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Abstract— We describe the Wavelets Around Land Masses (WAVAL)
system for the embedded coding of 3D oceanographic images. These im-
ages differ from those arising in other applications in that valid data ex-
ists only at grid points corresponding to sea; grids points that cover land
or lie beyond the bathymetry have no associated data. For these images,
the WAVAL system employs a 3D lifting wavelet transform tailored specif-
ically to the potentially sparse nature of the data by processing only the
valid sea data points in between land masses. We introduce successive-
approximation runlength (SARL) coding, an embedded-coding procedure
which adds successive-approximation properties to the well known stack-
run (SR) algorithm. SARL is employed to code wavelet coefficients result-
ing from the 3D transform in the WAVAL system; however, it is a general
technique applicable to other coding tasks in which embedded coding is
desired but for which zerotree-techniques are impractical. Experimental
results show that the WAVAL system achieves substantial improvement in
rate-distortion performance over the technique currently used by the US
Navy for compression of oceanographic imagery.

I. INTRODUCTION

HE US Naval Oceanographic Office (NAVOCEANO) pro-

duces a variety of oceanographic datasets which are dis-
tributed to users worldwide, many of whom possess only very
low-bandwidth communication links (e.g., submarines capable
of only low-frequency reception). A typical organization of
these datasets is that of a scalar field defined on a 3D rectilinear
grid. This grid describes a rectangular region of sea and land at
the ocean surface and extends downwards at a certain number
of standard ocean depths. As these oceanographic datasets can
be sizeable, efficient compression is a must for low-bandwidth
transmission. However, since low-frequency communications
entail long transmission times, it is often the case that the trans-
mission channel is interrupted or the communication is other-
wise prematurely terminated. Thus, the capability of decoding
an initial portion of a longer message would be extremely help-
ful for many users.

One of the recent advances in the maturing field of data com-
pression is ideally suited to the task at hand—embedded cod-
ing. An embedded-coding system produces compressed rep-
resentations of an original dataset at a variety of amounts, or
rates, of compression, where each of these representations are
included (“embedded”) at the beginning of a single output bit-
stream. That is, any prefix of an embedded bitstream can be de-
coded to produce a valid representation of the original dataset;
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the longer the prefix, the more accurate is the representation.
Although it was initially thought that the imposition of such an
embedded-structure constraint would result in inefficient coding
performance when compared to traditional nonembedded coders
[1], recent wavelet-based coders (e.g., [1, 2]) for 2D images have
been shown to produce embedded bitstreams at efficiencies that
rival or surpass performance of traditional nonembedded image-
compression algorithms.

In recent years, a number of compression algorithms have
been proposed for 3D imagery arising in applications such as
multispectral/hyperspectral remote sensing, volumetric medical
imaging, and video coding. Some, but not all, of these propos-
als involve embedded algorithms. Typically, 3D coding tech-
niques extend well known 2D image-coding techniques to the
third dimension, either by 1) coupling purely 2D image cod-
ing on individual image planes, or “slices,” with decorrelation
across the third dimension, or by 2) employing fully 3D mech-
anisms such as 3D transforms. In the first category of algo-
rithms, the prime example is the MPEG [3] coding standards for
motion video which couple a 2D block-based discrete cosine
transform (DCT) with motion compensation for decorrelation
in time. Other proposals following this same fundamental ap-
proach include multispectral/hyperspectral coders using various
forms of linear/nonlinear prediction for decorrelation along the
third dimension and 2D slice-based processing based on a DCT
[4] or vector quantization [5].

More recent algorithms typically fall in the second category
with many of these techniques employing 3D transforms. Many
of these coders, particularly those designed for multispectral
imagery, recognize that often the extent of data in one of the
dimensions (e.g., the spectral dimension for multispectral im-
ages) is significantly shorter than that in the other two directions.
In these applications, the 3D transform typically employs the
statistically optimal yet data-dependent Karhunen-Loéve trans-
form (KLT) for decorrelation and energy compaction along the
shorter direction while 2D DCT [6] or wavelet transforms [7—
9] are used in the other two dimensions. In other applications
wherein the data has significant size in all three dimensions,
the KLT is usually too computationally complex and 3D DCT
[4,10] or 3D wavelet transforms [11,12] are used. In either
case, a variety of quantization and entropy-coding strategies de-
riving from 2D image-coding algorithms are extended to 3D
and employed following the 3D transform. Examples include
uniform scalar quantization/runlength Huffman coding [7, 11],
trellis-coded quantization [4], and zerotree coding [8, 9, 12].

Initially it may appear that any of the above 3D image-coding
methods would be suitable, with perhaps minor adaptations, to
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the present application of coding of oceanographic data. How-
ever, only a few [8, 9, 12] of these techniques produce embedded
bitstreams. Additionally, as it is pointed out in [9], implementa-
tion problems may arise when extending 2D algorithms to size-
able 3D data (as in [8, 9, 12]) since the internal data structures (in
particular, the “significance lists” of zerotree-based algorithms
such as [2]) employed by the algorithm may grow to prohibitive
sizes. Finally, and more importantly for the present application,
the 3D oceanographic imagery considered here differs signifi-
cantly from the imagery arising in multispectral/hyperspectral,
medical, or video applications—scalar-field values (i.e., “pix-
els™), exist only for 3D grid points that correspond to sea, while
grid points that cover land (at the ocean surface), or that lie be-
yond the bathymetry (at depths below the ocean surface), have
no associated data. Although it is a possible that a given dataset
has no “land points” (i.e., it covers an area that is deep open
ocean), the more general case includes arbitrarily shaped coast-
lines, islands, and ocean floor which occupy an arbitrarily large
portion of the overall 3D rectilinear grid. A successful 3D-
oceanographic-image compression algorithm must efficiently
code valid data values while skirting around these land masses,
regardless of how data values are grouped or how sparsely they
occur in the dataset. The presence of land points in our data
effectively eliminates the possibility of employing the KLT as
is done in [6-9] and increases the implementation complexity
of zerotree-based approaches such as [8,9, 12] to the point of
infeasibility.

We circumvent the problems associated with prior techniques
by introducing the Wavelets Around Land Masses (WAVAL)
system for the coding of 3D oceanographic images. Our
WAVAL system employs a separable 3D biorthogonal wavelet
transform that is carefully calculated over only sea regions in the
dataset. In addition, successive-approximation runlength cod-
ing (SARL), a new simple embedded-coding technique, is in-
troduced to provide efficient coding of the 3D array of wavelet
coefficients. Our SARL algorithm is inspired by stack-run
(SR) coding [13], a computationally simple method for cod-
ing wavelet coefficients with performance surprising competi-
tive with more complicated zerotree methods [1,2]. As in SR,
our SARL coder relies on simpler runlength coding, rather than
zerotrees, for efficient coding of large regions of insignificant
coefficients; however, contrary to SR, quantization of significant
coefficients takes place in an embedded manner.

In the remainder of this paper, we elaborate upon the WAVAL
system and investigate its performance. Specifically, in the next
section, we present an in-depth description of WAVAL, includ-
ing details behind the wavelet transform and the SARL algo-
rithm. Then in Section 111, we overview experimental results
comparing performance of WAVAL to the technique currently
in use by the Navy to transmit oceanographic image data. Fi-
nally, we make some concluding remarks in Section IV. We
note that, although in this paper we will be concerned with the
coding of oceanographic images consisting of primarily water-
temperature values, our WAVAL system can be applied directly
to other scalar quantities, such as salinity, sound speed, vorticity,
etc., as well.

Il. THE WAVAL SYSTEM

The encoder in the WAVAL system consists of the follow-
ing steps: 1) extract and code a binary land-sea mask indicating
where, on the 3D rectilinear grid, valid data values are located,;
2) perform a 3D wavelet transform over points identified as sea
by the land-sea mask; 3) use SARL to quantize and entropy-
code wavelet coefficients in an embedded fashion; and 4) pack
the embedded bitstream into a standard ASCII message format
for distribution. We describe each of these components below.

A. Land-Sea Mask

The land-sea mask is a binary mask that differentiates points
in the 3D rectilinear grid corresponding to sea (where valid data
values reside) from those corresponding to land. Since the land-
sea mask is critical to maintaining synchronization between the
encoder and decoder, an encoding of the land-sea mask is the
initial portion of the bitstream output by the encoder. The entire
land-sea mask must be received before decoding begins; there-
fore the mask encoding is not embedded.

Encoding of the binary land-sea mask consists of runlength
coding of consecutive like values encountered in a raster-scan
traversal of the mask. An initial bit indicates whether the traver-
sal starts with land or sea. Afterwards, each run of consecutive
land or sea values is represented by the length of the run. The
encoding of runlengths for the land-sea mask is nearly identical
to that used in the SARL algorithm, so we will delay further dis-
cussion of this encoding until Section 11-C (see below and also
Fig. 2). The symbol stream resulting from the runlength encoder
is entropy coded using an arithmetic coder [14] operating on the
three-symbol alphabet {0, 1, +}.

Raster-scan coding of the land-sea mask proceeds so that all
mask values at a certain depth are coded before the next deeper
values (i.e., depth forms the outer loop of the scan). The oceano-
graphic bathymetry is nondecreasing as depth increases; that is,
the set of land points at a certain depth level is a subset of the
land points at the next deeper level. Consequently, in the cod-
ing of the land-sea mask, those points on deeper levels directly
below points labeled as land at a some shallower depth need not
be coded—they are already known to be land. The raster-scan
and runlength coding of the land-sea mask thus skips such land
points as the scan proceeds deeper in the 3D volume.

B. 3D Wavelet Transform

The WAVAL system uses a lifting implementation of the
Cohen-Daubechies-Feauveau (2,2) biorthogonal wavelet [15]
(i.e., “linear lifting” [16]), appropriately adapted to transform
data values in between land masses. Below we describe this
transform operation for a single dimension. To construct the
separable 3D transform, the 1D transform is applied indepen-
dently in each of the three directions (row, column, depth), pro-
ducing 8 subbands; further decompositions in this fashion are
carried out recursively on the baseband subbands. Our strategy
for transforming data in between land masses is similar to other
transforms (e.g., [17-19]) that have been proposed recently for
the coding of arbitrarily shaped objects arising in modern video
coders. We note that these prior techniques center around filter-
bank transforms, whereas our lifting-based approach is signifi-
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cantly faster and somewhat simpler to implement in practice.

In the usual implementation (e.g., [16]), of lifting, 1) a lazy
wavelet transform (LWT) separates even and odd samples of a
baseband signal, 2) odd samples are predicted from even sam-
ples with the difference becoming the highpass band of the next
scale, and 3) even samples are “updated” from highpass coeffi-
cients to produce the lowpass band of the next scale. For linear
lifting, we have (see [16] for details)

even samples
odd samples

d'k] = di[K] - % (k) + [k + 1))

K] = ¢k + (4T — 1] + K]
1
7
Cj [k‘] = \/503'/ [k}

lifting prediction
lifting update

dj[k] = —=dj K] highpass coefficients

lowpass coefficients

where c¢;1[k] is the lowpass subband at scale j + 1, and ¢; [k]
and d,[k] are the lowpass and highpass subbands, respectively,
at the next coarser scale, j.

Let us consider a single row, column, or depth passing
through our 3D dataset and call this 1D data structure a sig-
nal. We observe that each 1D signal is composed of one or
more 1D segments of consecutive sea data values separated by
land. In our transform, each segment is transformed individually
into lowpass and highpass segment subbands. The lowpass seg-
ment subbands from all the segments of the signal are collected
together with land points placed in between to form the low-
pass band of the signal; the highpass segment subbands likewise
form the highpass band. Our transform enforces a global sub-
sampling pattern that ensures that each lowpass or highpass seg-
ment subband is placed in the corresponding lowpass or high-
pass band, respectively, so as to maintain the relative spatial po-
sitioning of the segments in the original signal (a process called
“phase alignment” in [17]).

Symmetric extension is used at either end of each segment
when lifting and updating operations require data values beyond
the boundary of the segment (i.e., over a land mass or beyond
the bounds of the signal itself). This data extension must be tai-
lored specifically to the four cases which arise from the fact that
a segment may start with an even- or odd-indexed sample and
end with an even- or odd-indexed sample. Additionally, since
the length of a segment may be arbitrarily odd or even, the cor-
responding lowpass and highpass segment subbands are not nec-
essarily of the same length and may even be of zero length, this
latter case occurring when a segment consists of only one data
value so that its lifting decomposition degenerates to a multipli-
cation or division by v/2 to maintain unitary scaling. Finally, we
note that, due to the robust manner in which the transform must
handle segments of arbitrary lengths, no restriction is placed on
the size of the overall 3D data volume; i.e., the WAVAL sys-
tem is under no “power-of-2” size restrictions as is common for
implementations of other wavelet-based coders.

C. Successive-Approximation Runlength Coding (SARL)

The embedded zerotree wavelet (EZW) algorithm [1], de-
signed originally for 2D images, is an easily implemented, com-
putationally efficient, embedded technique with effective coding
performance. Recent refinements of the EZW technique, such
as the set partitioning in hierarchical trees (SPIHT) [2], have
been widely employed in 2D image-coding applications. As ex-
pected given their proven performance in 2D applications, ze-
rotree techniques have been extended to 3D datasets (e.g., [8,
9,12]). However, the coding efficiency of EZW and related
algorithms relies on the representing of large regions of zeros
with single zerotree symbols. In our application, the potentially
sparse nature of the oceanographic datasets hinders zerotree per-
formance and significantly complicates implementation. Addi-
tionally the “significance lists” of algorithms such as [2] may
grow to prohibitive sizes quickly as the dimensions 3D datasets
increase [9]. On the other hand, SR coding [13] achieves 2D-
image performance competitive with zerotree techniques with-
out relying on the zerotree structure or associated significance-
list complexity. Its implementation is extremely simple and is
thus amenable to applications that are more general than 2D-
image coding—the only drawback lies in that SR is not embed-
ded.

For our WAVAL system, we developed the SARL algorithm
which employs successive-approximation embedded coding in
the form of EZW’s “bit-plane” coding while replacing EZW’s
reliance on zerotrees with an efficient runlength-coding scheme
similar to that of SR. Although SARL was developed for the 3D
oceanographic coding considered here, we anticipate that it is
equally applicable to other similar coding applications (3D or
otherwise) for which embedded coding is desired but, for what-
ever reason, cannot make use of zerotrees.

The SARL encoding algorithm operates as follows. Each co-
efficient is compared to a threshold. If a coefficient is greater
than or equal to the threshold, it is a significant coefficient,
otherwise it is insignificant. The threshold is successively de-
creased by dividing by 2 as coding progresses; i.e., SARL em-
ploys a “bit-plane” successive approximation. Within the cod-
ing of each bit plane, the positions of coefficients that become
significant with respect to the threshold for the first time are in-
dicated to the decoder by coding the distances between them as
runlengths; the signs of these newly significant coefficients are
included in the runlength-encoding scheme (see Fig. 2). After
all runlengths are coded, “refinement” symbols are output for
all coefficients previously determined to be significant during
coding of prior bit planes. Then the threshold is halved, and
the algorithm repeats for the next bit plane. Pseudocode for the
algorithm follows (assume N wavelet coefficients, z(n), with
mask(n) denoting the land-sea mask):

max_bits = |log, (max,, |z(n)|)]
threshold = pow (2, maz_bits)
significance_map(n) = 0,Vn
while (TRUE) do
runlength = 0
difference_map(n) = 0,Vn
AC _contest = RUNLENGTH
forn=1to N do
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if mask(n) = SEA
if significance_map(n) = 0
if |z(n)| > threshold
significance_map(n) = 1
difference_map(n) = 1
output_run (runlength, sign of z(n))
z(n) = |z(n)|
runlength = 0
else
runlength = runlength + 1
done
AC _contert = REFINEMENT
forn=1to N do
if mask(n) = SEA
if significance_map(n) = 1
if x(n) > threshold
if difference_map(n) = 0
output_symbol (“1”)
z(n) = z(n) — threshold
else
if difference_map(n) = 0
output_symbol (“0”)
done
threshold = threshold /2
done

The out put _r un subroutine outputs symbols for integer
runlengths in a manner similar to the run encodings employed
by SR [13]. The SARL runlength-encoding scheme is illus-
trated in Fig. 2; note that the land-sea mask is encoded using this
same procedure. The runlengths are coded by outputting the bi-
nary representation of the runlength integer, using symbols “0”
and “1,” starting from the least-significant bit. A “punctuation”
symbol, “+” or “-” is output between consecutive runlengths.
For SARL, the punctuation symbol serves not only to delineate
the start of one run encoding from another, but also to trans-
mit the sign of the wavelet coefficient (for the land-sea mask,
the punctuation symbol is always “+”). Finally, since the most-
significant bit of each runlength is always a “1,” this symbol is
omitted. The stream of symbols resulting from the runlength
encodings and the refinement symbols is entropy coded using
arithmetic coding [14] with two contexts; a four-symbol alpha-
bet, {0,1,+, —}, is used for the RUNLENGTH context while
a two-symbol alphabet, {0, 1}, is used in the REFINEMENT
context.

D. Channel Packing

The channel employed by the Navy for distribution of oceano-
graphic data uses a specific message format defined on a re-
stricted ASClI-based alphabet. The encoded data is transmitted
via a number of message lines, each of which is limited to 68
characters plus a carriage-return. To this message body, twelve
lines of fixed header/trailer information is attached. A set of
40 ASCII characters constitute the valid symbols for the mes-
sage body. The WAVAL system packs bits emerging from the
arithmetic coder into 5-bit characters which are in turn mapped
into the 40-symbol alphabet; thus, only 32 of the 40 permitted
symbols are used by the encoder.

I1l. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
WAVAL system to that of the technique currently employed by
the Navy for the transmission of 3D oceanographic images. The
current Navy standard is known as the Empirical Orthogonal
Function (EOF) technique and is, in essence, a KLT followed by
uniform scalar quantization and a form of runlength encoding.
In the EOF scheme, a separable 2D KLT is applied to image
slices independently; no decorrelation is performed along the
third dimension. Points corresponding to land in the dataset are
“filled” with a special extrapolation based on the sea data values
prior to taking the KLT, the entire resulting volume is subject to
scalar quantization and runlength coding, and a nonembedded
bitstream is output. Being slice-based rather than 3D, the trans-
form used by EOF requires significantly less memory than that
of WAVAL; however, this fact has not hindered the use WAVAL
in practice since the largest of the Navy’s datasets (on the order
of 500 x 500 x 34, or 35Mb) fits easily into the spacious memory
of modern computers.

Figs. 3 through 5 show distortion versus rate for three ocean-
temperature datasets. Rate is expressed as the total num-
ber of message lines produced, included the fixed 12-line
header/trailer. The distortion in these plots is the maximum ab-
solute error between the original and reconstruction over the sea
values of the dataset. The hawai dataset (around Hawaii) fea-
tures simple land-sea mask information as most of the dataset is
sea; the adrt ¢ dataset (Adriatic Sea) is of moderate land-sea
complexity; and the yl soj dataset (Yellow Sea, Sea of Japan)
has a relatively complex land-sea mask. Table | summarizes
the sizes of the datasets and the composition of the bitstream
produced by the WAVAL system. Fig. 6 shows the difference
images formed by subtracting the original yl soj dataset from
the reconstructed datasets for both approaches.

Figs. 3 through 5 show that WAVAL routinely outperforms the
EOF algorithm, sometimes by a gain of an order-of-magnitude
or more in distortion performance. The only case in which EOF
outperforms WAVAL is when very short (< 175 lines) mes-
sages are sent for the yl soj dataset. This dataset comprises
the complex coastline of the Sea of Japan area. The land-sea
mask for this dataset (nonembeddedly coded by WAVAL at 99
lines) occupies a majority of the lines of short messages with
very few, if any, lines remaining to refine wavelet coefficients,
resulting in poor distortion performance. We note that, for such
short encodings of the yl soj dataset, the observed superior
EOF performance is not really meaningful since the distortion
achieved by both algorithms is too large to be useful in the
Navy’s oceanographic applications. These applications require
near-lossless performance, i.e., maximum absolute error on the
order of 0.1°C, the precision of the original datasets. For such
near-lossless coding, WAVAL consistently outperforms EOF on
all datasets tested.

IV. CONCLUSIONS

In this paper, we have described the WAVAL system for the
embedded coding of 3D oceanographic images. To this end, we
have employed a 3D lifting wavelet transform tailored specifi-
cally to the potentially sparse nature of oceanographic images
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and have introduced the SARL embedded-coding procedure
which adds EZW-like successive-approximation properties to
SR. Our 3D transform processes only the valid sea data points in
between land masses—a task difficult to achieve with traditional
block-based transforms such as the DCT and impossible with
the KLT. Additionally, our SARL coder avoids zerotree struc-
tures whose performance is hindered by the presence of land
points and significance-list implementations whose complexity
quickly becomes prohibitive for large 3D datasets.

As a final remark, we note that, although SARL has been
developed for the specific application considered here, it is
a general technique applicable to other coding tasks, particu-
larly those in which embedded coding is desired but for which
zerotree-techniques are impractical. Our investigations have re-
vealed that, although there is some performance penalty associ-
ated with the embedded nature of SARL as compared to nonem-
bedded SR, it appears that it is minimal. For example, when
applied to the coding of the ubiquitous 2D grayscale Lenna
image at 0.5 bits/pixel, SARL produces a PSNR on the order
of only 0.7 dB below that of SR (both algorithms using the
(2, 2) biorthogonal wavelet used here); however, the perceptual-
quality performance of both algorithms is identical for this ex-
ample.

Future work includes extending the WAVAL system to other
datasets arising in geoscience applications, including atmo-
spheric measurement data and vector-valued data such as ocean
currents. As part of this planned work, we anticipate extending
both the wavelet transform and the SARL algorithm to vector-
valued data; we are currently investigating vector-valued trans-
forms based on multiwavelets for the first task and a variety of
vector-quantization techniques for the second. A final future-
work item is the incorporation of an error-control mechanism
that will allow the user to specify a desired error tolerance in
advance of coding. For the WAVAL coder, such error control is
complicated by factors such as the use of a biorthogonal wavelet
and maximum absolute error (i.e., Parseval’s theorem does not
apply and an inverse transform must be performed to know dis-
tortion). However, our preliminary investigations indicate that
a small number of inverse-transform calculations plus an intel-
ligent search strategy can narrow in on the desired error perfor-
mance in a timeframe acceptable for practical applications. We
are presently implementing and refining this error-control strat-

egy.
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Fig. 1. An example of two stages of 1D wavelet decomposition. Each seg-
ment is decomposed into lowpass and highpass segment subbands; segment
subbands are assembled into lowpass and highpass bands maintaining ap-
propriate subsampling pattern and positioning within the band.
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Fig. 2. Symbol encodings of runlengths used in the coding of the land-sea mask
and within the SARL algorithm (symbols in order first to last listed from top
down). For the SARL algorithm, + is either + or — depending on sign of
wavelet coefficient; for the land-sea mask, =+ is always +.

TABLE |
ORIGINAL DATASET SIZES AND COMPOSITION OF WAVAL OUTPUT FOR A
MESSAGE SIZE OF 500 LINES.

Original Dataset WAVAL Output
Percent Land-Sea|Wavelet
Name Size Land ||Header| Mask | Coeffs.
hawai | 91x81x34 | 1.6% || 0.1% 2.0% | 97.9%
adrtc| 81x61x34 |87.6% || 0.1% 3.1% | 96.8%
yl s0j |151x101x34|53.1% || 0.1% | 20.4% | 79.5%
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Fig. 3. Rate-distortion performance for the hawai dataset.
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Fig. 4. Rate-distortion performance for the adr t ¢ dataset.
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Fig. 5. Rate-distortion performance for the yl soj dataset.
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Fig. 6. Image of differences between original and reconstructed yl soj datasets at the ocean-surface level; reconstructed images produced from 762-line messages;
solid black regions are land masses. (a) EOF, (b) WAVAL.
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