
causes the break of a hit into two, one
upstream and another downstream of the
gap. Approximately 94% and 96% of the
human and baboon sequences, respectively,
was included in hits (Table 1).
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Efficient capture of unique sequences from 

eukaryotic genomes

Daniel G. Peterson, Susan R. Wessler and Andrew H. Paterson

Cot-based cloning and sequencing (CBCS), a

synthesis of Cot analysis, DNA cloning and

high-throughput sequencing, promises to

accelerate the study of eukaryotic genomes.

In particular, CBCS will (1) permit efficient

gene discovery in species with substantial

quantities of repetitive DNA, (2) allow the

sequence complexity (i.e. all the unique

sequence information) of large genomes to

be elucidated at a fraction of the cost of

shotgun sequencing, and (3) enhance

genome sequencing efforts by facilitating

capture of low-copy sequences not secured

by EST sequencing. CBCS should accelerate

comparative genomics research,especially in

large genomes such as those of many crops.

Published online: 15 August 2002

In higher eukaryotes, much of the cost of
complete genome sequencing is expended
on repetitive DNA with no known function.
Effective strategies for the ‘capture’
(isolation and sequencing) of an organism’s
SEQUENCE COMPLEXITY (SqCx; see Glossary)
would facilitate research in species with
large genomes, such as those of many
major crop plants, by limiting redundant
sequencing of repetitive elements.

Cot analysis, an old but powerful
biochemical technique, could have an
important role in the extraction of unique
sequence information from large, repetitive
genomes. Developed by Roy Britten and
colleagues nearly 35 years ago, Cot analysis
is based on the observation that in a
solution of heat-denatured, sheared

genomic DNA, a specific sequence
reassociates at a rate proportional to the
number of times it occurs in the genome
[1,2]. In a standard Cot study, aliquots of
sheared genomic DNA are denatured, 
and each sample is allowed to renature 
to a specific COT VALUE. HYDROXYAPATITE

CHROMATOGRAPHY (HAP chromatography) is
then employed to separate single-stranded
DNA from double-stranded DNA, and the
relative fraction of the genome that has
reassociated at each sample’s Cot value is
determined. A Cot curve showing
reassociation as a function of the log of 
Cot value (from Cot ≈ 0 until renaturation
is complete) provides information about the
genome and its various KINETIC COMPONENTS

(Fig. 1). Resolution of distinct kinetic

Daniel G Peterson
Posted with permission of Elsevier Science



components can only be achieved if the
DNA fragments used in Cot analysis are
relatively short (200–600 bp) [1–3].

Even in its heyday, Cot analysis was only
performed in a handful of labs, as it requires
considerable technical skill and an extensive
knowledge of renaturation theory. With
the advent of molecular biology techniques
in the late 1970s, even the most successful
practitioners of Cot analysis began to
abandon it, and by the mid 1980s it was well
on its way to becoming a ‘lost art’(Fig. 2).
However, Cot/HAPtechniques have since
been used to construct NORMALIZED cDNA

LIBRARIES [4,5], isolate repetitive genomic
DNA for use in CHROMOSOMAL IN SITU

SUPPRESSION HYBRIDIZATION [6], clone DNA
regions associated with known chromosomal
deletions/additions using the PHENOL

EMULSION REASSOCIATION TECHNIQUE [7,8],
and characterize several highly repetitive
elements from the ginseng genome [9].

Recently, we developed Cot-based
cloning and sequencing’ (CBCS) as (1) a
strategy for efficiently discovering genes
with minimum encumbrance by repetitive
DNA, (2) a means of capturing the SqCx 
of large genomes, and (3) a supplemental
tool in genome sequencing. Briefly, a Cot
analysis is performed for a species of
interest, the results of the Cot analysis are
used to guide the HAP-based fractionation
of the genome into its major kinetic
components, each isolated component is
cloned separately to create a Cot library,
and clones from each library are sequenced
in numbers proportional to the KINETIC

COMPLEXITY of their respective components.
In an initial study, we generated highly
repetitive (HR), moderately repetitive
(MR), and single/low-copy (SL) Cot
libraries for sorghum, and showed through
sequence and blotting analysis that each
sorghum Cot library is representative of
the Cot component from which it was
derived, proving that CBCS is feasible [10].

CBCS in gene discovery

CBCS promises to resolve some of the
difficulties that are currently associated
with isolation of comprehensive sets of
genes from large-genome species.
Expressed sequence tag (EST) or cDNA
sequencing is an economical first step in
gene discovery, but only a fraction of the
transcriptome is expressed in any single
source tissue. Even by studying cDNA
libraries from multiple tissues, diminishing
returns typically accrue after about
105 sequences, many genes expressed only
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Chromosomal in situ suppression hybridization: A method in which excess unlabeled repetitive genomic DNA
isolated using Cot/HAP techniques is used to block repetitive elements in large genomic clones that have been
selected as probes for in situ hybridization.
Cot value: In the context of this paper, a DNA sample’s Cot value (in M.s) is defined as the product of its
nucleotide concentration in moles per liter, its renaturation time (t ) in seconds, and, if applicable, a buffer 
factor that accounts for the effect of positive ions on the speed of renaturation. However, readers should 
note the following:
(1) The scientific term ‘Cot’ originated as a way to easily pronounce the formula C0t where C0 is nucleotide

concentration at time zero and t is renaturation time. ‘Cot’ and ‘C0t ’ (both pronounced ‘kot’) are used
interchangeably in the literature, although the former is more common.

(2) Some authors use the term ‘Cot’ to describe only those DNA reassociation reactions that occur in ‘neutral’
(0.12 M) sodium phosphate buffer – in such instances, the term ‘equivalent Cot’ (Ecot) is used to describe
renaturation in buffers other than 0.12 M sodium phosphate buffer.

Foldback (FB): The fraction of the genome exhibiting reassociation at the smallest Cot values attainable.
FB DNA contains duplexes resulting from intrastrand pairing of complementary sequences.
Hydroxyapatite chromatography: The use of a hydroxyapatite column to separate single-stranded DNA and
double-stranded DNA from mixtures containing both types of DNA molecule.
Kinetic complexity: An estimate of the SqCx of a particular kinetic component as determined in a Cot analysis.
Kinetic component: A group of genomic DNA sequences that exhibit similar reassociation properties and
consequently appear as a mathematically distinct sigmoidal region of a complete Cot curve. The similarity in
reassociation characteristics between different sequences in a kinetic component indicates that those
sequences possess similar sequence complexities (i.e. they are found in similar copy numbers in the genome).
Normalized cDNA libraries: cDNA libraries from which the extremely common (i.e. highly expressed)
sequences have been partially extricated. In general, Cot/HAP techniques are used to remove fast-reassociating
(highly repetitive) sequences from cDNA populations.
Phenol emulsion reassociation technique (PERT): PERT is the reassociation of single-stranded DNA in an
emulsion of phenol and aqueous buffer. PERT substantially increases the rate of DNA reassociation allowing
Cot values of 200 000 or greater to be attained.
Sequence complexity (SqCx): The minimal group of sequences (expressed in terms of bp) that define a
genome. For a eukaryote, SqCx is theoretically the combined length of all of the single-copy DNA sequences
plus one copy of each repetitive sequence (Fig. 3).
Shotgun sequencing: Sequencing of clones randomly selected from a DNA library.

Glossary
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Fig. 1. Onion (Allium cepa) Cot curve. Cot data is from Stack and Comings (1979) and is used with permission of the
authors and the publisher. The complete curve consists of foldback (FB) sequences (pink) and highly repetitive (HR, blue),
moderately repetitive (MR, green), and single/low-copy (SL, red) components characterized by very fast, fast,
intermediate and slow reassociation, respectively. Yellow crosses mark the ‘Cot½ values’ for the HR, MR and
SL components. (A component’s Cot½ value is the point on the abscissa of the complete Cot curve at which half the DNA
in that component has reassociated.) For a Cot component, 80% of the sequences in that component will renature in the
‘two Cot decade region’ (TCDR) flanking the component’s Cot½ value (see brackets centered at Cot½ markers). For the HR
and MR components, double-stranded DNA from the component’s TCDR (blue and green shading, respectively) can be
isolated and used to construct a corresponding Cot library. For the SL component, single-stranded DNA within the TCDR
(red shading) can be used to generate duplexes (using the random-primer method) suitable for Cot library construction.



rarely or at low levels are likely to be
missed, and no information is obtained on
regulatory sequences or other important
low-copy elements. Unlike EST sequencing,
CBCS provides access to regulatory
sequences and also secures genes
independently of their levels or their tissue-
or organ-specific patterns of expression.

CBCS possesses a significant advantage
over methyl-filtration, a technique that
has been suggested as an intermediate
step between EST and genomic SHOTGUN

SEQUENCING [11]. Briefly, methyl-filtration
results in the production of genomic libraries
enriched in hypomethylated (presumably
gene) sequences. Although this approach
has merit, the pattern and significance of
DNA methylation differs markedly between
species, developmental stages, genes within
an organism, and regions of a gene [12–17].
Consequently, exclusion of hypermethylated
DNA will probably result in the loss of
important or interesting genes. Initial
comparisons of genomic sequences from
bacterial artificial chromosome (BAC) clones
with sequences from libraries enriched in
hypomethylated sequences suggest that
as few as 50% of genes are recovered by
methylation-based gene enrichment
techniques (see abstract of M. Vaudin et al.,
44th Maize Genetics Conference [2002];
www.agron.missouri.edu). Because HAP-
based fractionation of genomic DNA is
independent of sequence methylation [18],
CBCS should not result in the loss of any
genes based upon their methylation status.

CBCS as a means to capture sequence

complexity

For species with large, highly repetitive
genomes, capture of SqCx should provide
many of the benefits of complete genome
sequencing at substantially reduced costs.
At present, genomic shotgun sequencing is
the main tool used to capture SqCx (usually
within the context of a genome sequencing
project), but CBCS offers a much more
efficient method of sequence discovery
(Fig. 3). Using a shotgun approach, the
number of different clones (n) that must be
sequenced to have 99% confidence that all
genomic elements have been sequenced at
least once is estimated using the formula:

[Eqn 1]

where Z is the mean insert size in bp and
G is 1c genome size in bp [10]. In CBCS,
sequencing resources are allocated on the
basis of the contribution of each kinetic

component library to genomic SqCx. The
probability of sequencing 99% of DNA
elements using CBCS is therefore a
function of the sum of the kinetic
complexities (γ) of the different components.
Because the kinetic complexity of the

FOLDBACK (FB) fraction is unknown [2], the
most conservative means to assure capture
of all cloned FB sequences is to assign the
FB fraction a ‘kinetic complexity’equal to
the number of base pairs it contains – this is
likely to prove a very conservative estimate
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Fig. 2. The rise and fall
of Cot analysis: the
number of publications
including at least one
Cot analysis for each
year. Red bars
represent Cot analyses
performed by us. 
An extensive listing 
of Cot analysis
publications can 
be found at
http://www.plantgeno
me.uga.edu/CBCS or
http://www.msstate.
edu/research/mgel/
cbcs/cbcs.htm.
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Fig. 3. SqCx and sequencing. (a) The elements constituting a hypothetical eukaryotic genome. (b) Though repetitive
sequences account for the majority of DNA, they contribute very little to SqCx. (c) The net gain in novel sequence
information is slow and costly if clones are selected from an unbiased genomic library (shotgun approach). (d) CBCS
permits the highly repeptitive (HR), moderately repetitive (MR) and single/low copy (SL) components of the genome
to be isolated and cloned separately. Because almost all of the SqCx is contained within the SLCot library, most
sequencing resources can be devoted to sequencing SLCot clones.



in most genomes. For a genome composed 
of the components a, b and c with f bp of
foldback DNA:

[Eqn 2]

CBCS reduces by two-thirds or more the
number of clones that need to be sequenced
to capture the SqCx of many eukaryotic
genomes (Fig. 4). For example, the onion
(Allium cepa, 1c = 15 544 Mb) genome is
composed of a FB fraction of 1.12 × 109 bp
and HR, MR, and SL components with
kinetic complexities of 2.86 × 105, 2.43 × 107

and 9.25 × 108 bp, respectively [19]. Using
Eqns 1 and 2, and assuming an average
insert size of 600 bp, capture of 99% of
onion’s SqCx would require 119 million
shotgun sequences but only 16 million
CBCS sequences – an 87% saving.

As with shotgun sequencing, standard
assembly and finishing techniques [20]
would be required to generate full-length
gene and genome sequences from 
CBCS data.

Conclusions

CBCS is a powerful means of discovering
genes. Because it is independent of
expression and methylation patterns, CBCS
is well suited for isolating key regulatory
sequences and genes expressed at low levels,
during short developmental timeframes and

in response to subtle environmental stimuli.
Although CBCS-based capture of SqCx
does not provide information on the exact
chromosomal locations of all sequences or
information on small variations in
individual members of repetitive DNA
families, it should permit elucidation of
the unique elements of even the largest
genomes at a fraction of the cost of genomic
shotgun sequencing. CBCS promises to
accelerate greatly the timetable for genome-
wide study of many of the world’s biota
including large-genome agricultural
plants and animals that sustain humanity.
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Fig. 4. Cot-based cloning and sequencing (CBCS) versus shotgun sequencing. For each species, the number of Cot
clones that would need to be sequenced to attain a specific level of SqCx coverage has been divided by the number of
‘shotgun clones’ that would have to be sequenced to attain the same level of coverage. Resulting values have been
plotted against genome size. See http://www.plantgenome.uga.edu/CBCS or
http://www.msstate.edu/research/mgel/cbcs/cbcs.htm for reference data.




