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ABSTRACT

Spread-spectrum watermarking, in which random noise is added
to transform coefficients and detected with a correlation operator,
has become a preferred paradigm for many watermarking applica-
tions. This paper analyzes the performance of such a watermark-
ing system when the underlying transform is a tight frame rather
than a traditional orthonormal expansion. The analysis indicates
that a tight frame offers no inherent performance advantage over
an orthonormal transform in the watermark-detection process de-
spite the well known ability of redundant transforms to accommo-
date greater amounts of added noise for a given distortion.

1. INTRODUCTION
Image watermarking is a technique for labeling digital images by
embedding electronic stamps or so-called watermarks into an im-
age for a variety of purposes including copyright protection and
image authentication. Due to the explosion in use of the digi-
tal media, watermarking has recently attracted significant interest
from academia and industry alike.

A number of techniques have been developed for image water-
marking. Perhaps the most widely employed technique is spread-
spectrum watermarking [1] which embeds a white-noise water-
mark into coefficients of an orthonormal or biorthogonal trans-
form. In this case, the watermark is detected by computing a
correlation between the watermarked coefficients and the water-
mark noise sequence, with this correlation being compared to a
properly selected threshold to determine watermark presence or
absence. The discrete wavelet transform (DWT) is an appealing
transform for spread-spectrum watermarking because its space-
frequency tiling exhibits a strong similarity to the way the human
visual system (HVS) processes natural images [2]. Thus, water-
marking applied in the wavelet domain can largely exploit the HVS
characteristics and effectively hide a robust watermark. Orthonor-
mal and biorthogonal DWTs have been proposed frequently (e.g.,
[2]) for spread-spectrum watermarking.

However, alternative wavelet-transform paradigms exist. For
example, the redundant discrete wavelet transform (RDWT) (see,
for example, [3]) gives an overcomplete representation of the in-
put sequence which functions to a certain extent as an approxi-
mation to the continuous wavelet transform. The RDWT is shift
invariant, and its redundancy introduces an overcomplete frame
expansion. It is known that frame expansions increase robustness
to additive noise [4, 5]; that is, the addition of noise to transform
coefficients results in less signal distortion for frame expansions
than for orthonormal expansions. Thus, RDWT-based signal pro-
cessing tends to be more robust than DWT-based techniques, and
the RDWT has been successfully deployed in a variety of appli-
cations, notably noise reduction and feature detection. Addition-

ally, prior work has proposed the RDWT for image watermarking
[6]. Initially, one might think that, since frame expansions like
the RDWT offer increased robustness to added noise, such over-
complete expansions have the potential to outperform traditional
orthonormal expansion in the watermarking problem. In this re-
port, we offer analysis that contradicts this intuition. Specifically,
we present analysis that shows that, although spread-spectrum wa-
termarking of tight-frame coefficients does produce less image dis-
tortion for the same watermarking energy, the correlation-detector
performance of tight-frame based watermarking is identical to that
obtained by using an orthonormal expansion.

Below, we first recall some fundamental theory concerning
frame expansions and their robustness to added noise. We then
analyze the performance of spread-spectrum correlation detectors
for both tight-frame and orthonormal expansions. We follow with
several concluding remarks.

2. FRAME EXPANSIONS AND ROBUSTNESS TO
ADDED NOISE

A family of functions (ψi)i∈J is called a frame if there existA > 0
and B <∞ so that, for all f in Hilbert spaceH,

A‖f‖2 ≤
∑

i∈J
| < ψi, f > |2 ≤ B‖f‖2, (1)

where A and B are called the frame bounds [4]. The dual frame
(ψ̃i) of (ψi) is an expansion set in Hilbert space H, and for all f
inH,

1

B
‖f‖2 ≤

∑

i

| < ψ̃i, f > |2 ≤ 1

A
‖f‖2. (2)

Any function f ∈ H can be expanded as

f =
∑

i

< ψi, f > ψ̃i =
∑

i

< ψ̃i, f > ψi (3)

If the frame bounds are equal, i.e., A = B, the frame is called a
tight frame. In a tight frame, we have

∑

i∈J
| < ψi, f > |2 = A‖f‖2, (4)

ψ̃i =
1

A
ψi, (5)

f =
1

A

∑

i

〈ψi, f〉ψi. (6)

In this case, A gives the “redundancy ratio,” a measure of the de-
gree of overcompleteness of the expansion (we assume that the
ψi’s have unit norm). An orthonormal expansion is the special
case that A = 1, i.e., a transform with no redundancy.
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The RDWT removes the decimation operators from DWT fil-
ter banks, yielding a redundant representation of the input sequence
It can be shown [7] that the RDWT is a frame expansion with frame
bounds A = 2 and B = 2J , where J is the number of levels in
the transform. Thus, for one scale of decomposition, the RDWT is
a tight frame.

Tight-frame expansions increase the robustness to added white
noise with respect to orthonormal transforms. Specifically, sup-
pose zero-mean, variance-ε2 Gaussian noise is added to transform
coefficients. The mean square error (MSE) of the reconstructed
signal with respect to the original signal is

MSE = E[‖f − f̂‖2], (7)

where f is the original signal, and f̂ is the corrupted signal. It has
been shown [5] that the MSE distortion due to the added noise is
Nε2

A
for a tight-frame expansion. The orthonormal basis is a spe-

cial case of a tight frame with redundancyA = 1; for a nonorthog-
onal tight frame, A > 1. Thus, we have Nε2

A
< Nε2, and the

distortion incurred by a tight frame is less than that arising with an
orthonormal basis.

3. TIGHT FRAME AND WATERMARKING
In spread-spectrum watermarking, the signal is transformed using
an expansion basis,

f =
∑

i

αiψi, (8)

and the watermark sequence, i.e., white Gaussian noise, is added to
the coefficients in the transform domain to form the watermarked
signal,

f ′ =
∑

i

α′iψi =
∑

i

(αi + εni)ψi, (9)

where ni is zero-mean, unit-variance white Gaussian noise, and
ε is a parameter that controls the watermark strength. The water-
mark can be detected assuming the watermark noise sequence is
known exactly to the detector. This is done by performing the for-
ward transform on the watermarked signal and then computing a
correlation on the coefficients,

ρ =
∑

i

α̂ini, (10)

where α̂i are the expansion coefficients of the watermarked image
f ′,

α̂i =
〈
ψ̃i, f

′
〉
. (11)

For watermark detection, the correlation ρ is compared to a thresh-
old to decide the presence of the watermark. An optimal threshold
can be set to minimize the probability of missing the presence of
the watermark given a probability of false detection according to
the Neyman-Pearson criterion [2].

Below, we compare the watermarking performance of an or-
thonormal basis versus that of a tight-frame expansion. In this
comparison, we adjust the watermark strength such that both pro-
cedures achieve the same MSE and the same false-alarm error PF ,
and then measure the performance by computing the minimum
missed-detection error, PM , as obtained with the Neyman-Pearson
criterion. We focus our analysis on the discrimination between two
hypotheses [2]:

Case A: the image is watermarked with a random sequence mi

different from the watermark ni we are trying to detect, but
using the same watermarking approach,

Case B: the image is watermarked with the watermark ni that we
are trying to detect.

The Neyman-Pearson test obtains a decision rule by minimizing
the missing error, PM subject to a constraint on the false-alarm
error, PF . The decision criterion is

ρ
H1

≷
H0

Tρ. (12)

As was done in [2], we model the correlation ρ as normally dis-
tributed, which is a realistic assumption arising from the central-
limit theorem. In this case, the binary hypothesis problem is for-
mulated as

H0 : Case A P (ρ|H0) = 1√
2πσρA

exp

[
− ρ2

2σ2
ρA

]

H1 : Case B P (ρ|H1) = 1√
2πσρB

exp

[
− (ρ−µρB)2

2σ2
ρB

]
.

Consequently, the false alarm error PF and the missing error PM
can be expressed with respect to the threshold Tρ,

PF = P (D1|H0) =
1

2
erfc

(
Tρ√
2σρA

)
(13)

PM = P (D0|H1) =





1
2

+ 1
2

erf
(
Tρ−µρB√

2σρB

)
, Tρ ≥ µρB ,

1
2

erfc
(
µρB−Tρ√

2σρB

)
, Tρ < µρB .

(14)

In order to obtain the Neyman-Pearson test for each watermarking
procedure, the probability distributions of the watermark correla-
tion ρ are needed. These are calculated as follows:

(1) Orthonormal basis
If the image is watermarked with a watermark other than the
one we are trying to detect (Case A), then the watermarked
image is

f ′ =
∑

i

(αi + εmi)ψi, (15)

and the correlation of the watermarking is

ρA =
N∑

i=1

(αi + εmi)ni (16)

with mean
µρA = E[ρA] = 0 (17)

and variance

σ2
ρA = E[ρA − µρA]2 = E[

N∑

i=1

(αi + εmi)ni]
2

=
∑

i

E[α2
i + ε2m2

i + 2εmiαi]E[n2
i ]

= ‖f‖2 +Nε2. (18)

If the image is watermarked with the watermark we are de-
tecting (Case B), we have that the correlation is

ρB =
N∑

i=1

(αi + εni)ni (19)
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with mean
µρB = E[ρB ] = ε ·N (20)

and variance

σ2
ρB = E[ρB − µρB ]2 = E[ρ2

B ]− µ2
ρB

= E[
N∑

i=1

(αi + εni)ni]
2 − ε2N2

=

N∑

i=1

α2
i + 3Nε2 + ε2(N2 −N)− ε2N2

= ‖f‖2 + 2Nε2. (21)

(2) Tight Frame
If the image is watermarked with a watermark other than
the one we are trying to detect (Case A), the correlation of
the watermarking is

ρA =
AN∑

i=1

α̂ini =
∑

i

〈
ψi, f

′〉ni

=
∑

i

〈
ψi,

1

A

∑

j

(αj + εmj)ψj

〉
ni

=
1

A

∑

i

∑

j

(αj + εmj)ni 〈ψi, ψj〉 . (22)

In this case, the mean and variance of the correlation are

µρA = E[ρA] = 0 (23)

and

σ2
ρA = E[ρA − µρA]2 = E[ρ2

A]

= E

[
1

A

∑

i

∑

j

(αj + εmj)ni 〈ψi, ψj〉
]2

=
1

A2

AN∑

i=1

[∑

j

αj 〈ψi, ψj〉
]2

+
ε2

A2

AN∑

i=1

AN∑

j=1

〈ψi, ψj〉2 .

(24)

Since for a tight frame

f =
1

A

∑

j

〈ψj , f〉ψj =
1

A

∑

j

αjψj , (25)

we have

AN∑

i=1

[∑

j

αj 〈ψi, ψj〉
]2

=
AN∑

i=1

〈ψi, Af〉2 = A2
AN∑

i=1

α2
i .

Additionally, a tight frame has the property that
∑

i

| 〈ψi, f〉 |2 = A‖f‖2. (26)

Thus, the second term in (24) is

AN∑

i=1

AN∑

j=1

〈ψi, ψj〉2 =

AN∑

i=1

A‖ψi‖2

=
AN∑

i=1

A = A2N. (27)

Therefore, we have

σ2
ρA =

1

A2
·A2

AN∑

i=1

α2
i +

ε2

A2
·A2N

=
AN∑

i=1

α2
i + ε2N

= A‖f‖2 + ε2N. (28)

If the image is watermarked with the watermark we are de-
tecting (Case B), we have that the correlation is

ρB =
1

A

∑

i

∑

j

αjni 〈ψi, ψj〉+ 1

A

∑

i

∑

j

εnjni 〈ψi, ψj〉 .

(29)
In this case, the mean and variance of the correlation are

µρB = E[ρB ] = ε ·N (30)

and

σ2
ρB = E[ρB − µρB ]2 = E[ρ2

B ]− µ2
ρB

=
1

A2

[
A2

AN∑

i=1

α2
i + ε2A2(N2 + 2N)

]
− ε2N2

=
AN∑

i=1

α2
i + ε2(N2 + 2N)− ε2N2

= A‖f‖2 + 2ε2N. (31)

4. PERFORMANCE COMPARISON
Assume we adjust the watermarking strength ε in (9) such that an
MSE of D is obtained. Then, we have

Orthonormal Basis: MSE = E[‖f − f ′‖2] = Nε2 = D

Tight Frame: MSE = E[‖f − f ′‖2] =
Nε2

A
= D

so that, in order to achieve the same MSE, the watermarking strength
ε is adjusted as

Orthonormal Basis: ε =

√
D

N
(32)

Tight Frame: ε′ =

√
AD

N
. (33)

Under these conditions, the statistics of the Gaussian-modeled cor-
relation ρ are given in Table 1.

The performance at watermark detection is measured with the
optimal missed-detection error, PM , in the sense of the Neyman-
Pearson test, while the watermark distortion and false-alarm error
PF are held fixed.
Orthonormal Basis:

PF =
1

2
erfc

(
Tρ√
2σρA

)

=
1

2
erfc

(
Tρ√

2
√
‖f‖2 +D

)
(34)
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Orthonormal Basis Tight Frame

Case A

µρA = 0

σ2
ρA = ‖f‖2 +Nε2

= ‖f‖2 +D

µ′ρA = 0

σ′
2
ρA = A‖f‖2 +Nε′

2

= A‖f‖2 +AD

Case B

µρB = ε ·N =
√
ND

σ2
ρB = ‖f‖2 + 2Nε2

= ‖f‖2 + 2D

µ′ρB = ε′ ·N =
√
AND

σ′
2
ρB = A‖f‖2 + 2Nε′

2

= A‖f‖2 + 2AD

Table 1: Mean and standard deviation of the watermark correla-
tion.

Tight Frame:

P ′F =
1

2
erfc

(
T ′ρ√
2σ′ρA

)

=
1

2
erfc

(
T ′ρ√

2
√
A‖f‖2 +AD

)
(35)

In order for PF = P ′F , we need

1

2
erfc

(
Tρ√

2
√
‖f‖2 +D

)
=

1

2
erfc

(
T ′ρ√

2
√
A‖f‖2 +AD

)

so that
T ′ρ =

√
ATρ.

We have two cases to consider, Tρ ≥ µρB and Tρ < µρB .

(1) If Tρ ≥ µρB , then T ′ρ =
√
ATρ ≥

√
AµρB = µ′ρB and we

have

PM =
1

2
+

1

2
erf

(
Tρ − µρB√

2σρB

)
(36)

P ′M =
1

2
+

1

2
erf

(
T ′ρ − µ′ρB√

2σ′ρB

)
(37)

T ′ρ − µ′ρB√
2σ′ρB

=

√
ATρ −

√
AµρB√

2
√
AσρB

=
Tρ − µρB√

2σρB
. (38)

Therefore, we have PM = P ′M .

(2) If Tρ < µρB , we have T ′ρ < µ′ρB and

PM =
1

2
erfc

(
µρB − Tρ√

2σρB

)
(39)

P ′M =
1

2
erfc

(
µ′ρB − T ′ρ√

2σ′ρB

)
(40)

µ′ρB − T ′ρ√
2σ′ρB

=

√
AµρB −

√
ATρ√

2
√
AσρB

=
µρB − Tρ√

2σρB
. (41)

Again, we have PM = P ′M .

That is, the probability of missed-detection error, PM , is the same
regardless of whether an orthonormal or tight-frame expansion is
used.

5. CONCLUSIONS
The primary conclusion we draw from the above theoretical anal-
ysis is that a redundant expansion in the form of a tight frame
yields less distortion than an orthonormal expansion when water-
marked with a fixed watermark energy, yet the redundant expan-
sion does not achieve performance advantages over the orthonor-
mal basis for spread-spectrum watermarking detection. We con-
clude that the overcompleteness of the expansion, which aids the
watermark insertion by accommodating greater watermark energy
for a given distortion, actually hinders the correlation operator in
watermark detection. As a result, the tight-frame expansion does
not inherently offer greater spread-spectrum watermarking perfor-
mance. We note that this analytical observation should be tem-
pered with the fact that spread-spectrum watermarking is often
deployed in conjunction with an image-adaptive weighting mask
(e.g., [2]) so as to improve perceptual performance. In the case
of image-adaptive watermarking, a redundant transform may offer
advantages towards the computation of the weighting mask, as was
the case in [6].
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