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ABSTRACT

In this paper, a technique is presented that incorporates an ir-
regular triangle mesh into wavelet-domain motion-estimation and
motion-compensation using a shift-invariant redundant wavelet
transform. Triangle vertices are identified by a simple correla-
tion operator locating image edges in the wavelet subbands, while
motion compensation takes place through an affine transforma-
tion mapping triangles from one frame to the next. The motion-
compensated residual is downsampled to a non-redundant form
which is then coded using any wavelet-based still-image coder.
Experimental results indicate that the combined approach outper-
forms either technique applied separately; in addition, the pro-
posed method outperforms a variety of motion-estimation and
motion-compensation approaches operating in both the spatial and
wavelet domains.

1. INTRODUCTION
Block-based motion estimation (ME) and motion compensation
(MC) followed by a discrete cosine transform (DCT) is widely
employed in modern video-compression systems and an integral
part of standards such as H.263, MPEG-2, and MPEG-4. However,
given the promising performance of wavelet-based still-image com-
pression algorithms such as [1], there has recently been interest
in deploying ME/MC within such algorithms to produce wavelet-
based video coders. On another front, there have been a variety
of proposals for employing geometries more general than square
blocks to drive ME/MC. In this paper, we combine both of these re-
cent developments. Specifically, we investigate the use of triangle-
mesh based ME/MC in the wavelet domain.

The most straightforward way to replace the DCT with a dis-
crete wavelet transform (DWT) in a typical video coder is to per-
form ME/MC in the spatial domain and to calculate a DWT on
the resulting residual image. This simple approach suffers from
blocking artifacts [2], which are exacerbated if the DWT is not
block-based but rather the usual whole-image transform. The al-
ternative paradigm would be to have ME/MC take place in the
wavelet domain. However, the fact that the usual, critically sam-
pled DWT used ubiquitously in image-compression efforts is shift
variant greatly hinders the ME/MC process [3].

In this paper, we adopt the latter approach—wavelet-domain
ME/MC. However, to overcome difficulties associated with the
shift variance of traditional DWTs, we choose instead to perform
ME/MC in the domain of a redundant transform. In essence, the
redundant DWT (RDWT) [4] removes the downsampling opera-
tion from the traditional DWT to ensure shift invariance at the cost
of a redundant, or overcomplete, representation.

The second key aspect of our approach is that we drive ME/MC
with an irregular triangle mesh rather than the traditional block-

based structure. The motivation for mesh-based ME/MC is that a
mesh structure can oftentimes better match the motion of objects
in video. For example, highly detailed areas should be divided into
many small irregularly shaped regions to be individually compen-
sated, whereas larger ME/MC regions can suffice for areas with lit-
tle detail. This fine-tuning of ME/MC is impossible in traditional
block-based approaches since the size of the block is fixed. But
in mesh-based approaches, such as triangle-mesh ME/MC [5], the
regions are sized and shaped accordingly to the local level of de-
tail in the image. Specifically, in triangle-mesh ME/MC, triangle
vertices, or “control points,” are selected to track edges of objects
in the image.

In this paper, we describe in detail our approach to triangle-
based ME/MC in the RDWT wavelet domain and compare it em-
pirically to several other ME/MC methods deployed in both the
spatial and wavelet domains. Results indicate that our redundant-
wavelet triangle-mesh (RWTM) method outperforms the other
methods on both a fast-moving and a slow-moving video segment.

2. REDUNDANT-WAVELET TRIANGLE-MESH MOTION
ESTIMATION AND MOTION COMPENSATION

The encoder of our RWTM video-coding system is depicted in
Fig. 1. The input image is first transformed using a RDWT, and
control points are identified in the previous frame by locating the
most salient image edges. The motion of these control points from
the previous frame to the current frame is estimated in the RDWT
domain, and motion vectors are transmitted to the decoder to allow
it to track control-point motion. MC is accomplished by first using
a triangulation algorithm to generate triangle meshes from the con-
trol points in both the current and previous frames and then using
affine transformations to predict, subband by subband, triangles in
the current frame from triangles in the previous frame. Residing in
the RDWT domain, the motion-compensated residual is itself re-
dundant; consequently, it is downsampled before coding. The final
encoding step consists of a wavelet-domain still-image coder; for
the experiments below, we use the QccPack [6] implementation of
SPIHT [1], but any wavelet-domain still-image coder would suf-
fice.

At the decoder side, motion of the control points is tracked,
and triangulations identical to those used in the encoder are pro-
duced. A reconstructed spatial-domain image is produced by in-
verting the still-image coding, adding on a subsampled RDWT-
domain prediction, and inverting the DWT. Finally, a RDWT op-
eration produces the reference-frame subbands for generating the
prediction of the next-frame subbands in the RDWT domain. Be-
low, we explore the various components of our proposed system in
greater detail.
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2.1. Redundant Wavelet Transform
The RDWT is an approximation to the continuous wavelet trans-
form that removes the downsampling operation from the tradi-
tional critically sampled DWT to produce an overcomplete rep-
resentation. The shift-variance characteristic of the DWT arises
from its use of downsampling, while the RDWT is shift invariant
since the spatial sampling rate is fixed across scale. As a result, the
size of each subband in an RDWT is the exactly the same as that
of the input signal. It turns out that, by appropriately subsampling
each subband of an RDWT, one can produce exactly the same co-
efficients as does a critically sampled DWT applied to the same
input signal. We note that the RDWT is also sometimes called
the “algorithme à trous” or the “undecimated wavelet transform.”
The reader is referred to [4] for greater detail on the RDWT, its
implementations, and its relation to the critically sampled DWT.
2.2. Selection of Control Points
The choosing of proper control points is crucial to the accuracy
of triangle-mesh ME. Typically, one wants control points to track
salient images features (e.g., edges). The redundancy of the RDWT
facilitates the identification of salient features in an image, espe-
cially image edges, since a simple correlation operation can easily
accomplish edge identification [7]. Specifically, the direct multi-
plication of the RDWT coefficients at adjacent scales distinguishes
important features from the background due to the fact that wavelet-
coefficient magnitudes are correlated across scales. Coefficient-
magnitude correlation is well known to exist in the usual critically
sampled DWT also; however, the changing temporal sampling rate
makes the calculation of an explicit correlation mask across scales
much more difficult for the critically sampled DWT [7].

The correlation mask we propose consists of multiplying the
high-low (HL) bands, the low-high (LH) bands, and the high-high
(HH) bands together and combining the products,
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where J0 and J1 are the starting and ending scales, respectively,
of the correlation operation. We note that calculation of the cor-
relation mask in this manner is possible due to the fact that each
RDWT subband is the same size as the original image. Fig. 2
shows the correlation mask for the first frame of the sequence
“Susie,” where we use the subbands from the two highest-frequency
scales in the products above.

To identify control points within the correlation mask, we di-
vide the mask into equally sized blocks and select the N points
with the largest mask value as candidate control points. Certain
candidate points are then eliminated from consideration to reduce
the number of controls points, and thus motion-vector information,
needed for the frame. Specifically, a minimum distance between
neighboring control points is imposed to avoid very small trian-
gles. Additionally, candidate points are subjected to thresholding
so that points corresponding to local maxima in a block that are not
close to the subband’s global maximum are discarded. The thresh-
old must be tailored to specific sequences for best performance;
sequences with faster motion or smaller objects need more control
points. Finally we note that control points that are equally spaced
along the image border are added to the points chosen via the cor-
relation mask in the image interior so that the meshed area covers
the entire image.

2.3. Motion Estimation
Each control point identified via the correlation mask has an asso-
ciated motion vector describing the movement of that control point
from the previous frame to the current frame. These motion vec-
tors are obtained by finding the best matching point in the current
frame for each control point in the previous frame. This match
is accomplished by calculating the absolute difference of a small
block centered at the control point in the previous frame and blocks
in a search window about the control-point location in the current
frame, similar to the usual block-based ME process and identical
to the technique used in [5] for spatial-domain triangle-mesh ME.
However, because our ME takes place in the RDWT domain, for
a given vector in the search window, we calculate absolute dif-
ferences for all the subbands and sum them together to produce
a cross-subband distortion. We choose the vector that minimizes
this cross-subband distortion as the motion vector for the current
control point. In order to maximize distortion performance, only
the coefficients that will survive the subsequent RDWT-to-DWT
domain downsampling operation are counted towards the cross-
subband distortion calculation.

2.4. Triangulation and Affine Transformation
As in the spatial-domain triangle-mesh ME/MC of [5], after the
control points are selected in the reference frame and their mo-
tion is tracked to the current frame, triangle meshes are computed
using Delaunay triangulation. A single triangle mesh is used for
all subbands in the RDWT of a frame, as depicted in Fig. 3 (only
the HL subbands are shown); this is possible since each RDWT
subband has the same size. MC proceeds by mapping each trian-
gle in the current frame backwards to the previous frame using an
affine six-parameter model as described in [8]; this affine mapping
is performed for the triangles in each subband separately.

3. EXPERIMENTAL RESULTS
Experimental results use the 100-frame “Football” sequence and
the 70-frame “Susie” sequence, both grayscale sequences with a
spatial resolution of 352×240 pixels and a temporal sampling of
30 frames/sec. (noninterlaced). The first frame is intra-encoded
(I-frame) while all subsequent frames use ME/MC (P-frames). All
wavelet transforms (DWT and RDWT) use the Cohen-Daubechies-
Feauveau 9-7 filter [9] with symmetric extension, and all ME/MC
methods use integer-pixel accuracy. Since SPIHT, used as the
core compression engine in all experiments, produces an embed-
ded coding, each frame of the sequence is coded at exactly the
specified target rate.

We compare our proposed RWTM technique to various promi-
nent spatial-domain and wavelet-domain ME/MC algorithms. Av-
erage PSNR figures for fixed bit rate are tabulated in Table 1,
and frame-by-frame PSNR profiles are shown in Figs. 4 and 5.
In these results, “Spatial Block” refers to block-based ME/MC
in the spatial domain, the traditional method employed in video-
coding standards. “Spatial OBMC” is overlapped block ME/MC
in the spatial domain [10]. “Spatial Mesh” is the irregular triangle-
mesh ME/MC in the spatial domain [5]. All the preceding spatial-
domain ME/MC approaches are followed by an entire-image DWT
applied to the residual image and then SPIHT coding of the DWT
coefficients. The “DWT Block” approach transforms the input im-
age into the DWT domain and then applies the usual block-based
ME/MC in DWT domain. “RDWT Block” transforms the input
image into RDWT domain and then employs block-based ME/MC
in RDWT domain [3, 11]. In these wavelet-domain techniques,
SPIHT coding is applied to the MC residual.
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4. CONCLUSIONS
The experimental results shown in Table 1 and Figs. 4 and 5 in-
dicate that our proposed RWTM method, which combines the ad-
vantages of the wavelet-domain with irregular-mesh ME/MC, out-
performs other ME/MC techniques operating in both the spatial
and wavelet domains. In terms of average PSNR performance
(Table 1), RWTM outperforms its nearest competitor (block-based
ME/MC in the RDWT domain [3, 11]) by 0.4 dB for both the fast-
motion “Football” and the slow-moving “Susie” sequences. It is
interesting to note that our combination of triangle-mesh ME/MC
and RDWT-based ME/MC outperforms either technique applied
alone.

The success of our approach lies in that the shift invariance
of the RDWT makes it an ideal candidate for the implementation
of ME/MC in the wavelet domain. In fact, the RDWT has in-
deed been used previously for ME/MC in [3, 11], although it was
not recognized by the authors as such. Instead, these previous ap-
proaches partitioned the RDWT coefficients into multiple, criti-
cally sampled subband pyramids according to all possible phase
shifts. The ME procedure would “switch” between these sub-
band pyramids, each similar to a critically sampled DWT, as the
phase of the motion under consideration changed. The RDWT,
on the other hand, preserves the spatial coherence of the coef-
ficients, thereby facilitating implementation of the affine trans-
formation needed in mesh-based ME/MC. Complex indexing and
interpolation between the multiple subband pyramids would be
needed to do the same in the prior, partitioned implementations
as each vertex of a given triangle may have motion of a differ-
ent phase. Additionally, the RDWT permits easy identification
of control points through a simple correlation operation whereas
spatial-domain mesh-based techniques typically employ a more
costly convolution operator to identify edge locations. We antici-
pate, thus, that the RDWT will play a vital role to the development
of next-generation video-coding standards if these are to exploit
the recent advances in wavelet-based still-image coding.
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Figure 2: Correlation mask for the first frame of “Susie”.

Figure 3: RDWT subbands and triangle mesh for the first frame of “Susie.” Clockwise from upper-left: baseband; HL subband, scale 3;
HL subband, scale 1; and HL subband, scale 2. A single triangle mesh is applied to all subbands at all orientations and scales, even though
only the HL subbands are shown here.
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Figure 4: Frame-by-frame PSNR for “Football” at 0.5 bpp.
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Figure 5: Frame-by-frame PSNR for “Susie” at 0.25 bpp.
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