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Abstract

This report investigates the application of forward-error-correcting codes to data organized as multiple, independent multimedia
objects and encoded with modern embedded coders. Capitalizing on the strict importance-ordering characteristic of embedded
encodings, the strength of the error protection is optimized such that data that is more important to the reconstructed quality of
the dataset is assigned stronger protection. The focus of the investigation is on providing this optimization while maintaining the
ability to independently access the individual multimedia objects. Experimental results are presented for still-image objects that
illustrate that the desired independent-access ability comes at a cost in reconstruction quality. In addition, it is observed that this
cost increases as the channel-loss conditions actually experienced degrade from those for which the optimal-protection arrangement
was designed.

1. Introduction
Multimedia information is inherently data intensive and usually requires large amounts of memory for storage and
a large bandwidth for transmission. As a consequence, compression of multimedia data has become increasingly
important to many applications. Since multimedia data can usually tolerate some degradation in quality, lossy com-
pression, in which the reconstructed data is close, but not the same as the original pre-compressed data, is the preferred
paradigm. Lossy data compression has a long history of success in the coding of still images and video and has thus
been recently applied to multimedia data. In a multimedia scene, different regions of the dataset usually vary in impor-
tance. In object-based coding, a multimedia scene is viewed as a composition of multiple, distinct objects which are
independently compressed. As a result, object-based coders provide independent access to the individual multimedia
objects, allowing a user to access and manipulate an object independently of other objects. Objects in a multime-
dia dataset are encoded independently along with information on size and position within the dataset, and, at the
decoder, provisions are provided for users to both decode an object of interest and also to interactively manipulate
object composition without the need to decode the entire scene [1]. MPEG-4 [2], a recent video-compression and
multimedia-coding standard, relies heavily on object-based representation of scenes. MPEG-4 objects include arbi-
trarily shaped video objects and arbitrarily shaped still-image texture objects, among others. Recent efforts at remote
visualization, namely [3], also employ the object-coding paradigm whose progressive-transmission display permits
users to “browse” through extremely large datasets and whose random-access capabilities allow selection of certain
“regions of interest” for further refined visualization.

Object-based compression can alleviate many problems associated with the storage and transmission of multime-
dia datasets. However, when communication of multimedia data takes place over networks, the multimedia data is
divided into packets which are transmitted individually, and some of these packets are often lost in transit across the
network. The most prevalent cause of this packet loss is that packets are randomly discarded due to network failure
and congestion. Conventional methods for handling this data loss require identification and retransmission of the lost
packets which can cause significant network delays, waste of network bandwidth, and exacerbation of the situation
that caused the loss in the first place. Methods that avoid retransmission include error-protection algorithms which
assign forward-error-correcting (FEC) codes to the data. This FEC information is, in essence, a controlled form of
redundancy that allows lost data to be recovered from correctly received data in many instances. The amount of lost
data that can be recovered in this manner depends on the strength of the FEC codes, i.e., how much redundancy is
added. The most straightforward approach to FEC protection is that of Equal Loss Protection (ELP) in which the
strength of error protection is applied equally to all portions of the data to be transmitted. Alternatively, Unequal
Error Protection (UEP) algorithms assign unequal amounts of FEC protection to the data in an effort to vary protec-
tion strength according to the importance of various portions of the data. When UEP FEC codes are applied to data
that has been subjected to lossy compression, the measure of “importance” in determining the application of the UEP
redundancy is usually the quality of the reconstruction. In general terms, the UEP approach tends to perform better
than ELP in terms of quality [4], since one can better optimize the UEP placement so as to maximize the quality of
the reconstruction of the data. This project investigates the FEC protection of object-based codings. Specifically, we
explore the assignment of UEP to objects of a multimedia dataset with the goals that each object 1) is protected within
itself according to the importance of each of its bits to the reconstruction quality of the object, 2) has an object-level
amount of error protection proportional to the object’s importance to the reconstruction quality of the scene, and 3)
can be accessed independently of other objects of the image. Hereafter, only arbitrarily shaped still-image objects,
which are a special case of multimedia data, are considered. The general approaches considered, though, apply to
other multimedia forms.

In the remainder of this manuscript, we first review concepts of embedded image coding and the protection of
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embedded bitstreams against packet losses using UEP algorithms. We then introduce two general approaches for
applying UEP FEC codes to protect objects and consider the issue of independent access to the protected objects.
Experimental results exploring the performance of these two methods are presented, and then some concluding remarks
are made.

2. Background
SPIHT, an embedded image coding technique, and UEP, a loss-protection algorithm, are the building blocks for object-
based UEP. This chapter provides an overview of embedded-coding techniques and also explains the different ways
by which protection of data over lossy channels can be achieved.

2.1 Embedded Coding
In an embedded code, the bits of a bitstream are arranged in the order of importance. This is similar to binary

finite-precision representations of real numbers—for each extra bit added to the right in a representation of a real
number, the precision increases. For example, if an embedded encoder produces two files with size N and M bits
in an embedded fashion, where M > N , then the file with N bits is exactly same as the first N bits of the file with
size M . Using an embedded code, the encoding process can stop at any point once the desired target bit count is
met. Similarly at the decoder, decoding can be stopped at any point and reconstructions for lower-rate encodings
can be produced [5]. Progressive transmission of the data is thus possible in that the decoder can produce multiple
reconstructions of increasing fidelity as it receives more and more of the embedded bitstream.

2.2 Set Partitioning in Hierarchical Trees (SPIHT)
SPIHT is a fully embedded image-compression technique with precise rate control and low complexity [6]. SPIHT

outperforms other image-compression techniques such as JPEG [7], vector quantization, and stack run [8]. SPIHT is
a refinement of the Embedded Zerotree Wavelet algorithm [5]. It orders data progressively; i.e., globally important
data is sent first. The decoder can stop decoding at any point in the decoding process and a lower-quality image can
be decompressed and reconstructed.

SPIHT employs a discrete wavelet transform to transform the image, and then encodes zerotrees found in the
wavelet-coefficient subbands. The organization of the wavelet coefficients resulting from the transform is in the form
of a hierarchical subband system. The lower-frequency components, where most of the image energy is concentrated,
are in higher levels and the frequency increases when moving from higher levels to lower levels. The highest-level
component, or baseband, is treated as the tree root. In this tree structure, each node consists of either four direct
descendants (offspring) or no offspring (leaves). A significance test is performed on wavelet coefficients with respect
to a given threshold; i.e., a coefficient is considered to be significant if it is greater than the threshold. If a coefficient
is insignificant, then all the coefficients at a finer scale of the same spatial orientation are assumed to be insignificant.

SPIHT encoding forms sets of the wavelet coefficients according to spatial orientation and performs magnitude
tests to order them. The magnitude-ordered coefficients are coded using a set-partitioning algorithm and are transmit-
ted in bitplanes with the most-significant bitplane first. There are two major passes in the SPIHT algorithm. In the
first pass, called the sorting pass, coefficients which are significant with respect to the current threshold are identified
and their pixel coordinates are sent. In the second pass, called the refinement pass, the precision of the previously
sent coefficients is increased by sending the next most-significant bit from their binary representations. The output is
a fully embedded code which allows the encoder to meet an exact target bit rate.

2.3 Shape-Adaptive SPIHT Encoding
In object-based image coding, an image is partitioned into various objects of arbitrary shapes, and shape-adaptive

encoding is used for compression of these arbitrarily shaped objects. The SPIHT algorithm can be rendered shape-
adaptive by incorporating a shape-adaptive wavelet transform (SA-DWT) such as that of [9]. In a SA-DWT, the
number of coefficients is exactly equal to the number of pixels in the objects and is achieved by using a mask that
is opaque for only object pixels and transparent everywhere else. In shape-adaptive SPIHT encoding, each time a
coefficient is to be encoded, its position with respect to the mask is taken into consideration. If a coefficient is within
the opaque region of the mask, it is encoded as normal. All transparent coefficients are considered to be insignificant
at all times and thus encoding is avoided. Similarly, shape information is also used to guide the decoding process.
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Figure 1: Packet arrangement for UEP—F represents an FEC code byte, while data bytes are numbered according to
their occurrence in the embedded bitstream; packets are columns and streams are rows (adapted from [4]).

2.4 Reed-Solomon Codes
Reed-Solomon codes are block-based error correcting codes with a wide range of applications in digital commu-

nications. In these erasure codes, k blocks of source data are encoded to produce n blocks to be transmitted such
that any subset of k encoded blocks is sufficient to reconstruct the k blocks of the source data [10]. That is, a (n, k)
Reed-Solomon code operates on k source blocks, producing n total blocks for transmission such that (n − k) is the
number of redundancy blocks added. Such a code allows the receiver to lose up to (n − k) blocks in the total of n
blocks and still recover all k blocks of the source. Often, the block size for the code is a single byte.

2.5 Unequal Error Protection (UEP)
UEP is a framework that assigns FEC codes to bitstreams such that the most important information receives the

greatest protection. UEP attempts to provide graceful degradation of image quality as the packet losses increase [4].
There are several techniques that have been proposed for UEP [4, 11, 12]. In this report, we focus on the algorithm
due to Mohr et al. [4] which is designed to protect embedded bitstreams with UEP FEC assignments so as to optimize
the reconstructed-image quality for a given probabilistic packet-loss model. In the algorithm of [4], FECs and data
bytes form a “stream,” with the number of streams equal to the number of bytes in each packet to be transmitted. In
other words, a stream contains one byte from every packet transmitted. This arrangement is illustrated in Fig. 1.

Fig. 1 shows a bitstream arranged into 7 streams and 6 packets. The number of streams is equal to the packet
length (7 bytes in this example). The tenet central to the algorithm of [4] is that all the bytes of a stream can be
decoded if the number of packets lost is less than or equal to the number of FEC bytes in that stream; such is the case
when Reed-Solomon codes are applied to each stream to generate its FEC bytes. Since the bitstream is embedded in
that earlier parts of the bitstream are more important than latter parts, a greater number of FECs must be assigned to
earlier streams than to latter streams [4, 13]. The algorithm of [4] attempts to find an optimal arrangement of these
FECs in order to maximize the expected reconstructed-image quality.

The following example further explains the process of FEC arrangement and data recovery. Fig. 1 shows the
arrangement for sending 32 bytes of data with 10 FEC bytes over a lossy channel. Fig. 2 shows the situation at the
decoder in the case that packet 4 is lost while the other five packets are received correctly. Given that a stream can be
retrieved intact if the number of packets lost is less than or equal to the number of FECs in that stream, the initial 26
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Figure 2: Packets received with packet 4 lost (adapted from [4]).

bytes of data can be recovered after inverting the FEC code. Because the packet 4 is lost in this case, data bytes 27, 28,
29, 31, and 32 are received correctly while data byte 30 is lost. In an embedded bitstream, a byte cannot be decoded
unless the previous byte is decoded. In this case, bytes 31 and 32 are not useful because byte 30 is lost and thus a
total of 29 bytes are used to decode and reconstruct the image. Fig. 3 shows data recovery for this case. Similarly, if
packet 5 instead of packet 4 was the lost packet, 30 data bytes would be decodable. On the other hand, if two packets
are lost out of the six packets, the first 11 bytes of data can be retrieved and recovery of bytes 12-15 depends on which
packets are lost. In an embedded bitstream, each extra byte recovered improves the quality of the image. Hence this
arrangement leads to graceful degradation of image quality with increasing packet losses [4].

In the UEP-assignment algorithm due to Mohr et al. [4], if fi is the number of FEC bytes assigned to stream i,
the FECs assigned to all streams can be represented as a vector,

f̄ = (f1, f2....fN ). (1)

For a given f̄ , Mi(f̄) is the sequence of data bytes in stream i. The data-byte sequence in all streams is given as a
vector,

M(L, f̄) = M1(f̄)M2(f̄)...ML(f̄). (2)

The incremental PSNR of decoding stream i is the difference in PSNR between decoding stream i and stream (i− 1),

gi(f̄) = PSNR[Mi(f̄)]− PSNR[Mi−1(f̄)]. (3)

Since the data is embedded, fi > fi−1, and, if data byte (i+ 1) can be decoded, then byte i can also be decoded.
The number of FECs required for a message fragment depends on the packet-loss model. The packet loss model is

defined in terms of a probability mass function (pmf), pn, the probability of losing n packets, where n = 0, 1, . . . , N .
The probability of losing k packets is then

c(k) =

k∑

n=0

pn. (4)

The expected PSNR for a received message as a function of f̄ is
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Figure 3: Data recovery—gray indicates those bytes recovered by inverting the FEC (adapted from [4]).

G(f̄) =

L∑

i=1

c(fi)gi(f̄). (5)

In the algorithm of [4], G(f̄) is maximized to get f̄ for a packet-loss model given by the pmf; the details of this
maximization can be found in [4]. Note that a profile of PSNR-vs-prefix length, PSNR[n], which gives the PSNR
when a prefix of n data bytes is decoded, is needed in (3). Such a PSNR profile is easily obtainable during encoding
in embedded algorithms such as SPIHT.

3. Object-Based Unequal Error Protection
The goal of the work described here is to protect object-based codings with UEP in order to transmit object-based data
with optimal quality over lossy networks. In doing so, we would like to protect each byte of an object according to its
importance as well as provide independent access to all objects.

We will consider still-image data as a special case of multimedia data, and we will assume that an image has
already been partitioned into a set of objects. Such object partitioning can be done in practice manually or by an
automated feature-detection algorithm. In either case, each object of the image is encoded individually, and, prior
to transmission over a network, FECs are assigned to the object bitstreams to provide graceful degradation of image
quality with increase in packet losses. Below we explore two approaches for providing such error protection for each
object. We will assume that individual objects of the image are encoded in an embedded manner using the shape-
adaptive SPIHT algorithm although any embedded image coder would suffice.

In an embedded coding, each object is coded as a sequence of enhancement layers. In SPIHT and other zerotree
algorithms, these enhancement layers are bitplanes from the wavelet coefficients. We assume that the default repre-
sentation of the global scene is organized such that object layers are arranged in an interleaved fashion. For example,
assume that we have two objects in the image with M1 layers from object 1 and M2 layers from object 2. The
individual layers of the objects are interleaved to form a single compressed bitstream B,

B = P11, P21, P12, P22, P13, P23, ..., P1M1
, P2N , P2N+1, ...P2M2

, (6)
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Figure 4: Packet arrangement for the CUEP approach—F represents an FEC byte, and Pij represents a data byte
from layer j of object i. Dark-shaded blocks indicate bytes from object 1 while light-shaded blocks indicate bytes
from object 2.

where Pij is layer j from object i. In this arrangement, both objects are refined equally fast, and bitstream B forms
a globally embedded representation of the entire scene. The bitstream, B̃, that will be decodable after losing some
packets in transmission will be some truncated version of B. The length of B̃ will depend on the nature of the FEC
protection that is applied. In all cases, we measure scene quality with a whole-image PSNR. Specifically, suppose, for
example, the decodable bitstream is B̃ = P11, P12, P̃12. In this case, we need to reconstruct the image by doing the
following:

• reconstruct object 1 using the first layer, P11, and the truncated version of the second layer P̃12,

• reconstruct object 2 using the first object-2 layer, P21, and

• composite the reconstructed object 1 and object 2 to form a reconstructed image.

The whole-image PSNR would be calculated as the PSNR between the composited reconstructed image and the
original image.

3.1 Combined Unequal Error Protection (CUEP)
The most straightforward approach to providing UEP for the bitstream of (6) would be to apply the UEP algorithm

of [4] to it directly. Given PSNR-vs-prefix profiles for the individual objects, a global PSNR profile for the interleaved
bitstream as needed for the algorithm of [4] can be obtained as described in Appendix A.

Fig. 4 illustrates a packet arrangement typical to this approach. The layers of object 1 and 2 are interleaved, and
the error-correcting codes are assigned to the individual object bytes according to their contribution to the entire-image
PSNR, as determined from the global PSNR profile. Unfortunately, this arrangement does not provide independent
access to the objects since the individual-object bytes are not in continuous packet locations. That is, any given packet
might hold both object-1 and object-2 bytes. Hence, independent access to individual objects is possible only after
the decoder inverts the entire UEP code matrix, which can occur only after all packets are sent by the encoder and the
decoder determines which packets are missing.

8

Technical Report MSSU-COE-ERC-02-01, Engineering Research Center, Mississippi State University, February 2002



1

2

3

4

5

6

7

1 2 3 4 5 6

S
T

R
E
A
M
S

Packet Number

F F
F F

F
F

F F
F  F

F

F F
F F

13

P
P
P
P
P
P
P

P
P
P
P
P

P
P

P
P
P
P
P
P
P

P
P
P

P
PP

11

11

11 11

12 12

12 12 13

13 13 13

13 13

21

21

21

22

22 22

22 22 22

22 23 23
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layer j of object i. Dark shaded blocks indicate bytes from object 1 while light shaded blocks indicate bytes from
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The performance of this approach is measured by an expected PSNR. Let p(xi, N) be the probability that xi
packets are lost from a total of N packets, and D(xi) be the whole-image PSNR obtained in this case. Note that
D(xi) depends on the FEC arrangement of the bitstream B as determined by the UEP algorithm of [4]. The expected
PSNR is calculated as

D̄ =

N∑

i=0

p(xi, N)D(xi). (7)

In subsequent experimental results, we use an exponential probability loss model for probability density p(xi, N).

3.2 Individual Unequal Error Protection (IUEP)
In order to ensure independent access to the individual objects in the bitstream of (6), an alternative to the previous

UEP strategy would be to “deinterleave” the bitstream and then apply the algorithm of [4] to each object individually.
That is, from the bitstream of (6), we would generate two bitstreams B1 and B2,

B1 = P11, P12, P13, .., P1M1
(8)

B2 = P21, P22, P23, .., P2M2
. (9)

In this case, we have two PSNR-versus-prefix profiles, one for each object. The algorithm of [4] is applied individually
to bitstreams B1 and B2 to get the FEC configuration for each. Fig. 5 shows the packet arrangement for this approach.
The first 3 packets are from object 1, and next 3 packets are from object 2. The data bytes of objects 1 and 2 are
in consecutive packets, while a given packet contains bytes from only one object. Hence, this approach provides
independent access to objects. For example, the decoder can invert the UEP code matrix for object 1 after only the first
3 packets are transmitted and accounted for—it does not have to receive packets 4 through 6 to do so. The advantage
of this method over CUEP is that it provides independent access without the need to wait until all packets have been
transmitted.

The performance of this approach is measured by an expected PSNR. Let p(xi, Ni) be the probability that xi
packets are lost from Ni packets in object i. Then p(x1, N1)p(x2, N2) is the probability that x1 packets are lost from
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(a) (b)

Figure 6: Original images, (a) lenna, (b) coastguard.

object 1 and x2 packets are lost from object 2. The expected whole-image PSNR is calculated as

D̄ =

N1∑

x1=0

N2∑

x2=0

p(x1, N1)p(x2, N2)D(x1, x2) (10)

where D(x1, x2) is calculated from individual-object PSNR profiles as described in Appendix A. In subsequent ex-
perimental results, we assume an exponential probability loss model for probability densities p(xi, N1) and p(xi, N2).

4. Experimental Results
This chapter presents experimental results for the methods discussed above. All the experiments are conducted using
the shape-adaptive SPIHT implementation in QccPack [14]. The 512× 512 grayscale lenna and 352× 288 coastguard
images are used for results. The lenna image is manually partitioned into two objects—object 1 is lenna and object 2
is background. The coastguard image is also manually partitioned into two objects—object 1 is ship and object 2 is
background. The original lenna image is shown in Fig. 6(a) and the two objects, lenna and the background, are shown
in Figs. 7(a) and (b) respectively. The original coastguard image is shown in Fig. 6(b) and the two objects, ship and
background, are shown in Fig. 7(c) and (d) respectively. In all the experiments, a bit rate of 0.5 bits per pixel (bpp)
is assumed for the entire image. The tests are done assuming an exponential packet-loss model at a mean loss rate of
20%. We assume 47 bytes of data in each packet, as ATM packets have a payload length of 48 bytes of which one byte
is required for a packet-sequence number.

4.1 CUEP Results
The packet distribution for CUEP applied to lenna is as follows. A total of 349 packets are sent of with a total

payload length of 16403 bytes. The algorithm of [4] applied to the interleaved bitstream of (6) yields 9935 data bytes
with the remaining 6468 being FEC codes, while in the total 9935 data bytes, 7992 bytes are from object 1 and 1343
are from object 2. The PSNR of the entire image with Combined UEP is 34.1 dB when all packets are received.

The PSNR-vs.-prefix profile for the interleaved bitstream is shown in Fig. 8(a). The FEC arrangement obtained
with the algorithm of [4] for this bitstream is shown in Fig. 8(b). Clearly, unequal amounts of error codes are assigned
to the data bytes, with the amount of FEC codes assigned to the data decreasing as the stream number increases; i.e.,
each byte is protected according to its importance.

4.2 IUEP Results
The packet distribution for IUEP applied to lenna is as follows. When the algorithm of [4] is applied to the

deinterleaved bitstreams of (8) and (9), a total of 350 packets are sent of which 180 packets are from object 1 and 170
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(a) (b)

(c) (d)

Figure 7: (a) Object 1, lenna, (b) object 2, background, (c) object 1, ship, (d), object 2, background.

11

Technical Report MSSU-COE-ERC-02-01, Engineering Research Center, Mississippi State University, February 2002



0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

5

10

15

20

25

30

35

40

Prefix Length

P
S

N
R

 (
dB

)

(a)

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stream Number

D
at

a 
F

ra
ct

io
n

(b)
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FEC as obtained using the algorithm of [4] for the interleaved bitstream.
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packets are from object 2. The total payload length in this case is 16450 bytes of which 8342 bytes are data bytes. In
the total of 8342 data bytes, 4784 bytes are from object 1 and 3540 bytes are from object 2. The PSNR of the entire
image is 32.9 dB when no packets are lost.

PSNR-vs.-prefix profile is shown for each object in Fig. 9. In Fig. 10, the FEC arrangements for the object 1 and
object 2 bitstreams are shown where the amount of FEC codes assigned to the data decreases as the stream number
increases. This shows that the error protection is of unequal nature, and each data byte is protected according to its
importance.

4.3 Comparison
The two approaches described above assign FEC codes to the compressed bitstream using different organization

of the bitstream. IUEP supports independent access to individual objects whereas CUEP does not support independent
access. We now compare the performance of these approaches to determine a cost of providing this independent
access.

In the Fig. 11, the expected PSNR is shown for the CUEP and IUEP approaches under a variety of channel
conditions for lenna; i.e., for each approach, we design the FEC arrangement assuming a channel with an exponential-
loss model with mean loss rate of 20% and then determine performance using an exponential-loss channel with a loss
rate of λ, 0 ≤ λ < 100%. In this manner, we evaluate the performance of the UEP code arrangement for the situation
that the channel encountered is different from that for which we designed the code.

The expected PSNR performance is given by (7) for CUEP or (10) for IUEP. It is shown that the PSNR obtained
using CUEP is around 1.25 dB higher than for IUEP for channels with loss at or below the designed-for loss rate (20%).
For greater loss rates, the difference in PSNR between the two approaches gradually increases to about 7.5 dB at 100%
packet loss. This difference in PSNR can be considered to be the cost of obtaining independent access to objects, and
this cost increases as the mismatch between the actual and design channels increases. Actual reconstructed lenna
images for both CUEP and IUEP at a variety packet losses are shown in Figs. 12 and 13. Until 40% packet losses,
image quality is high in both methods. The image quality begins to degrade at about 50% packet loss.

The expected PSNR for the CUEP and IUEP approaches under a variety of channel conditions is shown in Fig. 14
for coastguard. It is shown that the PSNR obtained using CUEP is around 0.4 dB higher than the individual method
for channels with loss at or below the designed-for loss rate (20%). For greater loss rates, the difference in the PSNR
gradually increases up to 6 dB at 100% packet loss. As before, we conclude that the cost of providing independent
access to the objects increases as the mismatch between the actual and design channels increases. Actual reconstructed
images for both CUEP and IUEP at a variety of packet losses are shown in Figs. 15 and 16. Until 25% packet loss,
image quality is high in both methods, degrading thereafter.

5. Conclusions and Future Work
Two general approaches to provide object-based UEP have been investigated in this report. These two methods assign
FEC codes to the image data according to its importance using embedding encoding and a UEP algorithm. The CUEP
approach outperforms the IUEP method in expected PSNR, but does not provide independent access to the objects.
Hence, there is a cost associated with independent access; the experimental results reveal that this cost increases as the
mismatch between the actual and design channels increases.

Potential future work in this regard would be to develop IUEP algorithm to improve its performance when the
packet losses increase. It might be possible to determine an object-level of importance and assign more protection to
objects according to their contribution to the entire image PSNR automatically. Further, this work is applicable to other
multimedia types such as those arising in MPEG-4 data streams. Currently, still-image textures are coded in MPEG-4
in an embedded fashion using an algorithm similar in spirit to shape-adaptive SPIHT as used in this report; the work
presented here will be applicable to other video/multimedia objects as embedded formats are adopted as extensions
to MPEG-4 or in subsequent standards. On the other hand, embedded coding is fundamental to the object-based
visualization of the system of [3]; indeed, it is anticipated that sophisticated embedded coding will be increasingly
crucial to the success of remote-visualization systems deployed on extremely large-scale datasets. Consequently,
optimal protection schemes such as those explored in this work will take on increasing importance in visualization and
other multimedia-communication systems.
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Figure 9: IUEP for lenna—PSNR-vs.-prefix profiles, (a) object 1, (b) object 2.
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Figure 10: IUEP for lenna—fraction of each stream devoted to data, (a) object 1, (b) object 2.
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Figure 11: Expected PSNR vs. fraction of packets lost for lenna
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(a) (b)

(c) (d)

Figure 12: Reconstructed lenna images at various packet losses, (a) 0% loss for CUEP, PSNR = 34.1 dB, (b) 0% loss
for IUEP, PSNR = 32.8 dB, (c) 20% loss for CUEP, PSNR = 34.1 dB, (d) 20% loss for IUEP, PSNR = 32.8 dB.
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(e) (f)

(g) (h)

Figure 13: Reconstructed lenna images at various packet losses, (a) 40% loss for CUEP, PSNR = 29.6 dB, (b) 40%
loss for IUEP, PSNR = 27.6 dB, (c) 50% loss for CUEP, PSNR = 28.8 dB, (d) 50% loss for IUEP, PSNR = 25.5 dB.
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Figure 14: Expected PSNR-vs.-fraction of packets lost for coastguard.
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(a) (b)

(c) (d)

Figure 15: Reconstructed coastguard images at various packet losses, (a) 0% loss for CUEP, PSNR = 27.2 dB, (b) 0%
loss for IUEP, PSNR = 26.8 dB, (c) 25% loss for CUEP, PSNR = 27.2 dB, (d) 25% loss for IUEP, PSNR = 26.8 dB.
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(e) (f)

(g) (h)

Figure 16: Reconstructed coastguard images at various packet losses, (a) 35% loss for CUEP, PSNR = 26.3 dB, (b)
35% loss for IUEP, PSNR = 24.5 dB, (c) 45% loss for CUEP, PSNR = 23.7 dB, (d) 45% loss for IUEP, PSNR =
21.0 dB.
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Appendix A: Calculations with PSNR-vs.-Prefix Profiles

Let D(x1, x2) be the PSNR of the composite image (i.e., whole-image PSNR) when x1 bytes are decoded from
object 1 and x2 bytes are decoded from object 2. These xi bytes may be the first xi bytes of an embedded bitstream
for object i, in which case, the following describes how to calculate a global PSNR profile from individual-object
profiles for CUEP on an interleaved bitstream. That is, object 1 is reconstructed from bitstream B1 with x1 bytes and
object 2 is reconstructed from bitstream B2 with x2 bytes. D(x1) and D(x2) are the single-object PSNR values taken
from the individual PSNR profiles of object 1 and 2, respectively. The corresponding MSEs are

d(xi) = 255210
−D(xi)

10 . (11)

Now, the whole-image PSNR D(x1, x2) is calculated from the PSNR profiles of individual objects as

D(x1, x2) = 10 log10

2552

d(x1, x2)
,

where

d(x1, x2) =
K1d(x1) +K2d(x2)

K1 +K2
,

and Ki is the total number of pixels in object i. Evaluating these equations for all combinations (x1, x2) produces the
global PSNR-vs.-prefix profile.

Alternatively, these same equations can be used in IUEP to calculate the expected whole-image PSNR from
individual-object PSNR profiles; in this case, xi denotes the number of packets lost from object i such that D(xi) is
the single-object PSNR that arises when xi packets are lost (which can be obtained from the PSNR profile for object i
by figuring out the length of the prefix available for decoding when xi packets are lost). Ki would then be the total
number of packets in object i.
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