course, only one copy of the source
code is maintained. Users can interpose their own “profiling wrappers” for MPI functions by
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linking with their own wrappers, the standard version of the MPI library, and the profiling
version of the MPI library in the proper order. MPICH also supplies a number of prebuilt
profiling libraries; these are described in Section 6.3.1.

5.7 The Fortran Interface

MPI is a language-independent specification with separate language bindings. The MPI-1.1
standard specifies a C and a Fortran 77 binding. Since these bindings are quite similar,
we decided to implement MPI in C, with the Fortran implementation simply calling the
C routines. This strategy requires some care, however, because some C routines take ar-
guments by value while all Fortran routines take arguments by reference. In addition, the
MPICH implementation uses pointers for the MPI opaque objects (such as MPI_Request
and MPI_Comm); Fortran has no native pointer datatype, and the MPI standard uses the
Fortran INTEGER type for these objects. Rather than manually create each interface routine,
we used a program that had been developed at Argonne for just this purpose.

The program, bfort [21], reads the C source file and uses structured comments to
identify routines for which to generate interfaces. Special options allow it to handle opaque
types, choose how to handle C pointers, and provide name mapping. In many cases, this was
all that was necessary to create the Fortran interfaces. In cases where routine-specific code
was needed (for example, in MPI_Waitsome where zero-origin indexing is used in C and one-
origin is used in Fortran), the automatically generated code was a good base to use for the
custom code. Using the automatic tool also simplifies updating all of the interfaces when
a system with a previously unknown Fortran-C interface is encountered. This situation
arose the first time we ported MPICH to a system that used the program f2c [14] as a way
to provide a Fortran compiler; f2c generates unusual external names for Fortran routine
names. We needed only to rerun bfort to update the Fortran interfaces. This interface
handles the issues of pointer conversions between C and Fortran (see Section 8.5) as well
as the mapping of Fortran external names to C external names. The determination of
the name format (e.g., whether Fortran externals are upper or lower case and whether they
have underscore characters appended to them) is handled by our configure program, which
compiles a test program with the user’s selected Fortran compiler and extracts the external
name from the generated object file. This allows us to handle different Fortran compilers
and options on the same platform.

5.8 Job Startup

The MPI Forum did not standardize the mechanism for starting jobs. This decision was
entirely appropriate; by way of comparison, the Fortran standard does not specify how to
start Fortran programs. Nonetheless, the extreme diversity of the environments in which
MPICH runs and the diversity of job-starting mechanisms in those environments (special
commands like prun, poe, or mexec, settings of various environment variables, or special
command-line arguments to the program being started) suggested to us that we should
encapsulate the knowledge of how to run a job on various machines in a single command.
We named it mpirun. In all environments, an MPI program, say myprog, can be run with,
say, 12 processes by issuing the command
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mpirun -np 12 myprog

Note that this might not be the only way to start a program, and additional arguments might
usefully be passed to both mpirun and myprog (see Section 6.4), but the mpirun command
will always work, even if the starting of a job requires complex interaction with a resource
manager. For example, at Argonne we use a home-grown scheduler called EASY instead of
IBM’s LoadLeveler to start jobs on our IBM SP; interaction with EASY is encapsulated in
mpirun.

A number of other MPI implementations and environments have also decided to use the
name mpirun to start MPI jobs. The MPI Forum is discussing whether this command can
be at least partially standardized for MPI-2 (see Section 9.4).

5.9 Building MPICH

An important component of MPICH’s portability is the ability to build it in the same
way in many different environments. We rely on the existence of a Bourne shell sh (or
superset) and Unix-style make on the user’s machine. The sh script that the user runs
is constructed by GNU’s autoconf, which we need in our development environment, but
which the user does not need. At least a vanilla version of MPICH can be built in any of
MPICH’s target environments by going to the top-level directory of the distribution and
issuing the commands

configure
make

The configure script will determine aspects of the environment (such as the location of cer-
tain include files), perform tests of the environment to ensure that all components required
for the correct compilation and execution of MPICH programs are present, and construct the
appropriate Makefiles in many directories, so that the make command will build MPICH.
After being built and tested, MPICH can be installed in a publicly available location such
as /usr/local with make install. Painless building and installation has become one of
our pet goals for MPICH.

5.10 Documentation

MPICH comes with both an installation guide [25] and a user’s guide [27]. Although there
is some overlap, and therefore some duplication, we consider separating them to be a better
approach than combining them. Although many users obtain and use MPICH just for their
own use, an increasing number of them are linking their own programs to a system-wide copy
of the libraries that have been installed in a publicly accessible place. For such users the
information in the installation guide is a distraction. Conversely, the user’s guide contains a
collection of helpful hints for users who may be experiencing difficulties getting applications
to run. These difficulties might well never be encountered by systems administrators who
merely install MPICH.
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An important but frequently overlooked part of a software project (particular for re-
search software) is the generation of documentation, particularly Unix-style man pages.2 We
use a tool called doctext [22] that generates man pages (as well as WWW and LaTeX doc-
umentation) directly from simple, structured comments in the source code. Using this tool
allowed us to deliver MPICH with complete documentation from the beginning. Examples of
the documentation can be accessed on the WWW at http://www.mcs.anl.gov/mpi/www/index.html.

6 Toward a Portable Parallel Programming Environment

Although MPI specifies a standard library interface and therefore describes what a portable
parallel program will look like, it says nothing about the environment in which the program
will run. MPICH is a portable implementation of the MPI standard, but also attempts
to provide more for programmers. We have already discussed mpirun, which provides a
portable way to run programs. In this section we describe briefly some of the other tools
provided in MPICH along with the basic MPI implementation.

6.1 The MPE Extension Library

MPE (Multi-Processing Environment) is a loosely structured library of routines designed
to be “handy” for the parallel programmer in an MPI environment. That is, most of the
MPE functions assume the presence of some implementation of MPI, but not necessarily of
MPICH. MPE routines fall into several categories.

Parallel X graphics There are routines to provide all processes with access to a shared
X display. These routines are easier to use than the corresponding native Xlib rou-
tines and make it quite convenient to provide graphical output for parallel programs.
Routines are provided to set up the display (probably the hardest part) and draw
text, rectangles, circles, lines, etc. on it. It is not the case that the various processes
communicate with one process that draws on the display; rather, the display is shared
by all the processes. This library is described in [23].

Logging One of the most common tools for analyzing parallel program performance is a
time-stamped event trace file. The MPE library provides simple calls to produce such
a file. It uses MPI calls to obtain the time-stamps and to merge separate log files
together at the end of a job. It also automatically handles the misalignment and drift
of clocks on multiple processors, if the system does not provide a synchronized clock.
The logfile format is that of upshot [33]. This is the library for a user who wishes
to define his own events and program states. Automatic generation of events by MPI
routines is described in Section 6.3.1.

Sequential Sections Sometimes, a section of code that is executed on a set of processes
must be executed by only one process at a time, in rank order. The MPE library
provides functions to ensure that this type of execution occurs.

2This is not to say that the format of man pages cannot be improved; rather, every Unix user knows how
to get information this way and rightly expects man pages to be provided.
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Error Handling The MPI specification provides a mechanism whereby a user can control
how the implementation responds to run-time errors, including the ability to install
one’s own error handler. One error handler that we found convenient for developing
MPICH starts the dbx debugger in a popup xterm when an error is encountered.
Thus, the user can examine the stack trace and values of program variables at the
time of the error. To obtain this behavior, the user must

1. Compile and link with the -g option, as usual when using dbx.
2. (a) Link with the MPE library.

Call

MPI_Errhandler_set( comm, MPE_Errors_call_dbx_in_xterm )

early in the program,
OR

(b) Pass the -mpedbg argument to mpirun (if MPICH configured with -mpedbg).

6.2 Command-Line Arguments and Standard I/O

The MPI standard says little about command-line arguments to programs, other than that
in C they are to be passed to MPI_Init, which removes the command line arguments it rec-
ognizes. MPICH ensures that on each process, the command-line arguments returned from
MPI_Init are the same on all processes, thus relieving the user of the necessity of broad-
casting the command-line arguments to the rest of the processes from whichever process
actually was passed them as arguments to main.

The MPI Standard also says little about I/O, other than that if at least one process has
access to stdin, stdout, and stderr, the user can find out which process this is by querying
the attribute MPI_IO on MPI_COMM_WORLD. In MPICH, all processes have access to stdin,
stdout, and stderr, and on networks these I/O streams are routed back to the process
with rank 0 in MPI_COMM_WORLD. On most systems, these streams also can be redirected
through mpirun, as follows.

mpirun -np 64 myprog -myarg 13 < data.in > results.out

Here we assume that “-myarg 13” are command-line arguments processed by the applica-
tion myprog. After MPI_Init, each process will have these arguments in its argv. (This is
an MPICH feature, not an MPI requirement.) On batch systems where stdin may not be
available, one can use an argument to mpirun, as follows.

mpirun -np 64 -stdin data.in myprog -myarg 13 > results.out

The latter form may always be used.

6.3 Support for Performance Analysis and Debugging

The MPI profiling interface allows the convenient construction of portable tools that rely on
intercepting calls to the MPI library. Such tools are “ultra portable” in the sense that they
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can be used with any MPI implementation, not just a specific portable MPI implementation.

6.3.1 Profiling Libraries

The MPI specification makes it possible, but not particularly convenient, for users to build
their own “profiling libraries,” which intercept all MPI library calls. MPICH comes with
three profiling libraries already constructed; we have found them useful in debugging and
in performance analysis.

tracing The tracing library simply prints (on stdout) a trace of each MPI library call.
Each line is identified with its process number (rank in MPI_COMM_WORLD). Since
stdout from all processes is collected, even on a network of workstations, all out-
put comes out on the console. A sample is shown here.

...
[1] Starting MPI_Bcast...
[0] Starting MPI_Bcast...
[0] Ending MPI_Bcast
[2] Starting MPI_Bcast...
[2] Ending MPI_Bcast
[1] Ending MPI_Bcast

...

logging The logging library uses the mpe logging routines described in Section 6.1 to write
a logfile with events for entry to and exit from each MPI function. Then upshot (see
Section 6.3.2) can be used to display the computation, and its colored bars will show
the frequency and duration of each MPI call. (See Figure 9.)

animation The animation library uses the mpe graphics routines to provide a simple ani-
mation of the message passing that occurs in an application, via a shared X display.

Further description of these libraries can be found in [34].

6.3.2 Upshot

One of the most useful tools for understanding parallel program behavior is a graphical
display of parallel timelines with colored bars to indicate the state of each process at any
given time. A number of tools developed by various groups do this. One of the earliest of
these was upshot [33]. Since then upshot has been reimplemented in Tcl/Tk, and this ver-
sion [34] is distributed with MPICH. It can read log files generated either by Paragraph [32]
or by the mpe logging routines, which are in turn used by the logging profiling library. A
sample screen dump is shown in Figure 9.
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Figure 9: Upshot output

6.3.3 Support for Adding New Profiling Libraries

The most obvious way to use the profiling library is to choose some family of calls to
intercept, and then treat each of them in a special way. Typically, one performs some
action (adds to a counter, prints a message, writes a log record), calls the “real” MPI
function using its alternate name PMPI Xxxx, perhaps performs another action (e.g., writes
another log record), and then returns to the application, propagating the return code from
the PMPI routine.

MPICH includes a utility called wrappergen that lets a user specify “templates” for
profiling routines and a list of routines to create, and then automatically creates the pro-
filing versions of the specified routines. Thus the work required by a user to add a new
profiling library is reduced to writing individual MPI_Init and MPI_Finalize routines and
one template routine. The libraries described above in Section 6.3.1 are all produced in this
way. Details of how to use wrappergen can be found in [27].

6.4 Useful Commands

Aspects of the environment required for correct compilation and linking are encapsulated
in the Makefiles produced when the user runs configure. Users may set up a Makefile
for their own applications by copying one from an MPI examples directory and modifying
it as needed. The resultant Makefile may not be portable, but this may not be a primary
consideration.

An even easier and more portable way to build a simple application, and one that fits
within existing complex Makefiles, is to use the commands mpicc or mpif77, constructed in
the MPICH ‘bin’ directory by configure. These scripts are used like the usual commands
to invoke the C and Fortran compilers and the linker. Extra arguments to these commands
link with the designated versions of profiling libraries. For example,

mpicc -c myprog.c

compiles a C program, automatically finding the include libraries that were configured when
MPICH was installed. The command

mpif77 -mpilog -o myprog myprog.f
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compiles and links a Fortran program that, when run, will produce a log file that can be
examined with upshot. The command

mpicc -mpitrace -o myprog myprog.c

compiles and links a C program that displays a trace of its execution on stdout.

The mpirun command has already been mentioned. It has more flexibility than we have
described so far. In particular, in heterogeneous environments, the command

mpirun -arch sun4 -np 4 -arch rs6000 -np 3 myprog

starts myprog on four Sun4’s and three RS/6000’s, where the specific hosts have been stored
in MPICH’s “machines” file.

Special arguments for the application program can be used to make MPICH provide
helpful debugging information. For example,

mpirun -np 4 myprog -mpedbg -mpiqueue

automatically installs the error handler described in Section 6.3.1 that starts dbx on errors,
and display all message queues when MPI_Finalize is called. This latter option is useful
in locating “lost” messages.

Details on all of these commands can be found in the user’s guide [27].

6.5 Network Management Tools

Although not strictly part of MPICH itself, the Scalable Unix Tools (SUT) [26] are a useful
part of the MPICH programming environment on workstation clusters. Basically, SUT
implements parallel versions of common Unix commands such as ls, ps, cp, or rm. Perhaps
the most useful is a cross between find and ps that we call pfps (parallel find in the process
space). For example, one can find and send a KILL signal to runaway jobs on a workstation
network during a debugging session with

pfps -all -tn myprog -kill KILL

or locate all of one’s own jobs on the network that have been running for more than an
hour with

pfps -all -o me -and -rtime 1:00 -print

Graphical displays also show the load on each workstation and can help one choose the
sub-collection of machines to run an MPICH job on. Details can be found in [26].
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6.6 Example Programs

MPICH comes with a fairly rich collection of example programs to illustrate its features. In
addition to the extensive test suite and benchmark programs, there are example programs
for Mandelbrot computations, solving the Mastermind puzzle, and the game of life that
illustrate the use of the mpe library in an entertaining way. A number of simple examples
illustrate specific features of the MPI Standard (topologies, for example) and have been
developed for use in classes and tutorials. Many of the examples from [29] are included. For
all of these examples, configure prepares the appropriate Makefiles, but they have to be
individually built as the user wishes. One example is a moderately large complete nuclear
physics Monte Carlo integration application in Fortran.

7 Software Management Techniques and Tools

MPICH was written by a small, distributed team sharing the workload. We had the expected
problems of coordinating both development and maintenance of a moderately large (130,000
lines of C) and complex system. We have worked to distribute new releases in an orderly
fashion, track and respond to bug reports, and maintain contact with a growing body of
users. In doing so, we have used existing tools, engineered some of our own, and developed
procedures that have served us well. In this section we report on our experiences, in the
hope that some of our tools and methods will be useful to other system developers. All
software described here is freely available, either from well-known sources or included in
MPICH.

7.1 Configuring for Different Systems

We have tried, as a sort of pet goal, to make building MPICH completely painless, despite
the variety of target environments. This is a challenge. In earlier systems, such as p4,
Chameleon, and Zipcode, it was assumed that a particular vendor name or operating system
version was enough to determine how to build the system. This is too simplistic a view:

• The same hardware may run multiple operating systems (Solaris or SunOS on suns,
LINUX or FreeBSD on x86’s)

• Different versions of the same operating system may differ radically (SGI IRIX 5 is 32
bit, whereas IRIX 6 is 64; the number of parameters to some system calls in Solaris
depends on the minor version number).

• Different compilers may use different includes, datatype sizes, and libraries.

In addition, it is rare that a system is completely free of bugs; in particular, since we
distribute source code, it is imperative that the C compiler produce correct object code.
In distributing MPICH, we found that many users did not have correctly functioning C
compilers. It is best to determine this problem at configure time.

We use the GNU autoconf system to build a shell script (configure), which in turn
executes various commands (including building and running programs) to determine the
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user’s environment. It then creates Makefiles from makefile templates, as well as creating
some scripts that contain site-specific information (such as the location of the
wish interpreter).

The autoconf system as distributed provides commands for checking the part of a
system that the GNU tools need; in MPICH, we have defined an additional set of operations
that we found we needed in this and other projects. These include commands to test that
the compiler produces correct code and to choose a vendor’s compiler (with the correct
options; this is particularly important for the massively parallel systems). In short, the
configure script distributed with MPICH has evolved into a knowledge base about a wide
variety of vendor environments.

7.2 Source Code Management

To allow us all to work on the code without interfering with one another, we used RCS via
the Emacs VC interface.

7.3 Testing

Testing is often a lengthy and boring process. MPICH contains a test suite that attempts to
test the implementation of each MPI routine. While not as systematic as some commercial
testing systems, which can dwarf the size of the original package, our test suite has proven
invaluable to us in identifying problems before new releases. Many of the test programs
originated as bug-demonstration programs sent to us by our users. In MPICH, we automate
the testing process through the use of scripts that build, test, and generate a document that
summarizes the tests, including the configuration, correctness, and performance results. The
testing system is provided as part of the distribution.

7.4 Tracking and Responding to Problem Reports

We realized early on that simply leaving bug reports in our email list would not work. We
needed a system that would allow all of the developers to keep track of reports, including
what had been done (dialog with problem submitter, answers, etc.). It also had to be simple
for users to use and for us to install. We chose the req system [13]. This system allows
users to send mail (without any format restrictions) to mpi-bugs@mcs.anl.gov; the bug
report is kept in a separate system as well as being forwarded to a list of developers. Both
GUI and command-line access to the bug reports are provided.

Over time, it became clear that some problems were much more common than others.
We developed a database of common problems, searchable by keyword, which is also inte-
grated into the manual. When a user sends in a bug report, we can query the database for
a standard response to the problem. For example, if a user complains about getting the
message “Try Again,” the command

> mpich/help/bin/fmsg ’Try Again’

29



gives the information from the user’s guide on the message “Try Again” (which comes not
from MPICH but from rshd).

Announcements about new releases are sent to a mailing list (managed by majordomo)
to which users are encouraged to subscribe when they first run the configure script.

7.5 Preparing a New Release

Preparing a new release for a package as portable as MPICH requires testing on a wide
variety of platforms. To help test a new release of MPICH, we use several programs and
scripts that build and test the release on a new platform. The doc/port program included
in the MPICH distribution performs a build, checking for errors from the make, followed by
both performance and correctness tests. The output from this program is a postscript file
that describes the results of the build and tests; this postscript file is then made available
on the WWW in a table at http://www.mcs.anl.gov/mpi/mpich/porting/portversion-
number.html. Another program then is used to do an installation and to check that both
MPICH and the other tools (such as upshot and mpicc) work correctly. For networks of
workstations, additional tests (also managed by a separate program) test heterogeneous
collections of workstations. By automating much of the testing, we ensure that the testing
is reasonably complete and that the most glaring oversights are caught before a release
goes out. Unfortunately, because the space of possible tests is so large, these programs and
scripts have been built primarily by testing for past mistakes.

8 Lessons Learned

One of the purposes of doing an early implementation was to understand the implications of
decisions made during the development of the Standard. As expected, the implementation
process and early experiences of users shed light on the consequences of choices made at
MPI Forum meetings.

8.1 Language Bindings

One of the earliest lessons learned had to do with the language bindings and choices of
C datatypes for some items in the MPI Standard. For example, the 1.0 version passed
the MPI_Status structure itself, rather than a pointer to the structure, to the routines
MPI_Get_count, MPI_Get_elements, and MPI_Test_cancelled. The C bindings used int
in some places where an int might not be large enough to hold the result; most of these
(except for MPI_Type_size) were changed to MPI_Aint.

In the MPI_Keyval_create function, the predefined “null” functions MPI_NULL_COPY_FN
and MPI_NULL_DELETE_FN were originally both MPI_NULL_FN; unfortunately, neither of these
is exactly a null function (both have mandatory return values and the copy function also
sets a flag). Experience with the implementation helped the MPI Forum to repair these
problems in the 1.1 version of the MPI Standard.

A related issue was the desire of the Forum to make the same attribute copy and delete
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functions usable from both C and Fortran; for this reason, addresses were used in the 1.0
standard for some items in C that were more naturally values. Unfortunately, when the size
of the C int datatype is different from that of the Fortran INTEGER datatype, this approach
does not work. In a surprise move, the MPI Forum exploited this in the 1.1 Standard,
changing the bindings of the functions in C to use values instead of addresses.

Another issue is the Fortran bindings of all of the routines that take buffers. These
buffers can be of any Fortran datatype (e.g., INTEGER, REAL, or CHARACTER). This was
common practice in most previous message-passing systems but is in violation of the Fortran
Standard [15]. The MPI Forum voted to follow standard practice. In most cases, Fortran
compilers pass all items by reference, and few complain when a routine is called with
different datatypes. Unfortunately, several standard-conforming Fortran implementations
use a different representation for CHARACTER data than for numeric data, and in these cases
it is difficult to build an MPI implementation that works with CHARACTER data in Fortran.
The MPI Forum is attempting to address this problem in the MPI-2 proposal.

The MPI Forum provided a way for users to interrogate the environment to find out, for
example, what was the largest valid message tag. This was done in an elegant fashion by
using “attributes,” a general mechanism for users to attach information to a communicator.
The system attributes are attached to the initial MPI_COMM_WORLD communicator. The
problem is that, in general, users need to set as well as get attributes. Some users did in
fact try to set MPI_TAG_UB. MPICH now detects this as an illegal operation, and the MPI
Forum clarified this in the 1.1 Standard.

8.2 Performance

One of the goals of MPI was to define the semantics of the message passing operations so
that no unnecessary data motion was required. The MPICH implementation has shown
this goal to be achievable. On two different shared-memory systems, MPICH achieves a
single copy directly from user-buffer to user-buffer. In both cases, the operating system had
to be modified slightly to allow a process to directly access the address space of another
process. On distributed memory systems, two vendors were able to achieve the same result
by providing vendor-specific implementations of the ADI.

In actual use, some users have noticed some performance irregularities; these indicate
areas where more work needs to be done in implementations. For example, the implemen-
tation of MPI_Bsend in MPICH always copies data into the user-provided buffer; for small
messages, such copying is not always necessary (it may be possible to deliver the message
without blocking). This can have a significant effect on latency-sensitive calculations. Dif-
ferent methods for handling short, intermediate, and long messages are also needed and are
under development.

Another source of some performance difficulties is seemingly innocuous requirements
that affect the lowest levels of the implementation. For example, the following is legal in
MPI:

MPI_Isend( ..., &request );
MPI_Request_free( &request );
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The user need not (must not, actually) use a wait or test on the request. This functionality
can be complex to implement when well-separated software layers are used in the MPI
implementation. In particular, it requires that either the completion of the operation started
by the MPI_Isend change data maintained by the MPI implementation or that the MPI
implementation periodically check to see whether some request has completed. The problem
with this functionality is that it may not match well with the services that are implementing
the actual data transport, and can be the source of unanticipated latency.

Despite these problems, the MPICH implementation does achieve its goal of high per-
formance and portability. In particular, the use of a carefully layered design, where the
layers can be implemented as macros (or removed entirely, as one vendor has done), was
key in the success of MPICH.

8.3 Resource Limits

The MPI specification is careful not to constrain implementations with specific resource
guarantees. For many uses, programmers can work within the limits of any “reasonable”
implementation. However, many existing message-passing systems provide some (usually
unspecified) amount of buffering for messages sent but not yet received. This allows a user
to send messages without worrying about the process blocking waiting for the destination
to receive them or worrying about waiting on nonblocking send operations. The problem
with this approach is that if the system is responsible for managing the buffer space, user
programs can fail in mysterious ways. A better approach is to allow the user to specify
the amount of buffering desired. The MPI Forum, recognizing this need, added routines
with user-provided buffer space: MPI_Bsend, MPI_Buffer_attach, and MPI_Buffer_detach
(and nonblocking versions). These routines specify that all of the space needed by the MPI
implementation can be found in the user-provided buffer, including the space used to manage
the user’s messages. Unfortunately, this made it impossible for users to determine how big
a buffer they needed to provide, since there was no way to know how much space the MPI
implementation needed to manage each message. The MPI Forum added
MPI_BSEND_OVERHEAD to provide this information in the 1.1 version of the Standard.

One remaining problem that some users are now experiencing is the limit on the num-
ber of outstanding MPI_Requests that are allowed. Currently, no a priori way exists to
determine or provide the number of allowed requests.

8.4 Heterogeneity and Interoperability

Packed data needs to be sent with a “packed data” bit; this means that datatypes need to
know whether any part of the datatype is MPI_PACKED. The only other option is to always
use the same format, for example, network byte order, at the cost of maximum performance.

Many systems can be handled by using byte swapping; with data extension (e.g., 32-bit
to and from 64-bit integers), most systems can be handled. In some cases, only floating
point requires special treatment; in these cases, XDR may be used where IEEE format is
not guaranteed.

The MPI specification provides MPI_PACK and MPI_UNPACK functions; unfortunately,
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these are not the functions that are needed to implement the point-to-point operations. The
reason is that these functions produce data that can be sent to anyone in a communicator
(including the sender), whereas when sending to a single, other process, there is more
freedom in choosing the data representation.3 The MPICH implementation uses internal
versions of MPI_PACK and MPI_UNPACK that work with data intended either for a specific
process or for all members of a communicator.

8.5 64-bit Issues

The development of MPICH coincided with the emergence of a number of “64-bit systems.”
Many programmers, remembering the problems moving code from 16- to 32-bit platforms,
expressed concern over the problem of porting applications to the 64-bit systems. Our
experience with MPICH was that, with some care in using C properly (void * and not int
for addresses, for example), there was little problem in porting MPICH from 32- to 64-bit
systems. In fact, with the exception discussed below, MPICH has no special code for 32-
or 64-bit systems.

The exception is in the Fortran-C interface, and this requires an understanding of the
rules of the Fortran 77 Standard. While C makes few statements about the length of
datatypes (for example, sizeof(int) and sizeof(float) are unrelated), Fortran defines
the ratios of the sizes of the numeric datatypes. Specifically, the sizes of INTEGER and REAL
data are the same, and are half the size of DOUBLE PRECISION [15]. This is important in
Fortran 77, where there is no memory allocation in the language and programmers often
have to reuse data areas for different types of data. Further, using 64-bit IEEE floating point
for DOUBLE PRECISION requires that INTEGER be 32 bits. This is true even if sizeof(int)
(in C) is 64 bits.

In the Fortran-C interface, this problem appears when we look at the representation of
MPI opaque objects. In MPICH, they are pointers; if these are 64 bits in size, then they
cannot be stored in a Fortran INTEGER. (If opaque objects were ints, it would not help
much; we would still need to convert from a 64-bit to 32-bit integer.) Thus, on systems
where addresses are 64 bits and Fortran INTEGERs are shorter, something must be done.
The MPICH implementation handles this problem by translating the C pointers to and
from small Fortran integers (which represent the index in a table that holds the pointer).
This translation is inserted automatically into the Fortran interface code by the Fortran
interface generator bfort (discussed in section 5.7).

Another problem involves the routine MPI_Address, which returns an “address” of an
item. This “address” may be used in only two ways: relative to another “address” from
MPI_Address or relative to the “constant” MPI_BOTTOM. In C, the obvious implementation
is to set MPI_BOTTOM to zero and use something like (long)(char *)ptr to get the address
that ptr represents. But in Fortran, the value MPI_BOTTOM is a variable (at a known
location). Since all arguments to routines in Fortran are passed by address,4 the best
approach is to have the Fortran version of MPI_Address return addresses relative to the
address of MPI_BOTTOM. The advantage of this approach is that even when absolute addresses

3Strangely, the MPI Forum considered but did not accept the functions needed for packing and unpacking
data sent between two specific processes; this decision may have been because there was less experience with
heterogeneous environments.

4Value-result if one must be picky; in practice, the addresses are passed.
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are too large to fit in an INTEGER, in many cases the address relative to a location in the
user’s program (i.e., MPI_BOTTOM) will fit in an INTEGER. This is the approach used in
MPICH; if the address does not fit, an error is returned (of class MPI_ERR_ARG, with an
error code indicating that the address won’t fit).

As a final step in ensuring portability to 64-bit systems, our configure program runs
some programs to determine whether the system is 32 or 64 bits. This allows MPICH to
port to unknown systems or to systems like SGI’s IRIX that change from 32-bit (IRIX 5)
to 64-bit (IRIX 6) without any changes to the code.

8.6 Unresolved Issues

The MPI Forum did not address any mixed-language programming issues. At least for MPI-
1, Fortran programs must pass messages to Fortran programs, and the same for C. Yet, it is
clearly possible to support both C-to-C and Fortran-to-Fortran message passing in a single
application. We call this a “horizontal mixed-language portability.” As long as there is no
interest in transferring anything other than user data between Fortran and C strata of the
parallel application, the horizontal model can be satisfied, provided that MPI_Init provides
a consistent single initialization of MPI for both languages, regardless of which language is
used actually to initialize MPI. Current practice centers on this “horizontal” model, but it
is clearly insufficient, as we have observed from user feedback.

Two additional levels of support are possible, staying still with the restriction of C and
Fortran 77 as the mixed languages. The first is the ability to pass MPI opaque objects
locally within a process between C and Fortran. As noted earlier, C and Fortran repre-
sentations for MPI objects will often be arbitrarily different, as will addresses. Although
user-accessible interoperable functions already are required in MPICH (for the benefit of its
Fortran interface), the MPI Standard does not require them. Such functionality is likely to
appear in MPI-2 (as a result of our users’ experience) and with other MPI systems as well.
Such functionality has the added benefit of enhancing the ability of third parties to provide
add-on tools for both C and Fortran users, without working with inside knowledge of the
MPICH implementation (for instance, see [6]).

The second level of “vertical” support is to allow a C routine to transmit data to a For-
tran routine. This requires some correspondence between C and Fortran datatypes, as well
as a common format for performing the MPI operations (e.g., the C and Fortran implemen-
tations must agree on how to send control information and perform collective operations).
The MPI Forum is preparing a proposal that addresses the issues of interlanguage use of
MPI datatypes for MPI-2.

9 Status and Plans

We begin this section by describing the current use of MPICH by vendors (as a component
of their own MPI implementations) and others. We then describe some of our plans for
improving MPICH both by optimizing some of its algorithms for better performance and
by extending its portability into other environments.
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9.1 Vendor Interactions

As described above, one of the motivations for MPICH’s architecture was to allow ven-
dors to use MPICH in developing their own proprietary MPI implementations. MPICH is
copyrighted, but freely given away and automatically licensed to anyone for further devel-
opment. It is not restricted to noncommercial use. This approach has worked well, and
vendor implementations are now appearing, many incorporating major portions of MPICH
code.

• IBM obtained an explicit license for MPICH and collaborated with us in testing
and debugging early versions. During this time, MPI-F [19] appeared. This IBM
implementation does not use the ADI, but maps MPI functions directly onto an
internal IBM abstract device interface. Our contact at IBM was Hubertus Franke.

• SGI worked closely with us (see Section 4.3) to improve the implementation of the
ADI for their Challenge and Power Challenge machines. Functions were added to
IRIX to enable single-copy interprocess data movement, and SGI gave us lock-free
queue-management routines in assembler language. Those involved at SGI were Greg
Chesson and Eric Salo.

• Convex worked closely with us to optimize an implementation of the channel interface
and then of the ADI. We worked with Paco Romero, Dan Golan, Gary Applegate,
and Raja Daoud.

• Intel contributed a version of the ADI written directly for NX, bypassing the channel
interface. The Intel person responsible was Joel Clarke.

• Meiko also contributed to the publicly distributed version a Meiko device, thanks to
the efforts of Jim Cownie.

• Laurie Costello helped us adapt MPICH for the Cray vector machines.

• DEC has used MPICH as the foundation of a memory-channel-based MPI for Alpha
clusters.

We obviously do not claim credit for the vendor implementations, but it does appear that
we met our original goal of accelerating the adoption of MPI by vendors through providing
them a running start on their implementations. The architecture of MPICH, which provided
multiple layers without impact on performance, was the key.

9.2 Other Users

Since we make MPICH publicly available by ftp, we do not have precise counts on the num-
ber of users. It is downloaded about 300 times per month from our ftp site, ftp.mcs.anl.gov,
which is also mirrored at Mississippi State, ftp.erc.msstate.edu. Judging from the bug
reports and subscriptions to the mpi-users mailing list, we estimate that between five
hundred and one thousand people are currently active in their use of MPICH.
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9.3 Planned Enhancements

We are pursuing several directions for future work based on MPICH.

New ADI To further reduce latencies, particularly on systems where latency is already
quite low, we plan an enhanced ADI that will enable MPICH to take advantage of
low-level device capabilities.

Better collective algorithms As mentioned in Section 5.3, the current collective opera-
tions are implemented in a straightforward way. We would like to incorporate some
of the ideas in [1] for improved performance.

Thread safety The MPI specification is thread-safe, and considerable effort has gone into
providing for thread safety in MPICH, but this has not been seriously tested. The
primary obstacle here is the availability of a test suite for thread safety of MPI oper-
ations.

Dynamic, lighter-weight TCP/IP device We are nearing completion of a portable de-
vice that will replace p4 as our primary device for TCP/IP networks. It will be lighter
weight than p4 and will support dynamic process management, which p4 does not.

RDP/UDP device We are working on a reliable data protocol device approach, built on
UDP/IP (User datagram protocol), which extends and leverages the initial work done
by D. Brightwell [3].

Multiprotocol support Currently MPICH can use only one of its “devices” at a time.
Although two of those devices, the one based on Nexus [18] and the one based on p4,
are to a certain extent multiprotocol devices, we need a general mechanism for allowing
multiple devices to be active at the same time. We are designing such a mechanism
now. This will allow, for example, two MPPs to be used at the same time, each using
its own switches for internal communication and TCP/IP for communication between
the two machines.

Ports to more machines We are working with several groups to port MPICH to inter-
esting new environments. These include

• the Parsytec machine;

• NEC SX-4 and Cenju-3;

• Microsoft Windows NT, both for multiprocessor servers and across the many
different kinds of networks that NT will support; and

• Network protocols that are more efficient than TCP/IP, both standard (for ex-
ample, MessageWay [10]) and proprietary (for example, Myrinet [2]).

Parallel I/O We have recently begun a project to determine whether the concepts of the
ADI can be extended to include parallel I/O. If this proves successful, we will include
an experimental implementation of parts of MPI-IO [11, 12] into MPICH.

36



9.4 MPI-2

In March 1995, the MPI Forum resumed meeting, with many of its original participants, to
consider extensions to the original MPI Standard. The extensions fall into several categories:

• Dynamic creation of processes (e.g., MPI SPAWN).

• One-sided operations (e.g., MPI PUT).

• Extended collective operations, such as collective operations on intercommunicators.

• External interfaces (portable access to fields in MPI opaque objects).

• C++ and Fortran-90 bindings.

• Extensions for real-time environments.

• Miscellaneous topics, such as the standardization of mpirun, new datatypes, and lan-
guage interoperability.

The MPICH project began as a commitment to implement the MPI-1 Standard, with
the aim of assisting in the adoption of MPI by both vendors and users. In this goal it has
been successful. The degree to which MPI-2 functionality will be incorporated into MPICH
depends on several factors:

• The actual content of MPI-2, which is far from settled at this time.

• The degree to which the MPI-2 specification mandates features whose implementation
would be feasible only with major changes to MPICH internals.

• The enthusiasm of MPICH users for the individual MPI-2 features.

At this writing, it seems highly likely that we will extend MPICH to include dynamic
process management as defined by the MPI-2 Forum, at least for the workstation envi-
ronment. This extension will not be difficult to do with the new implementation of the
channel interface for TCP/IP networks, and it is the feature most desired by those de-
veloping workstation-network applications. We expect also to aid tool builders (including
ourselves) by providing access to MPICH internals specified in the MPI-2 “external inter-
faces” specification. For the other parts of MPI-2, we will wait and see.

10 Summary

We have described MPICH, a portable implementation of the MPI Standard that offers
performance close to what specialized vendor message-passing libraries have been able to
deliver. We believe that MPICH has succeeded in popularizing the MPI Standard and
encouraging vendors to provide MPI to their customers, first, by helping to create demand,
and second, by offering them a convenient starting point for proprietary implementations.

We have also described the programming environment that is distributed with MPICH.
The simple commands
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configure
make
cd examples/basic
mpicc -mpilog -o cpi cpi.c
mpirun -np 4 cpi
upshot cpi.log

provide a portable sequence of actions by which even the beginning user can install MPICH,
run a program, and use a sophisticated tool to examine its behavior. These commands are
the same, and the user’s program is the same, on MPPs, SMPs, and workstation networks.
MPICH demonstrates that such portability need not be achieved at the cost of performance.
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