

Triton User Manual – version 1.0

Randall E. Hand and R. Moorhead
December 2001

ERC Technical Report # MSSU-COE-ERC-01-15

Visualization, Analysis and Imaging Lab
Engineering Research Center
Mississippi State University
Mississippi State, MS 39762

Triton Technical Manual 2 of 27

REQUIREMENTS...3

RUN-TIME REQUIREMENTS ...3
COMPILE-TIME REQUIREMENTS ..3

EXECUTION...3

USER INTERFACE ..3

CONFIGURATION BASICS ...4

CONFIGURING DATA SOURCES...5

CONFIGURING THE DATA SOURCE MANAGER ...5
CONFIGURING A FIXED DATA SOURCE ...6
CONFIGURING A TILED DATA SOURCE..7
CONFIGURING A MAGNITUDE DATA SOURCE ..8

CONFIGURING VISUALIZATION METHODS ...10

CONFIGURING THE VISUALIZATION MANAGER...10
Scalar Surfaces ...11
Scalar Posts ..12
Vector Posts ..14
Vector Flow Glyph Layers..16
ROAM Heightfields ..17

SAMPLE CONFIGURATION FILES...20

SAMPLE PIPS CONFIGURATION...20
SAMPLE NCOM CONFIGURATION: ..23

REFERENCES ...27

Triton Technical Manual 3 of 27

Requirements

Run-Time Requirements
Triton v1.0 requires:

• An SGI with on-board Texture memory
• OpenGL
• Irix 6.5
• Read access to all data
• Configuration files for VRJuggler (specific to your system)

Triton was designed to run on SGI Irix systems. VRJuggler is compatible with

other platforms (such as Sun, PC, etc), but Triton has never been tested on
these systems and may not run properly.

Compile-Time Requirements
For compilation, you also need:

• VRJuggler 1.0+ (refer to VRJuggler documentation for additional
requirements and instructions)

• GNU Compiler utilities (gcc, g++, and gmake specifically)
• MIPSpro Compiler version 7.3.1.1m or greater

Execution
To run Triton, after it has been compiled, simply use the following syntax:

 ./roamer vrjuggler-config-files [-c config]

Where

• vrjuggler-config-files – all of the files (built with vjcontrol) necessary for
your VRJuggler setup.

• config – the configuration script for your system.

If the configuration file is not specified, then by default config.tile will be loaded.

User Interface
Once the system has started, you can use the following simple user interface
(similar to CTHRU [1],[2])
 To Rotate – simply turn the “wheel” or analog axis left or right to rotate
 To Move – Use the “trigger” or other analog axis to move forward and
backward.

Triton Technical Manual 4 of 27

Configuration Basics
Configuration takes place through text files called “configuration scripts”. A
configuration script is formed from several blocks, each looking something like
this:

 [HEADER]
 key1 value1
 key2 value2
 key3 value3
 end

The Header, key, and value fields can contain any printable characters, except
white spaces. The Header is enclosed in square braces, and for readability are
usually all caps. Keys vary depending on the type of section this Header
represents. Headers, keys, and default values are listed below, in their
corresponding sections.

The “end” key is critical, as it indicates the end of a configuration block. Without
it, blocks will run together. Sometimes this may be useful, to avoid duplicating
sections of the file, but usually it is not.

Only two Headers are required for Triton: SYSTEM and DATA. These sections
are discussed in more detail later. Keys and headers listed below are case
specific.

Keys are actively searched for, not parsed. This means that if you insert
unrecognized keys, there will be no error.

Triton Technical Manual 5 of 27

Configuring Data Sources
Triton supports the following data formats:

• Raw Binary rectilinear data
• ASCII Fixed Data
• On-The-Fly Magnitude Data (calculated from other data sources)

These data formats are specified at run-time in the configuration files, and

can be mixed and matched to form a very flexible data set. For example, U-flow
and V-Flow files can be loaded through two Raw Binary data loaders, and the
magnitude of the flow can be calculated through an On-The-Fly Magnitude Data
loader to create colormapped flow-magnitude surfaces.

Data is also cached in memory, to minimize memory consumption. This also
helps to minimize network traffic and hard drive accesses, thereby improving
performance. Data is loaded on its first access, and least recently data is
replaced later by new data on an as-needed basis. Also supported is multi-file
tiled data (like GTOPO30), where each tile is cached individually, improving
memory usage.

Each data loader supports scaling & masking operations, meaning that none
of the visualization methods need to know about them. Each loader also
supports multiple layers, but does not support multiple timesteps at this time.

Configuring the Data Source Manager
The DATA section configures the Data Source Manager. The following keys are
supported:

• Databases – an integer indicating the exact number of data sources your
program uses.

• DataXName – a header name indicating from which section to read this
data source’s configuration information. X is a number between 1 and
Databases.

• DataXType – the type of data source to use for data source X. This must
be one of:

o TILED_FLOAT – data that is read from a series of raw binary files
o MAGNITUDE_FLOAT – data that is calculated on the fly from two

data files
o FIXED – data that is constant across an area, and is specified in

the configuration script.

A sample DATA section would look like this:

[DATA]
Databases 5
Data1Name BATHYMETRY
Data1Type TILED_FLOAT
Data2Name DEPTHS
Data2Type FIXED

Triton Technical Manual 6 of 27

Data3Name VECTOR_U_DATA
Data3Type TILED_FLOAT
Data4Name VECTOR_V_DATA
Data4Type TILED_FLOAT
Data5Name VECTOR_MAG
Data5Type MAGNITUDE_FLOAT
end

Each DataName must correspond to a Header somewhere in the configuration
script. If it does not, the program will quit in an error. Data sources that you do
not use may be defined, as they will only be loaded when accessed by a
visualization method.

Configuring a FIXED Data Source
A fixed data source is defined inline, in the configuration script. It creates a data
source that returns a fixed value for any location within a layer of data. This is
used most often to list depths for use by Vector Posts and Scalar Posts.

Only a few keys are used here:

• fixed_depths_scale – a floating point number, indicating a scale to multiply
all following numbers by. (Useful if you frequently scale your data
differently, and don’t want to recalculate all of the depths). This key is
optional, defaults to 1.0.

• layercount – an integer number, indicating the number of data values.
• depthX – a floating point number, indicating the value to return for layer X.

A depthX key must exist for each X between 1 and layercount.

A sample Fixed Data source would look like this:

[DEPTHS]
fixed_depths_scale -0.005
layercount 45
depth1 2.5
depth2 7.5
…
depth44 5800
depth45 6100
end

NOTE: This is one of the few sections that not using the end tag can be useful,
in rare instances. If you need the same fixed data values, at two different scales,
you could do this:

[DEPTHS1]
fixed_depths_scale -0.005
[DEPTHS2]
fixed_depths_scale +0.005
layercount 45
depth1 2.5
depth2 7.5
…

Triton Technical Manual 7 of 27

depth44 5800
depth45 6100
end

This will create two different data sources containing the same data, but scaled
differently. In this case, they are the same quantities but different signs.

Configuring a TILED Data Source
A Tiled data source currently only supports Floating Point data, so you must use
TILED_FLOAT. A tiled data source usually only contains one tile (one binary
file), but can support several (as in GTOPO30). Tiled data sources use the
following keys:

• cache – an integer number, indicating how many tiles to cache in memory
at once. Each layer of the data is cached independently, so cache may be
much larger than tilecount. It should at least be as large as layers.

• tilecount – an integer number, indicating how many tiles there are.
• tileX – a header found later in the file indicating what tile to load. A tileX

entry must exist for each X between 1 and tilecount.
• layers – an integer number indicating how many layers exist in each file.
• landmask – a number to mask out of the dataset. This value is optional,

and if is not specified, no data is masked.
• maskop – an operation to use for masking. This operation is combined

with landmask to determine what values to mask (eg. Everything greater
than landmask, everything less than landmask, etc.) It can be =, >, or <.
This value is optional, and defaults to = if not specified.

• landvalue – a floating point number. If masking is enabled then this value
is written in place of masked values. This number needs to be pre-scaled.
This parameter is optional, and if not specified, masked data is simply
“removed” from the dataset.

• flip_x – (yes/no) If yes, the data will be inverted on the X axis of the 2-
dimensional data plane, effectively flipping the data top-to-bottom. This
parameter is optional, and no action is taken if not specified. Each y value
will be replaced with (height-y). Another way to think of the operation is
that the first line is written along the top of the data plane instead of the
bottom. This allows Triton to handle data sources where the origin of the
data is at the top left or the bottom left.

• scale – a floating point number, all data is multiplied by this scaling factor
once loaded. This parameter is optional, and if not specified it defaults to
1.0.

• minvalue – a floating point number. If specified then the data is moved to
make this the minimum value. This number needs to be pre-scaled. This
parameter is optional, and if not specified no action is taken.

• spread – a floating point number indicating the desired range between the
minimum and maximum value. If specified, it automatically calculates a
scaling factor to force the minimum and maximum to be this far apart.
This parameter is optional, and if not specified no action is taken.

Triton Technical Manual 8 of 27

The data is multiplied by scale before the minimum and maximum is calculated.
Masked values are ignored during this calculation. If landvalue is specified, a
separate pass is made next to write this value in, so the landvalue needs to be
scaled in the configuration block. Another pass is made through the scaled and
masked data, to set the minvalue and spread, if specified.

The data keys minvalue and spread are useful when you do not know the range
of the data that you are loading, and want to force it within a certain range. (ie.
force a minimum value of minvalue and a maximum value of minvalue+spread)

For each tileX, a configuration block needs to exist detailing the exact
specifications of the file. The keys for each of those blocks looks like this:

• data – the actual path and filename of the data file (no spaces)
• startx, starty – integer numbers, the x and y location of the data, in object

space
• width, height – integer numbers, indicating the width and height of the data

in object space.

In this context, object space refers to the “plane” below the user. Usually startx &
starty are 0. However, in a system with multiple adjacent data tiles, startx &
starty will indicate each tile’s starting point within the whole data set. All following
examples use a single-tile data system.

A sample tiled data source block would look like:

[BATHYMETRY]
scale 0.005
landmask 1
tilecount 1
cache 1
tile1 PIPS
layers 1
flip_x yes
end

[PIPS]
data NCOM/model/bathymetry.bin
startx 0
starty 0
width 1024
height 640
end

Configuring a MAGNITUDE Data Source
A Magnitude data source takes two data sources, and uses them to calculate a
scalar magnitude point-by-point to generate another data source. This is useful if
your using vector data and want to colormap by magnitude, but don’t have a
separate magnitude dataset.

Triton Technical Manual 9 of 27

A magnitude data source uses the following keys:

• data_u – a data source (listed BEFORE this one) containing scalar u
values.

• data_v – a data source (listed BEFORE this one) containing scalar v
values.

• startx, starty – integer numbers indicating the starting points within data_u
& data_v

• width, height – integer numbers indicating the area to read from data_u &
data_v

• layercount – an integer number indicating the number of layers to
generate from data_u & data_v

If startx and starty are not 0, or width and height are not equal to the width and
height of data_u and data_v, then the resulting dataset will not be the same size.
This could cause problems for certain visual components.

The entire dataset is generated on the first access, so there is no noticeable
delay during run time for static data.

A sample Magnitude data source would look like this:

[VECTOR_MAG]
data_u VECTOR_U_DATA
data_v VECTOR_V_DATA
startx 0
starty 0
width 1024
height 640
layercount 20
end

Triton Technical Manual 10 of 27

Configuring Visualization Methods
Triton currently supports the following visualization methods:

• Scalar Surfaces
• Scalar Posts
• Vector Posts
• Vector Flow Glyph Layer
• Heightfields (Rendered with ROAM)
Each of these methods will load data from any of the available data loaders,

and supports ISTV-style colormaps [3][4]. Any combination of these visualization
methods can be operating at the same time, and any one can be duplicated as
often as wished. For example, the user could have a Scalar Surface at layer 7
(One Scalar Surface), Vector Flow Glyph layers for layers 1 through 5 (5 Vector
Flow Glyphs), and several Scalar Posts scattered around, all while rendering the
context bathymetry using a ROAM Heightfield.

Configuring the Visualization Manager
The visualization manager is responsible for creating and maintaining all of the
visual components. It is setup in the other required block, SYSTEM. It uses the
following keys:

• startx, starty – integer numbers indicating the starting x and y location of
the user on load.

• ComponentCount – an integer number greater than or equal to the
number of visual components.

• AddComponentX – a header name indicating where to get information for
this component. X must be between 1 and ComponentCount (inclusive).

Each header listed in an AddComponentX key must appear later in the
configuration script, or the program will exit with an error. Each corresponding
configuration block must also contain the key type, and it must be one of the
following:

• WAND_POINTER – a simple line indicating the direction of the wand. Not
very useful except for VRJuggler configuration of the wand and screens.

• SCALAR_POST – a scalar post
• SCALAR_QUAD – layers of scalar values
• VECTOR_POST – a vector post
• VECTOR_GLYPHS – layers of vector flow glyphs
• ROAM_FLOAT – a ROAM heightfield

The last five types correspond to the 5 currently supported visualization methods
listed below.

A sample SYSTEM block would look like this :

[SYSTEM]
startx 900
starty 400

Triton Technical Manual 11 of 27

ComponentCount 10
AddComponent1 MAINROAM
AddComponent2 DATA_POSTS
AddComponent3 DATA_FLOW_GLYPHS
AddComponent4 DATA_FLOW_POST
AddComponent5 DATA_SURFACE
end

Scalar Surfaces

A scalar surface renders a colormapped scalar value for all data points in a
rectangular subsection of a single layer, centered around the user. It uses the
following keys:

• colormap – an ISTV colormap file to map to this layer
• x_length, y_length – how large to make this layer. It will extend away from

the user x_length/2 in both the positive and negative X directions, and
y_length/2 in both the positive and negative Y directions. (X & Y are the
data axes, not visualization axes). Each number must be a positive integer
power of 2 (32,64,128,256, etc)

• data_values – a data source to retrieve the scalar values used for
rendering

• depth_values – a data source to retrieve the values for the depth of each
layer.

Triton Technical Manual 12 of 27

• layerX – (on/off) if on, then a scalar surface will be generated and
rendered for this layer.

The entire area (x_length * y_length) is generated as an RGBA texture and

drawn on a rectangle at the desired location. The height of the quad is taken
from depth_values at the user’s location, and the quad is centered around the
user. depth_values is usually an ASCII Fixed-Data source, to keep the data
layers at constant heights independent of user position.

A sample scalar surface would look like this:

[DATA_SURFACE]
type SCALAR_QUAD
colormap temperature.ct
x_length 128
y_length 128
data_values SCALAR_DATA
depth_values DEPTHS
layer7 on
end

Scalar Posts

Triton Technical Manual 13 of 27

A scalar post renders a colormapped scalar value for a single point, relative to
the user’s position, in all layers. It uses the following keys:

• x_offset, y_offset – floating point numbers that indicate where to place the
post relative to the user’s position. These coordinates are in the data’s
object space, so the post will move around the user as the user rotates.

• colormap – an ISTV colormap to use for rendering
• data_values – a data source containing the actual data values to render
• depth_values – a data source containing the depths of each data layer.

The data in data_values at (x,y, each depth_values) is rendered as a post

penetrating all layers of the data. Smooth shading is used to make the colors
smoothly transition. So that the user can tell the exact extent of the layers of
depth_values, a striped post is drawn next to it, with the alternating color
transitions indicating the exact layer extents. data_heights is usually a Fixed-
Data source, but can be a varying data source and the transition points will
change to match the current position. This visualization method is typically used
to visualize a variable, such as temperature, that can vary significantly from layer
to layer in value. When the user is between data points, the data is clamped to
the nearest data point.

A sample scalar post block would look like this :

[DATA_POSTS]
type SCALAR_POST
x_offset 3.0
y_offset 1.0
colormap temperature.ct
data_values SCALAR_DATA
data_depths DEPTHS
end

Triton Technical Manual 14 of 27

Vector Posts

A vector post renders a colormapped scalar value for a single x-y position,
relative to the user’s position, in all layers. Instead of being a flat fixed-width post
though, the surface bends around the striped post to reflect two other scalar
fields defined by the user. It has the following keys:

• x_offset, y_offset – floating point numbers that indicate, relative to the
user’s position, where to place the post. These coordinates are in the
data’s object space, so the post will move around the user as the user
rotates.

• colormap – an ISTV colormap to use for rendering
• color_values – a data source containing the data values to which to map

the colors
• depth_values – a data source containing the depths of each data layer.
• scaling – a floating point number by which to multiply the widths to make

them more visible. The screenshot above used 5.0. This parameter is
optional, and defaults to 1.0

• flowu_values – a data source containing u flow values
• flowv_values – a data source containing v flow values

Triton Technical Manual 15 of 27

The data in color_values at (x,y, each depth_values) is rendered as a ribbon
spanning all layers of the data, with the width and direction determined by
(scaling*flowu_values, scaling*flowv_values). Smooth shading is used to make
the colors smoothly transition. So that the user can tell the exact extent of the
layers of depth_values, a striped post is drawn next to it, with the transitions
indicating the exact layers. depth_values is usually a Fixed-Data source, but can
be a varying data source and the transition points will change to match the
current position. This is typically used to indicate the flow at a single lat/long
position in all layers.

When the user is between data points, the data from the nearest point is

used.

A sample vector post block would look like:

[DATA_FLOW_POST]
type VECTOR_POST
colormap temperature.ct
flowu_values VECTOR_U_DATA
flowv_values VECTOR_V_DATA
depth_values DEPTHS
color_values VECTOR_MAG
x_offset 3
y_offset -1
scaling 5.0
end

Triton Technical Manual 16 of 27

Vector Flow Glyph Layers

A vector flow glyph layer renders a colormapped scalar value onto a set of
oriented lines indicating a vector value for all points in a rectangle around the
user, in a single layer. It uses the following keys:

• colormap – An ISTV colormap to use for rendering
• x_length, y_length – integers indicating the size of the area to render (a

rectangle centered around the user)
• color_values – a data source containing the data values to which to map

the colors
• depth_values – a data source containing the depths of each data layer.
• flowu_values – a data source containing u flow values
• flowv_values – a data source containing v flow values
• layerX – (on/off) if on, then this layer is rendered. X must be between 1

and the number of layers in the above data sources.

For each data point in a rectangle (x_length*y_length) around the user in the
layerX, a line is drawn from the grid point in the direction of (flowu_values,
flowv_values). The line is colormapped by the values in color_values, and is the
length

Triton Technical Manual 17 of 27

sqrt((flowu_values*flowu_values) + (flowv_values*flowv_values)).

color_values is usually a magnitude data source, calculating the magnitude of the
vector at each point.

A sample vector flow glyph block would look like:

[DATA_FLOW_GLYPHS]
type VECTOR_GLYPHS
colormap temperature.ct
x_length 64
y_length 64
flowu_values VECTOR_U_DATA
flowv_values VECTOR_V_DATA
depth_values DEPTHS
color_values VECTOR_MAG
layer1 on
layer3 on
layer5 on
end

ROAM Heightfields
(ROAM was used to render the bathymetry in the previous images)

Probably the most complex of all the visualization methods, ROAM
Heightfields let you render a heightfield of any user-defined quality at interactive
framerates. ROAM is a run-time level of detail algorithm that stands for Real-
Time Optimally Adapting Meshes. It recursively subdivides a surface into
triangles, until either a certain detail is achieved or a certain number of triangles
is obtained. By changing this upper bound, one can ensure that the framerate
stays high no matter how complex the geometry is. It recognizes the following
keys:

• colormap – an ISTV colormap mapped onto the surface.
• data – the data source from which to read the heightfield.
• data_layer – the layer of data to use. This parameter is optional and

defaults to 1.
• color – the data source to use for generating colors. NOTE: if “shared” is

specified here, then color will be the same as data. This is much faster
than actually listing color to be the same as data.

• color_layer - the layer of color to use. This parameter is optional and
defaults to 1.

• patchsize – the patch size to use. Must be a positive integer power of 2
(16, 32, 64, etc). This sets the minimum resolution (the surface will
always render these points). Large patch sizes will degrade visual quality,
while small patch sizes will increase computation time.

• viewsquare – the area to visualize. It must be an odd integer. A square of
viewsquare*viewsquare patches will be rendered, centered around the
user.

Triton Technical Manual 18 of 27

• variance_depth – an integer indicating the depth of the variance tree. This
should be sqrt(patchsize) +1. Setting it lower will reduce the number of
trianges tessellated correctly. Setting it higher simply wastes memory, but
does not impact performance. If this number is set lower than
recommended, then when a surface is split variance_depth levels, it will
automatically split it the remaining levels, regardless of requirements.

• max_nodes – an integer, sets the maximum number of splits. This should
be much higher than the number of triangles that you want.

• render – an integer, specifying the rendering method to use.
o 0 – filled and textured.
o 1 – filled and lit, no texture
o 2 – filled. No lights, no texture.
o 3 – wireframe.

This parameter is optional, and defaults to 0 (filled and textured)
• map_size – an Integer, indicating the “size” of the map, used to adjust the

resolution.
• gDesiredTris – the Desired number of triangles per frame.
• FrameVariance – the starting allowable variance before splitting another

level.
• MinVariance – The lowest value FrameVariance can be. This parameter

is optional, and defaults to 0.
• AutoLOD – (1/0) if 1, then the FrameVariance is automatically changed

each frame, to optimally hit gDesiredTris.

ROAM renders the data as a surface beneath the user. Each area is
generated to a full-detail texture, then the texture is mapped on the lower-detail
geometry, to ensure the color data is accurate, even if the geometry is not.
These textures are also used to render a map in front of the user, with a small
cone indicating the current view.

This method also implements View-Frustrum Culling on a per-wall basis. This
means each wall draws only the parts of the scene visible from that side. This
vastly increases the framerate, because each side wall can only see ¼ of the
scene, and the floor can only see a tiny area when the user is bound close to the
ground.

Several articles can be found on ROAM, but this implementation has been
heavily modified to support the following:

• Dynamic loading of data – As the user moves around, data moves off one
edge of the meshable-area, and new data must be loaded. This
implementation only loads new data when required where most load all
data at startup.

• Separate tessellation and rendering – Most methods tessellate into
triangles in a binary tree, and render directly from the tree. The
implementation herein achieves an order of magnitude speedup from
converting the tree into a simple array list before rendering, and rendering
from that.

Triton Technical Manual 19 of 27

• Per-Context View Frustrum Culling – Textures are only generated and
loaded for areas that can be seen from the current wall, and surfaces are
only rendered if it is possible they could be seen from there.

• Several other optimizations through the use of lookup tables.

ROAM is usually used to render the bathymetry for contextual information.

A sample ROAM block would look like this:

[MAINROAM]
type ROAM_FLOAT
colormap terrain.ct
data BATHYMETRY
data_layer 1
color shared
patchsize 64
viewsquare 9
variance_depth 9
max_nodes 50000
render 0
map_size 65536
gDesiredTris 8000
FrameVariance 50
MinVariance 0.0
AutoLOD 1
end

Triton Technical Manual 20 of 27

Sample Configuration Files

Sample PIPS configuration
This configuration file loads up bathymetry, one scalar post, and one scalar
surface.

[SYSTEM]
startx 900
starty 400
ComponentCount 10
AddComponent1 MAINROAM
AddComponent2 DATA_POSTS
AddComponent3 DATA_SURFACE
end

[DATA]
Databases 3
Data1Name SCALAR_DATA
Data1Type TILED_FLOAT
Data2Name DEPTHS
Data2Type FIXED
Data3Name BATHYMETRY
Data3Type TILED_FLOAT
end

[POINTER]
type WAND_POINTER
width 0.3
length 3.0
color_red 1.0
color_green 0.0
color_blue 0.0
end

[DATA_SURFACE]
type SCALAR_QUAD
colormap temperature.ct
x_length 128
y_length 128
data_values SCALAR_DATA
depth_values DEPTHS
layer12 on
end

[DATA_POSTS]
type SCALAR_POST
x_offset -2.0
y_offset 1.0
colormap temperature.ct
data_values SCALAR_DATA
data_depths DEPTHS
end

[MAINROAM]

Triton Technical Manual 21 of 27

type ROAM_FLOAT
colormap terrain.ct
data BATHYMETRY
data_layer 1
color shared
patchsize 32
viewsquare 9
variance_depth 9
max_nodes 50000
render 0
map_size 65536
gDesiredTris 8000
FrameVariance 50
MinVariance 0.0
AutoLOD 1
end

[BATHYMETRY]
scale -0.005
landmask -1
tilecount 1
cache 1
tile1 PIPS
layers 1
end

[PIPS]
data PIPS/bathymetry.bin
startx 0
starty 0
width 1280
height 720
end

[SCALAR_DATA]
cache 45
tilecount 1
tile1 TEMPERATURE
layers 45
landmask 1.e+30f
end

[TEMPERATURE]
data PIPS/flat/potential_temp.bin
startx 0
starty 0
width 1280
height 720
end

[DEPTHS]
fixed_depths_scale -0.005
layercount 45
depth1 2.5
depth2 7.5
depth3 12.5
depth4 17.5

Triton Technical Manual 22 of 27

depth5 23.015
depth6 29.67
depth7 37.7
depth8 47.385
depth9 59.065
depth10 73.15
depth11 90.14
depth12 110.635
depth13 135.36
depth14 165.19
depth15 201.17
depth16 244.57
depth17 296.925
depth18 360.08
depth19 436.26
depth20 528.15
depth21 639.195
depth22 775
depth23 950
depth24 1150
depth25 1350
depth26 1550
depth27 1750
depth28 1950
depth29 2150
depth30 2350
depth31 2550
depth32 2750
depth33 2950
depth34 3150
depth35 3375
depth36 3625
depth37 3875
depth38 4125
depth39 4375
depth40 4625
depth41 4900
depth42 5200
depth43 5500
depth44 5800
depth45 6100
end

Triton Technical Manual 23 of 27

Sample NCOM Configuration:
This configuration displays the bathymetry, one scalar post, 4 layers of data flow
glyphs, a vector post, one scalar surface. It also uses several data sources.

[SYSTEM]
startx 900
starty 400
ComponentCount 10
AddComponent1 MAINROAM
AddComponent2 DATA_POSTS
AddComponent3 DATA_FLOW_GLYPHS
AddComponent4 DATA_FLOW_POST
AddComponent5 DATA_SURFACE
end

[DATA]
Databases 6
Data1Name SCALAR_DATA
Data1Type TILED_FLOAT
Data2Name DEPTHS
Data2Type TILED_FLOAT
Data3Name BATHYMETRY
Data3Type TILED_FLOAT
Data4Name VECTOR_U_DATA
Data4Type TILED_FLOAT
Data5Name VECTOR_V_DATA
Data5Type TILED_FLOAT
Data6Name VECTOR_MAG
Data6Type MAGNITUDE_FLOAT
end

[POINTER]
type WAND_POINTER
width 0.3
length 3.0
color_red 1.0
color_green 0.0
color_blue 0.0
end

[DATA_FLOW_GLYPHS]
type VECTOR_GLYPHS
colormap temperature.ct
x_length 64
y_length 64
flowu_values VECTOR_U_DATA
flowv_values VECTOR_V_DATA
depth_values DEPTHS
color_values VECTOR_MAG
layer1 on
layer2 on
layer3 on
layer5 on
end

Triton Technical Manual 24 of 27

[DATA_FLOW_POST]
type VECTOR_POST
colormap temperature.ct
flowu_values VECTOR_U_DATA
flowv_values VECTOR_V_DATA
depth_values DEPTHS
color_values VECTOR_MAG
x_offset 3
y_offset -1
scaling 5.0
end

[DATA_SURFACE]
type SCALAR_QUAD
colormap temperature.ct
x_length 128
y_length 128
data_values SCALAR_DATA
depth_values DEPTHS
layer7 on
end

[DATA_POSTS]
type SCALAR_POST
x_offset 3.0
y_offset 1.0
colormap temperature.ct
data_values SCALAR_DATA
data_depths DEPTHS
end

[MAINROAM]
type ROAM_FLOAT
colormap terrain.ct
data BATHYMETRY
data_layer 1
color shared
patchsize 32
viewsquare 9
variance_depth 9
max_nodes 50000
render 0
map_size 65536
gDesiredTris 8000
FrameVariance 50
MinVariance 0.0
AutoLOD 1
end

[BATHYMETRY]
scale 0.005
landmask 1
tilecount 1
cache 1
tile1 PIPS
layers 1

Triton Technical Manual 25 of 27

flip_x yes
end

[PIPS]
data NCOM/model/bathymetry.bin
startx 0
starty 0
width 1024
height 640
end

[SCALAR_DATA]
cache 20
tilecount 1
flip_x yes
tile1 TEMPERATURE
layers 20
maskop <
landmask -9.9999998e+30
end

[TEMPERATURE]
data NCOM/t3d/t3d_20000313_00.bin
startx 0
starty 0
width 1024
height 640
end

[VECTOR_U_DATA]
cache 20
tilecount 1
tile1 FLOW_U
flip_x yes
layers 20
maskop <
landmask -9.9999998e+30
end

[FLOW_U]
data NCOM/u3d/u3d_20000313_00.bin
startx 0
starty 0
width 1024
height 640
end

[VECTOR_V_DATA]
cache 20
tilecount 1
flip_x yes
tile1 FLOW_V
layers 20
maskop <
landmask -9.9999998e+30
end

Triton Technical Manual 26 of 27

[FLOW_V]
data NCOM/v3d/v3d_20000313_00.bin
startx 0
starty 0
width 1024
height 640
end

[DEPTHS]
cache 20
tilecount 1
flip_x yes
tile1 DEPTHS_TILE
scale 0.005
layers 20
maskop <
landmask -9.9999998e+30
end

[DEPTHS_TILE]
data NCOM/model/zm.bin
startx 0
starty 0
width 1024
height 640
end

[VECTOR_MAG]
data_u VECTOR_U_DATA
data_v VECTOR_V_DATA
startx 0
starty 0
width 1024
height 640
layercount 20
end

Triton Technical Manual 27 of 27

References
[1] K. Gaither, R. Moorhead, S. Nations, and D. Fox, "Visualizing

Ocean Circulation Models Through Virtual Environments," IEEE Computer
Graphics and Applications, Vol. 17, No. 1 , Jan.-Feb. 1997 pp. 16-19

[2] S. Nations, R. Moorhead, K. Gaither, S. Aukstakalnis, R.
Vickery, W. C. Couvillion Jr., D. N. Fox, P. Flynn, A. Wallcraft, P.
Hogan, O. M. Smedstad, "Interactive Visualization of Ocean Circulation
Models," IEEE Visualization '96, Oct. 1996, pp. 429-432.

[3] M.A. Chupa, R.J. Moorhead, S. Nations, A. Johannsen, K.

Gaither, and R. Vickery, "ISTV: Interactive Structured Time-varying
Visualizer," Proceeding of Oceans 99, Sept. 1999, pp. 938-944.

[4] A. Johannsen and R. J. Moorhead, "Flow Visualization of
Basin-Scale Ocean Data," IEEE Visualization '94, Washington, D.C., Oct.
1994, pp. 355-358.

