Adaptive Vector Quantization Using Generalized Threshold
Replenishment

James E. Fowler Stanley C. Ahalt

Department of Electrical Engineering
The Ohio State University, Columbus, Ohio 43210 USA

Abstract

In this paper, we describe a new adaptive vector quantization (AVQ) algorithm designed
for the coding of nonstationary sources. This new algorithm, generalized threshold replen-
ishment (GTR), differs from prior AVQ algorithms in that it features an explicit, online
consideration of both rate and distortion. Rate-distortion cost criteria are used in both the
determination of nearest-neighbor codewords and the decision to update the codebook. Re-
sults presented indicate that, for the coding of an image sequence, 1) most AVQ algorithms
achieve distortion much lower than that of nonadaptive VQ for the same rate (about 1.5
bits/pixel), and 2) the GTR algorithm achieves rate-distortion performance substantially
superior to that of the prior AVQ algorithms for low-rate coding, being the only algorithm
to achieve a rate below 1.0 bits/pixel.

Introduction

Over the last 20 years, vector quantization (VQ) has received significant attention
as a powerful technique for data compression. VQ is theoretically attractive due to
results from rate-distortion theory that show that V(Q is asymptotically optimal for
the coding of a data source whose statistics are stationary in time. Although VQ has
been successfully applied to the coding of many types of data, most sources can rarely
be assumed to be stationary in practice, leading to a gap between the performance
predicted by theory and that actually obtained in real implementations. Indeed, the
nonstationary nature of the sources common in practical applications has prompted
a search for more general VQ algorithms that are capable of adapting to changing
source statistics as the coding progresses. Such algorithms use what we call adaptive
vector quantization (AVQ).

In this paper, we first present a brief mathematical definition of AVQ which ac-
curately describes the operation of an AVQ communication system while being suffi-
ciently general to apply to all previously reported AVQ algorithms. We follow with
the key contribution of this work, a new AVQ algorithm called generalized threshold
replenishment (GTR). The GTR algorithm differs from prior algorithms in that, 1)
it is an online algorithm that does not rely on substantial buffering or iterative pro-
cessing, and 2) it employs an explicit consideration of both rate and distortion, two
quantities that measure the performance of a data-compression algorithm. We con-
clude with a sample of the experimental results that we have obtained for the GTR

Support for James E. Fowler was provided by an AT&T Ph.D. Scholarship
To appear in Proceedings of the 1997 IEEE Data Compression Conference, March, 1997

algorithm. In these results, we compare the rate-distortion performance of GTR to
that of several prior AVQ algorithms for an image sequence. These results show that
the GTR algorithm achieves rate-distortion performance superior to that of other
reported AVQ algorithms, particularly for low-rate coding.

Adaptive Vector Quantization

VQ is the generalization of scalar quantization to higher dimensions. Briefly, non-
adaptive V(Q consists of a vector quantizer, (), that maps vectors from N-dimensional
space to a fixed finite set C of N-dimensional vectors; i.e., @ : Y — C. Set C is
called the codebook of the vector quantizer.

Rate-distortion theory states that, for a stationary, ergodic random process, there
exists a rate-distortion function, R(D), such that, for a given distortion D, R(D)
is the lower bound on the minimum achievable average rate for any coding method.
In addition, the theory shows the existence of a vector quantizer that achieves this
bound as the dimension of the quantizer becomes infinitely large.

This theoretic asymptotic optimality of VQ has inspired its use in many appli-
cations. However, most sources of practical interest are, in reality, nonstationary.
A number of algorithms, known collectively as adaptive vector quantization (AVQ),
have been introduced (e.g., [4-9]) to provide more efficient coding for these sources.
These algorithms compensate for the changing source statistics associated with non-
stationary sources by periodically updating the VQ codebook.

We have developed a mathematical definition to describe in general terms the op-
eration of these AV(Q algorithms. We briefly summarize this mathematical definition
below; a more comprehensive discussion is given elsewhere [1,3]. Assume that we
have a N-dimensional random-vector process, X;. We define adaptive vector quan-
tizer, @y, as follows. Let C* denote a large universal codebook, C* C RY, that is
fixed for all time ¢t. We define a sequence of local codebooks, C;, such that C; C C*
at each time t. We restrict each set C; to be finite. Adaptive vector quantizer @), is
a time-variant mapping from N-dimensional Euclidean space to the local codebook
for time ¢; i.e., @Q; : RY — C;. The output of the adaptive vector quantizer is an-
other random-vector process, X; = Q:(X;). Note that, in an AVQ communication
system, the encoder must transmit to the decoder not only codeword indices from
the quantizer but also information describing the contents of the local codebook; this
latter quantity is commonly known as side information. There are numerous other
details of both a theoretic and practical nature involved in the construction of an
AVQ system; for a more thorough investigation, consult [1, 3].

The Generalized Threshold Replenishment Algorithm

In this section, we describe our new AV(QQ algorithm called generalized threshold
replenishment (GTR). GTR is an online algorithm that does not require large amounts
of batch computation, and it employs cost criteria involving both rate and distortion
measures. The GTR algorithm weighs the distortion performance against the cost
in rate in both the coding of the current source vector and the updating of the local
codebook. In general terms, GTR incorporates a rate-distortion-based cost function

similar to the one developed by Lightstone and Mitra [9] into a framework similar
to the AVQ algorithm described by Paul [4] while offering substantial performance
improvement over these two approaches.

The GTR algorithm selects a codeword from the current local codebook as the po-
tential coding of the current source vector by considering both the distortion between
the two vectors and the rate needed to specify the codeword to the decoder. This rate
is estimated from the current codeword probabilities, assuming that variable-length
entropy coding of the VQ indices follows the quantizer. Once the winning codeword
is chosen, a decision rule is evaluated to see if a codebook update would result in a
reduction in distortion outweighing the cost in rate associated with the update. If
so, the algorithm replaces a codeword in the local codebook with the current source
vector.

To simplify the discussion of this section, we present two versions of the GTR
algorithm. First, we describe the basic algorithm which lays a foundation for the
move-to-front variant of the algorithm to follow. The move-to-front variant has been
observed to have a slight performance advantage over the basic algorithm while being
only marginally more computationally complex [3].

The Basic Algorithm

The basic variant of the GTR algorithm is outlined in detail in Fig. 1. This algo-
rithm operates as follows. The first sequence of steps determines the codeword “clos-
est” to the current source vector in a rate-distortion sense. This rate-distortion-based
nearest-neighbor mapping operates as follows. First, as a variable-length entropy
coder follows the quantizer, the estimated lengths of the variable-length codewords
are calculated from the estimated probabilities, p;_1(%), of the codewords c; € C;_; as

l(i(e:)) = —1ogy pia (i), (1)

where 7,(-) represents the entropy coder. Then, the distortion, d(c;), between the
current source vector, X;, and each codeword, c; € C;_1, is calculated. These dis-
tortions and the variable-length codeword lengths are combined into a cost function
using a rate-distortion parameter, \; i.e., the cost function, J(c;), for each ¢; € C;_4
is

J(ci) =d(ci) + A~ U(ne(ci)). (2)

The winning codeword, c*, is chosen to be the one with the lowest cost function.
We denote the index of ¢* be 7*. One should note that the steps to this point
implement the modified nearest-neighbor rule of the well known entropy-constrained-
vector-quantization (ECVQ) algorithm [10].

In the next steps, the algorithm decides whether the local codebook needs to be
updated by first estimating the improvement in distortion to be gained by a codebook
update. If the codebook is updated, the current source vector will be coded with zero
distortion. However, if the codebook is not updated, the current source vector will
be coded with a distortion of §(c*). Thus, the estimated distortion improvement due

Given: initial local codebook, Cy
initial codeword probabilities, po (i), for each codeword c; € Cg
rate-distortion parameter, A
windowing parameter, w
initial time, t =1

Step 1: Calculate initial codeword lengths of the VQ-index entropy coder:
Uve(cs)) = —logy pe—1(d).
Step 2: Find the distortions between each codeword ¢; € C;—; and Xj:
6(ci) = d(c;, Xy).
Step 3: Calculate the cost function for each codeword
J(ei) = 6(ci) + A - Ume(cy)).-
Step 4: Find the winning codeword:

c* =arg min J(c).
gCECt—l ()

Let the index of ¢* be denoted i*.

Step 5: Calculate the distortion improvement and rate cost of a codebook update,
as well as the rate-distortion cost function:

Ad = —§(c*), Ar =1(Xy),
AJ =Ad+ \-Ar.

Step 6: Set C; = Cy—1. If AJ <0, go to Step 6a. Else, go to Step 6b.

Step 6a: Set c* = X, in C;. Send to the decoder X;, entropy-coded index ¢*, and
a flag indicating a codebook update. Go to Step 7.

Step 6b: Send the entropy-coded index i* and a flag indicating no codebook
update.

Step 7: Estimate the new codeword probabilities:

N Jlwp—a ()] /(w + 1), i #1,
mili) = {[wpt_l(z') +1]/(w+1), ="

Step 8: Set t =t 4 1 and go to Step 1.

Figure 1: The basic GTR algorithm

to a codebook update is Ad = —(c*). The cost in rate of the codebook update is
the amount of side information needed to send X; to the decoder, Ar = [(X,), where
[(X;) is the number of bits sent to the decoder.

The algorithm uses the expected distortion improvement and the expected rate
cost in a rate-distortion-based cost function, defined as

AJ £ Ad+ \-Ar, (3)

where A is the rate-distortion parameter given to the GTR algorithm. If AJ < 0,
then the expected improvement in distortion outweighs the expected cost in rate,
and the algorithm inserts X; into the local codebook by replacing c* with X;. The
algorithm transmits to the decoder a flag indicating whether the codebook was up-
dated. Additionally, if the codebook was updated, the algorithm sends X; as side
information.

The final step of the algorithm is to estimate the new codeword probabilities using
a time average. Our method of estimation assumes that the source possesses some
degree of local stationarity; i.e., the statistics over a window of w source vectors are
approximately stationary. The algorithm estimates how many of the past w source
vectors have mapped to codeword ¢; € C;_1 as ny_1(i) = w - pi_1(7). When the
algorithm has determined the winning codeword, c*, for the current source vector,
the new counts are calculated as

nt(z) _ {nt—l(i)’ 7’ ' ’L:*, (4)

(i) + 1, @ =71"

The algorithm estimates the new partition probabilities using the new codeword
counts; i.e.,

i) = mu(0) 5)

cj €Ct nt(]) ,

for each c; € C;. Plugging (4) into (5) yields

pe(i) = {[wpt—l(i)]/(w-Fl), i # i

[wpe 1(1) + 1] /(w+ 1), i=i"

(6)

After the codeword probabilities are updated, the index 7* is entropy coded and
transmitted to the decoder. The algorithm repeats for the next source vector.
Before continuing to the move-to-front variant, several comments on the parame-
ters of the basic GTR algorithm are in order. The parameter A given to the algorithm
is called the rate-distortion parameter as it controls the tradeoff between rate and dis-
tortion within the algorithm. The value of X\ affects not only the nearest-neighbor
mapping to the current source vector but also the codebook-update decision. Con-
sequently, the value of A ultimately determines the performance of the algorithm,
in terms of rate and distortion. Indeed, varying the value of A\ traces out the rate-
distortion performance curve of the algorithm. Larger values of A will focus the efforts

of the algorithm on minimizing rate over distortion, whereas smaller values of A will
result in performance with a lower distortion and a higher rate. The windowing
parameter, w, controls the relative weighting of the past versus the present in the
time-average estimates of the current codeword probabilities. The value of w has
been determined to be noncritical in the performance of the algorithm [3]; we will use
w = 100 throughout the experimental results of this paper. Finally, [(X;) is length
of the representation of current source vector X; which is sent to the decoder when
the codebook is updated. For the results reported in this paper, which involve image
data, we assume that a uniform scalar quantizer is used to describe X; to 8 bits per
vector component. In this case, {(X;) = 8N bits. More complicated coding schemes
are discussed in [3].

The Mowve-to-Front Variant of the Algorithm

In the case of a codebook update in the basic GTR algorithm presented above,
the algorithm adds the current source vector to the local codebook by replacing the
codeword c* that was determined to be the closest in a rate-distortion sense. In
this section, we describe the move-to-front GTR algorithm. In this variant of the
algorithm, codewords are added to the local codebook in a move-to-front fashion,
effectively replacing least-recently-used (LRU) codewords. The move-to-front GTR
algorithm replaces Steps 6 and 7 of the basic algorithm (Fig. 1) with the steps shown
in Fig. 2 and operates as follows.

If the codebook is not updated, the algorithm simply moves c* to the front (index
number 1) of the codebook. However, if the codebook is updated, i.e., if AJ < 0,
the algorithm places current source vector X; in the front of C;. In this case, all the
other codewords are shifted to the next highest index and the one with the highest
index (the LRU codeword) is deleted.

The estimation of the new codeword probabilities is the same as in the basic al-
gorithm, if the codebook was not updated. However, in the case of codebook update,
the move-to-front insertion of X; necessitates a modified calculation of the codeword
probabilities. In this case, the algorithm “splits” the probability of partition * be-
tween the new codeword, X;, and c*. Fig. 2 gives the details of how this probability
“split” is accomplished. After the new codeword probabilities are calculated, they
are rearranged so as to match the move-to-front rearrangement of C;.

The additional computational cost of the move-to-front variant over that of the
basic algorithm is negligible as the move-to-front process involves mainly simple in-
dex shuffling. However, the LRU replacement strategy of the move-to-front GTR
algorithm has an advantage in that the index of the LRU codeword does not need
to be transmitted to the decoder, which contributes to a slight improvement in rate-
distortion performance over the basic algorithm. Consequently, we will use the move-
to-front variant of the GTR algorithm exclusively in the experimental evaluation
presented in the next section.

Step 6: Set C; = Cy—1. If AJ <0, go to Step 6a. Else, go to Step 6b.

Step 6a: Insert X; in the front of C;. Increment the indices of all the other
codewords. Delete the codeword with the highest index. Send to the decoder
X; and a flag indicating a codebook update. Go to Step 7.

Step 6b: Send the entropy-coded index ¢* and a flag indicating no codebook
update. Move ¢* to the front of C;.

Step 7: Estimate the new codeword probabilities. If AJ > 0, go to Step 7a. Else,
go to Step 7hb.

Step 7a: Estimate the new codeword probabilities as:

o~ Jlwp—a (9] /(w + 1), i # 0%,
puli) = {[wpt—l(i) F1]/(w+1), i=q*

Rearrange the indices of the probabilities to match the move-to-front rear-
rangement of Cy; i.e., move pg(i*) to index 1, shifting all the other probabili-
ties. Go to Step 8.

Step 7b: Form the new codeword counts as:

nt(l) — wpt—l(i‘)’ /L # /L*
wptfl(z)/27 t=1.
Let K be the size of the local codebook; i.e., K = |C¢|. Set ni(K) = ny(i*).

Calculate the new codeword probabilities as:

N _ ny (i)
neli) = ZlngK n(j)

Rearrange the indices of the probabilities to match the move-to-front rear-
rangement of Cy; i.e., move p;(K) to index 1, shifting all the other probabili-
ties.

Figure 2: The move-to-front GTR algorithm. These steps replace the corresponding steps
in the basic GTR algorithm of Fig. 1.

Figure 3: Original image sequence

Experimental Results

In this section, we present the results obtained for the coding of the image sequence
shown in Fig. 3 which consists of 8 image frames: 4 frames from the image sequence
“Miss America” followed by 4 frames from the “Garden” sequence. Each image of
the sequence is grayscale with 256 levels and has a resolution of 352 x 240 pixels.
To produce an initial local codebook, we use an additional frame from the “Miss
America” sequence as a training data set to the generalized Lloyd algorithm.

In Fig. 4, we plot the rate-distortion performance of various AVQ algorithms. We
show also the performance of nonadaptive VQ. The nonadaptive vector quantizer
uses the initial codebook for the entire image sequence, and its rate is the first-order
entropy of the V(Q indices. We present the final image of the quantized sequence
for both the nonadaptive vector quantizer and the GTR algorithm in Fig. 5. For
Fig. 5(b), we choose A so that the GTR algorithm operates at approximately the
same rate as the nonadaptive vector quantizer.

Conclusions

For low compression ratios (a rate of 1.5 bits/pixel or greater), most of the AVQ
algorithms have distortion performance significantly better than that of nonadaptive
VQ. For example, at a rate equal to that of the nonadaptive vector quantizer (about
1.5 bits/pixel), most of the AVQ algorithms achieve an MSE of around 50, which
results in very little visual distinction between their quantized images. However,
the AV(Q algorithms achieve substantially less distortion than nonadaptive V(@ at
this rate. This improvement in image quality due to AVQ is illustrated in Fig. 5,
where the quantized image of the GTR algorithm has much less visual distortion,
particularly for edges and other areas of high detail, than the corresponding image
for the nonadaptive vector quantizer.

More distinction between the AV(Q algorithms is observed as the compression ratio
increases. Particularly, several algorithms were unable to achieve rates below about
1.5 bits/pixel. Of those algorithms that were able to produce a coding at a rate below

GTR .
Paul

Gersho-Yano
Goldberg-Sun

\ ~ ~ Wang-Shende-Sayood
— - Lancini-Perego—-Tubaro

¥ + X O

3.5

w

Rate (bits/sample)
N
N ul

=
o

&
Nonadaptive VQ

0.5 .

0 50 100 150 200 250
Distortion (MSE)

Figure 4: The rate-distortion performance of various AVQ algorithms [4-8] for the image
sequence using 4-dimensional vectors and a local codebook of 256 codewords. The circled
“x” represents the operation point of the nonadaptive vector quantizer for the same data.

Figure 5: (a) The final frame of the image sequence coded with nonadaptive VQ (4-
dimensional vectors, 256 codewords, MSE = 234.9, 1.487 bits/pixel). (b) The final frame of
the image sequence coded with the GTR algorithm (4-dimensional vectors, 256 codewords,
A = 16, MSE = 38.6, 1.522 bits/pixel).

1.25 bits/pixel, only the GTR algorithm was able to maintain a monotonic decrease
in rate for increasing distortion. As a consequence, GTR was the only algorithm to
achieve a coding at a rate less than 1.0 bits/pixel.

In this paper, we have shown that our GTR algorithm features rate-distortion
performance superior to not only that of nonadaptive VQ but also that of other AVQ
algorithms for the low-rate coding of an image sequence. Although beyond the scope
of this paper, similar results have been obtained for other data sources [2, 3]. These re-
sults show that the GTR algorithm consistently achieves low-rate-coding performance
superior to that of other AVQ algorithms. Since many applications of current interest,
such as network and wireless communications, have severe rate limitations, low-rate
coding techniques will play a vital role in the successful development of systems for
such applications. Our GTR algorithm will be instrumental in the incorporation of
AVQ into practical, low-rate coding techniques at the heart of future communication
systems designed for these demanding applications.

References

[1] J. E. Fowler, “A Survey of Adaptive Vector Quantization—Part I: A Unifying Struc-
ture,” IEEE Transactions on Communications, November 1996. submitted.

[2] J. E. Fowler and S. C. Ahalt, “A Survey of Adaptive Vector Quantization—Part II:
Classification and Comparison of Algorithms,” IEEFE Transactions on Communica-
tions, November 1996. submitted.

[3] J. E. Fowler, Adaptive Vector Quantization for the Coding of Nonstationary Sources.
Ph.D. dissertation, The Ohio State University, 1996.

[4] D. B. Paul, “A 500-800 bps Adaptive Vector Quantization Vocoder Using a Perceptually
Motivated Distance Measure,” in Conference Record, IEEE Globecom, pp. 1079-1082,
1982.

[6] A. Gersho and M. Yano, “Adaptive Vector Quantization by Progressive Codevector
Replacement,” in Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 133-136, May 1985.

[6] M. Goldberg and H. Sun, “Image Sequence Coding Using Vector Quantization,” IEEE
Transactions on Communications, vol. COM-34, pp. 703-710, July 1986.

[7] R. Lancini, F. Perego, and S. Tubaro, “Neural Network Approach for Adaptive Vector
Quantization of Images,” in Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing, (San Francisco, CA), pp. 389-392, March 1992.

[8] X. Wang, S. Shende, and K. Sayood, “Online Compression of Video Sequences Using
Adaptive VQ Codebooks,” in Proceedings of the IEEE Data Compression Conference
(J. A. Storer and M. Cohn, eds.), (Snowbird, UT), pp. 185-194, IEEE Computer
Society Press, 1994.

[9] M. Lightstone and S. K. Mitra, “Adaptive Vector Quantization for Image Coding in
an Entropy-Constrained Framework,” in Proceedings of the International Conference
on Image Processing, vol. 1, (Austin, TX), pp. 618-622, November 1994.

[10] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-Constrained Vector Quan-
tization,” IEEFE Transactions on Acoustics, Speech, and Signal Processing, vol. 37,
pp- 31-42, January 1989.

