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Abstract

Vector wavelet transforms for vector-valued fields can be implemented directly from multiwavelets;
however, existing multiwavelets offer surprisingly poor performance for transforms in vector-valued
signal-processing applications. In this paper, the reason for this performance failure is identified,
and a remedy is proposed. A multiwavelet design criterion, omnidirectional balancing, is introduced
to extend to vector transforms the balancing philosophy previously proposed for multiwavelet-based
scalar-signal expansion. Additionally, a family of symmetric-antisymmetric multiwavelets is de-
signed according to the omnidirectional-balancing criterion. In empirical results for a vector-field
compression system, it is observed that the performance of vector wavelet transforms derived from
these omnidirectionally-balanced symmetric-antisymmetric multiwavelets is far superior to that of
transforms implemented via other multiwavelets.

Introduction

Wavelet transforms have been some of the most useful signal-processing tools to arise
during recent years; however, the overwhelming majority of wavelet literature focuses on
the expansion of scalar-valued signals using scalar wavelet systems, i.e., multiresolution
analyses consisting of wavelet and scaling functions which are scalar-valued. Yet in many
applications, there is a need to process data that is inherently of vector form. For example,
fluid flows in oceanography and aerodynamics are usually represented as 2D or 3D vector
fields in 2D or 3D space, while images with multiple spectral components can be consid-
ered to be 2D fields of multidimensional vectors. These are just two applications out of
many for which there is need of a vector wavelet transform (VWT).

The concept of a vector transform has existed for some time, and a comprehensive
multiresolution-analysis theory for VWTs, which closely parallels theory for scalar-wavelet
expansion, was outlined by Xia and Suter [1]. Although Xia and Suter focused on the theo-
retical infrastructure for VWTs rather than the design of coefficient matrices for vector filter
banks, they recognized that multiwavelets present a natural construction for VWTs. Since
their introduction [2], multiwavelets have garnered an extraordinary amount of attention
from both theorists and engineers, but mostly for the expansion of scalar-valued signals. By
expanding a scalar function using several scaling functions and wavelet functions instead of
a single pair, multiwavelet-transform systems circumvent certain limitations posed by tra-
ditional scalar wavelets, such as the fact that scalar wavelets cannot possess simultaneously
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orthogonality and linear phase. However, multiwavelets can easily provide expansions for
vector-valued signals; in fact, using multiwavelets for vector-valued processing initially
appears simpler in that there is no need for scalar-to-vector conversion (which usually in-
volves a polyphase decomposition of the scalar signal and some form of “prefiltering”).

Given the discussion above, it appears obvious that the large body of existing multi-
wavelet transforms and filters existing in the literature could be brought to bear directly on
the VWT-design problem. However, we demonstrate below that, contrary to expectations,
existing multiwavelets perform exceedingly poorly for vector-valued signal-processing ap-
plications. As the primary contribution of this paper, we analyze extensively this perfor-
mance failure and develop a remedy for it. Inspired by the work of Lebrun and Vetterli [3],
we find that existing multiwavelets are not suitably “balanced” for vector-valued sources,
and adopt a solution we call omnidirectional balancing (OB) that greatly improves per-
formance. Employing our OB design criterion, we solve for a family of biorthogonal,
symmetric-antisymmetric (SA) multiscaling and multiwavelet functions and correspond-
ing filter banks. Using these OBSA multiwavelets in a VWT, we obtain performance in a
simple vector-field compression system far superior to that of existing multiwavelets.

In the following, we provide a brief overview of VWT theory and its relation to multi-
wavelets, explore the balancing issue for multiwavelets and VWTs, and present the details
of the construction of our OBSA multiwavelets. Finally, we examine experimental perfor-
mance of various VWTs in a simple compression system for vector-valued fields.

Vector Wavelet Transforms
Biorthogonal VWT Theory

We now present a brief overview of vector-valued wavelet theory as presented in [1],
suitably generalized to the biorthogonal case as employed in [4]. Let R be the set of real
numbers and Z be the set of integers. The real matrix-valued signal space of dimension
N × N , L2(R,RN×N ), is defined as the set of all matrix-valued signals, f(t), which are
N ×N matrices of scalar signals; i.e.,

f(t) =




f11(t) f12(t) . . . f1N(t)
f21(t) f22(t) . . . f2N(t)

...
...

...
...

fN1(t) fN2(t) . . . fNN(t)


 , (1)

where the fij(t) are scalar-valued functions, fij(t) ∈ L2(R), and t ∈ R. The integration of
matrix-valued function f(t) is defined as

∫
f(t) dt =

[∫
fij(t) dt

]
N×N , i.e., the matrix of

the integrals of the scalar functions. The inner product of two matrix-valued functions, f(t)
and g(t), is defined as 〈f ,g〉 =

∫
R f(t)gT (t) dt. Note that this is not an inner product in the

common sense in which it must be scalar-valued (〈f ,g〉 is an N × N matrix); however, it
can be shown [1] to satisfy properties necessary to be considered to be an inner product for
matrix-valued signal spaces. A set of matrix-valued functions, Φk(t), k ∈ Z , is orthogonal

to set Φ̃l(t) if
〈

Φk(t), Φ̃l(t)
〉

= δ(k− l)I , where δ(n) is the Kronecker delta sequence, and

I is the N × N identity matrix. The dual sets Φk(t) and Φ̃l(t) are called a biorthogonal
basis if the above orthogonality equation holds, and, for every f(t) ∈ L2(R,RN×N ), there
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exists coefficient matrices, Fk and F̃k, such that f(t) =
∑

k FkΦk(t) =
∑

k F̃kΦ̃k(t). Note
that the coefficients in these expansions are N × N matrices; however, as usual, they can
be obtained via inner products, Fk =

〈
f , Φ̃k

〉
, F̃k =

〈
f ,Φk

〉
.

A biorthogonal multiwavelet multiresolution analysis is driven by two matrix-valued
scaling functions, Φ(t) and Φ̃(t), and two matrix-valued wavelet functions, Ψ(t) and Ψ̃(t),
which satisfy matrix-valued dilation equations,

Φ(t) =
√

2
∑

n

HnΦ(2t− n), Φ̃(t) =
√

2
∑

n

H̃nΦ̃(2t− n) (2)

Ψ(t) =
√

2
∑

n

GnΦ(2t− n), Ψ̃(t) =
√

2
∑

n

G̃nΦ̃(2t− n), (3)

and biorthogonality conditions,

〈
Φj,k, Φ̃j,l

〉
= δ(k − l)I, (4)

〈
Φj,k, Ψ̃i,l

〉
=
〈
Φ̃j,k,Ψi,l

〉
= 0 (5)

〈
Ψj,k, Ψ̃i,l

〉
= δ(i− j)δ(k − l)I, (6)

where the coefficient sequences Hn, H̃n, Gn, and G̃n are N × N matrices, and the scales
and translates are ξj,k(t) = 2j/2ξ(2jt − k), ξ = Φ, Φ̃,Ψ, Ψ̃. Translates and scales of scal-
ing functions Φ(t) and Φ̃(t) and wavelet functions Ψ(t) and Ψ̃(t) form a nested sequence
of closed subspaces (scaling spaces) and their orthogonal-complement spaces (wavelet
spaces) decomposing L2(R,RN×N ). Therefore, function f(t) ∈ L2(R,RN×N) can be
expanded as

f(t) =
∑

k

CJ0,kΦJ0,k(t) +
∞∑

j=J0

∑

k

Dj,kΨj,k(t), (7)

where J0 is an arbitrary “starting scale”, while scaling coefficients Cj,k and wavelet co-
efficients Dj,k are N × N matrices. Matrix filter-bank equations in the style of Mallat’s
algorithm, the ubiquitous implementation of scalar discrete wavelet transforms, can be de-
rived easily [1].

In most cases, we are actually interested in transforming data consisting of N × 1
vectors rather than N ×N matrices. However, the theory outlined above can still apply. To
see this, define signal f(t) using N identical copies of a given vector source as its N rows,
f(t) =

[
f̄(t) f̄(t) · · · f̄(t)

]T
, and restrict each row of the coefficient matrices Cj,k and

Dj,k, to be identical. The above theory simplifies since the matrix rows are identical and
need not be calculated multiple times, and results in that the VWT can be implemented via
Mallat’s algorithm as

Analysis: c̄j,k =
∑

n

H̃n−2kc̄j+1,n, d̄j,k =
∑

n

G̃n−2kc̄j+1,n (8)

Synthesis: c̄j+1,k =
∑

n

HT
k−2nc̄j,k +

∑

n

GT
k−2nd̄j,k (9)
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where c̄ and d̄ are scaling and wavelet coefficient vectors of dimension N × 1. We note
that an orthonormal VWT is just a special case of a biorthogonal VWT with H̃n = Hn,
G̃n = Gn, Φ̃ = Φ, and Ψ̃ = Ψ.

As a consequence of the above definitions, the matrices Hk, H̃k, Gk, and G̃k satisfy a
matrix version of the perfect-reconstruction (PR) conditions [4],

∑

l

HlH̃
T
l+2k = δ(k)I, (10)

∑

l

HlG̃
T
l+2k = 0, (11)

∑

l

GlG̃
T
l+2k = δ(k)I, (12)

for k ∈ Z . Finally, we define two-scale matrix symbols as

H(z) =
1√
2

∑

k

Hkz
k, H̃(z) =

1√
2

∑

k

H̃kz
k. (13)

Multiwavelet Construction of VWTs

Scalar-valued multiwavelet-based multiresolution analysis consists of scales and trans-
lates of a finite number of primary scaling functions, φ1(t), φ2(t), . . . , φN(t), dual scaling
functions, φ̃1(t), φ̃2(t), . . . , φ̃N(t), primary wavelet functions, ψ1(t), ψ2(t), . . . , ψN(t) and
dual wavelet functions, ψ̃1(t), ψ̃2(t), . . . , ψ̃N(t). In either the scalar case (a special case of
multiwavelets wherein N = 1), or in the general multiwavelet case (wherein N > 1), we
expand a single scalar-valued function f(t) ∈ L2(R) using linear combinations of scales
and translates of these scaling and wavelet functions. In contrast, to construct a VWT, we
want to expand vector-valued functions. However, multiwavelets and VWTs are closely
related as was established in [1]. Specifically, in implementing a VWT with multiwavelets,
each column of matrix-valued scaling functions Φ(t) and Φ̃(t) contains a set of multiscal-
ing functions, while each column of the matrix-valued wavelet functions Ψ(t) and Ψ̃(t)
contains a set of multiwavelet functions. The VWT is implemented as in (8)-(9) directly
with Hk, H̃k, Gk, and G̃k being the filter coefficient matrices for the multiwavelet system.

Multiwavelet Balancing
Scalar Balancing

Using biorthogonal multiwavelet filter-coefficient matrices Hk, H̃k, Gk, and G̃k in (8)-
(9) yields an analysis-synthesis filter-bank pair with perfect reconstruction for use with vec-
tor sources. Additionally, if we couple this filter bank with a procedure for “vectorizing”
a scalar source, these equations also provide the mechanisms for implementing the for-
ward and inverse discrete multiwavelet transform (DMWT) of a scalar signal; in this case,
the multi-input, multi-output filter bank is called a “multifilter” [5]. The most straightfor-
ward way to implement the required vectorization is to separate the scalar signal into its N
polyphase components.
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It is well known that the mere satisfaction of (10)-(12) is not sufficient to give a DMWT
reasonable signal-processing performance for scalar signals. That is, even though (10)-(12)
provide perfect reconstruction, the distortions normally introduced by signal-processing
operations between analysis and synthesis steps of the multifilter can have dramatically
detrimental results.

For example, consider a simple compression system for scalar signals that consists of
merely the application of one scale of DMWT analysis, the zeroing of the high-pass or
“detail” coefficients (d̄j,k in (8)), and one scale of DMWT synthesis. Suppose this com-
pression system uses the Geronimo-Hardin-Massopust (GHM) multiwavelets [2], which
are orthogonal and have N = 2. Further suppose we employ a polyphase vectorization
which assembles a vector source by placing even samples from the scalar source into the
first vector component and odd samples into the second component. If the scalar signal
input to the system is the constant signal [. . . , 1, 1, 1, 1, 1, 1, . . . ], we would expect that the
system would reproduce this signal exactly, since our intuition holds that a constant signal
would pass perfectly through the “lowpass” branch of the multifilter, and, since we are dis-
carding only highpass coefficients, no change should result. This is, however, not the case.
In reality, the output of the system is [. . . , 1,

√
2, 1,
√

2, 1,
√

2, . . . ], as was observed in [3].
That is, an oscillatory distortion of the scalar constant signal occurs due to the suppression
of the detail coefficients from the multifilter. For many other multiwavelets, a similar ef-
fect occurs, although the exact values of the oscillations depend on the multiwavelet used.
The problem represented by this example is serious as it is likely to lead to significant dis-
tortions in any system that modifies coefficients between analysis and synthesis transform
steps. This issue is particularly problematic for those processes, notably compression sys-
tems, that tend to preserve scaling coefficients at the expense of wavelet coefficients under
the assumption that the scaling coefficients provide a “low-resolution” approximation to
the original data.

The traditional approach to handling the oscillatory distortions described above is to
compensate for them before the forward DMWT is applied. That is, one applies a so-
called “prefilter” to the input data before it enters the analysis DMWT filter bank. The net
effect, however, is that that the transform itself is changed, usually losing orthogonality
or linear phase [3]. An alternative approach was proposed recently [3]. In this technique,
it was realized that the root of the problem lies in that the vector [1, 1]T is not generally
an eigenvector of the matrix H(z) when z = 1 (corresponding to a zero-frequency, or
constant, source). To rectify this situation, a similarity transformation was proposed in
order to “redesign” the Hk matrices such that [1, 1]T was an eigenvector. This approach
was called multiwavelet balancing [3] due to the fact that it tends to “balance” out the
treatment of the vector components by the filter bank.

Initially, it may appear that the balancing issue described above applies only to the
situation in which a scalar source is processed by first vectorizing it and then applying a
DMWT, since it is in the polyphase nature of the vectorization that the oscillations arise.
However, as we will see in the next section, purely vector transforms, in which the input
data is originally in vector form so that no vectorization is needed, are not immune to this
effect. In fact, we will see that a new kind of balancing is needed to rectify the problem,
and, in its absence, using multiwavelets for VWTs produces surprisingly poor results for
compression.
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Omnidirectional Balancing

The vector analogue of a constant scalar source is a vector field in which each vector
is the same, i.e., f̄(t) =

[
a b

]T
, ∀t. Define the orientation of the constant vector field

as θ = tan−1 b
a
. From the previous discussion, we would expect some vector other than[

a b
]T

to be output from the “lowpass” branch of the multifilter, unless
[
a b

]T
happens

to be an eigenvector of H(1)—but we could apply the balancing procedure of [3] to ensure
that this is the case. However, doing so would mean that the resulting multiwavelet is
“balanced” only for the specific constant source at hand. That is, if we had another constant
vector source at a different orientation θ′, θ′ 6= θ, the multiwavelet would no longer be
balanced for this source. The difference between balancing for vector data and balancing
for scalar data is that there is only one constant scalar source to within a gain factor, but
infinitely many constant vector sources, all with different orientation angles. This vector
balancing problem is exacerbated when the data source is not constant.

Fig. 2 illustrates the vector balancing problem for the real vector-valued data given in
Fig. 1. For Fig. 2, we perform a 3-scale VWT implemented via a multiwavelet, discard
all the wavelet coefficients, and reconstruct using the inverse VWT on just the baseband
subband. We implement the 2D VWT in the usual separable fashion—a 1D VWT is taken
along each row of vectors and then along each column, yielding three subbands of wavelet
coefficients and one baseband of scaling coefficients, repeating then on the baseband. We
see that, regardless of whether we use a non-balanced (Fig. 2(a)) or balanced (Fig. 2(b))
multiwavelet for our VWT, we get extremely poor results for our compressor. Specifically,
the baseband does not consist of a low-resolution approximation of the original data as we
are led to expect from scalar multiresolution analysis. We have observed similarly poor
results for every multiwavelet we have found in the literature.1 Since real-world signal-
processing algorithms often discard or otherwise modify wavelet coefficients, the practical
implications of the vector balancing problem are clear.

To solve the vector balancing problem so as to construct VWTs which are resilient to
data loss amongst wavelet coefficients, we propose the following constraint to the VWT-
design process. Realizing that the multiwavelet used for the VWT needs to be balanced for
all vectors lying on the unit circle, we propose a new type of “balancing” that is insensitive
to the orientation angle of the vector data so that constant vector sources, regardless of
orientation, are reproduced by the “lowpass” branch of the multifilter. Specifically, what
is required is that all unit vectors are eigenvectors of H(z) and H̃(z) when z = 1. This is
satisfied when

H(1) = H̃(1) = I, (14)

where I is the N × N identity matrix. We call the imposition of (14) omnidirectional
balancing (OB) as it “balances” the multiwavelet for all orientations in a manner similar to
the balancing proposed in [3] for a single direction.

1Specifically, we have investigated the multiwavelets appearing in [2, 3, 6–9], and only the multiwavelet
based on the complex Daubechies filters of [3] does not suffer from poor performance due to the balancing
issue. However, the cascade algorithm for this latter multiwavelet does not converge, so its performance is
not competitive either.
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Figure 1: Original data, 2D ocean-current vectors measured on the surface of the Pacific Ocean.
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Figure 2: Reconstruction from baseband of VWT implemented with (a) Chui-Lian length-3 multi-
wavelet [10] (MSE = 0.0334), and (b) Lebrun-Vetterli balanced length-3 multiwavelet [3] (MSE =
0.0394).

Construction of OBSA Multiwavelet Filters

To construct the primary and dual multiscaling functions for our OBSA VWT, we im-
pose the following set of equations: the PR condition (10), the OB condition (14), and the
SA condition [4, 10],

Hk = SHKu+Kl−kS, H̃k = SH̃K̃u+K̃l−kS, (15)

where [Kl, Ku] and [K̃l, K̃u] are the intervals of support of the FIR filters Hk and H̃k,
respectively, and S = diag(1,−1, . . . , (−1)N ). We occupy as many remaining degrees
of freedom as possible by placing zeros at z = −1, corresponding to the technique of
vanishing moments widely employed in scalar wavelet design.
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After application of the above design steps, there are usually several remaining degrees
of freedom, and additional design criteria are necessary to fully determine a solution. In
[4], a filter-optimization technique is proposed to occupy degrees of freedom in biorthog-
onal multiwavelet design. This approach calls for the minimization of the deviation of the
magnitude response of the equivalent scalar filter from the ideal, or “brick-wall,” scalar
lowpass filter. However, the motivation in [4] is to design “good” multifilters for scalar
signals; hence, this criterion is not entirely suitable for vector-valued signals. Since it is
unclear how to define an ideal vector lowpass filter, we adapt the scalar approach of [4] to
our vector design needs as follows. Although this adaptation may not be optimal to our
vector problem, it has produced good empirical performance in the scalar design, and so
provides a reasonable heuristic for our purposes.

The technique of [4] is to make the equivalent scalar magnitude response approach that
of an ideal lowpass filter by minimizing the objective function Elp,

Elp =

∫ π/2

0

(1− |H(ω)|)2dω +

∫ π

π/2

|H(ω)|2dω

+

∫ π/2

0

(1− |H̃(ω)|)2dω +

∫ π

π/2

|H̃(ω)|2dω. (16)

In [4], |H(ω)| and |H̃(ω)| are the magnitude responses of the equivalent scalar filters. For
our vector design problem, we use H(ω) = 1√

2

∑
kHke

jkω while a variety of definitions
exist for the matrix norm. It is unclear which matrix norm is best from a theoretical per-
spective; however, our empirical observations indicate that all perform equally well. We
thus define the matrix norm of H(ω) =

[
Hi,j(ω)

]
N×N as

|H(ω)| = 1√
2

(
N∑

i=1

N∑

j=1

∣∣Hi,j(ω)
∣∣2
)1/2

, (17)

with the division by
√

2 included so as to normalize the DC gain to 1, since our OB condi-
tion gives H(ω)|ω=0 = I . A similar definition is used for |H̃(ω)|.

For the multiwavelets, we impose biorthogonality between the multiwavelet and multi-
scaling functions (11), biorthogonality of the dual multiwavelets (12), and a SA condition
similar to (15). We occupy any remaining the degrees of freedom by minimizing a high-
pass objective function similar to (16). To date, we have attempted solutions for only the
case of N = 2, as the overwhelming majority of multiwavelet literature focuses on this
multiplicity-2 case, and results are easily visualized for 2D vectors.

Experimental Results

Fig. 3(a) repeats the experiment of Fig. 2 for an example of non-diagonal omnidirec-
tionally balanced VWT using the length 7-5 OBSA biorthogonal multiwavelets (OBSA7-5)
designed via the procedure above. As can be seen, in contrast to Figs. 2(a) and (b), the base-
bands of OB VWTs do indeed provide a low-resolution approximation to the original data.
Additionally, the mean squared error (MSE) between the reconstructed and original vector
fields for Fig. 3(a) are significantly smaller than those for Figs. 2(a) and (b).
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Figure 3: (a) Reconstruction from baseband of VWT implemented with OBSA7-5 biorthogonal
multiwavelets, MSE = 0.0082. (b) Compression performance for ocean-current data of Fig. 1 for
VWTs derived from non-balanced multiwavelets, scalar-balanced multiwavelets and OBSA multi-
wavelets.

To investigate the performance of our OBSA VWTs in a real signal-processing appli-
cation, we built the following vector-field compression system. Three scales of a 2D VWT
for 2D vectors is followed by vector quantization (VQ) of scaling and wavelet coefficient
vectors. We use the successive approximation VQ (SAVQ) of [11], which is a hybrid of
gain-shape VQ and multistage VQ. Finally, we finish with runlength coding of all insignif-
icant vectors (labeled as “zero” during each approximation pass of the SAVQ coder) and
arithmetic coding with multiple contexts. In whole, the system, which produces an embed-
ded bitstream, is roughly an extension to vector data of a coder we developed recently for
scalar-valued oceanographic imagery [12].

We have compared the performance of VWTs derived from a number of orthogonal and
biorthogonal multiwavelets of both the non-balanced [2, 9, 10] and scalar-balanced [3, 7]
variety to that of VWTs created from our OBSA multiwavelets. Rate-distortion perfor-
mance results for the above compression system using the ocean-current data of Fig. 1 are
shown in Fig. 3(b). We see that our OBSA multiwavelets provide VWTs with performance
far superior to VWTs derived from other known multiwavelets. We have repeated these
experiments for a number of other vector-valued datasets from a variety of applications
and have found similar performance gains.

Conclusions

In this paper, we have revealed that nearly all existing multiwavelets perform poorly
when used to implement VWTs. To remedy this situation, we have proposed the incorpo-
ration of an additional criterion in the multiwavelet-design procedure that results in multi-
wavelets that are balanced in an omnidirectional sense. Using this criterion, we design a
family of multiplicity-2 OBSA multiwavelets that substantially outperforms existing mul-
tiwavelets when used for VWTs in a simple compression system for 2D vectors. In empir-
ical observations, we find that, our OBSA multiwavelets provide the best performance for

in Proceedings of the IEEE Data Compression Conference, J. A. Storer and M. Cohn, Eds., Snowbird, UT, April 2002, pp. 422-431.



VWTs derived from known multiwavelets. It is clear that the OB concept plays a key role
in extending wavelet-based signal-processing paradigms from scalar to vector data.
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