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The importance of angiosperms to sustaining humanity by

providing a wide range of ‘ecosystem services’ warrants

increased exploration of their genomic diversity. The nearly

completed sequences for two species representing the major

angiosperm subclasses, specifically the dicot Arabidopsis

thaliana and the monocot Oryza sativa, provide a foundation

for comparative analysis across the angiosperms. The

angiosperms also exemplify some challenges to be faced

as genomics makes new inroads into describing biotic

diversity, in particular polyploidy (genome-wide chromatin

duplication), and much larger genome sizes than have been

studied to date.
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Introduction
The angiosperms, or flowering plants, provide ecosystem

services including oxygen, fuel, medicines, erosion and

flood control, soil regeneration, and other benefits [1] that

are absolutely essential to humanity and indeed are a

cornerstone of the global ecosystem. The ‘domestication’

of about 200 angiosperms to provide most of the world’s

supply of food, feed and fibre has largely determined our

ability to sustain modern human populations and has also

empowered human social development [2]. A small sub-

set of domesticates, plus a few botanical models such as

Arabidopsis thaliana, account for most of our present

knowledge of the repertoire, organization and function

of plant genes.

The past two decades of plant molecular genetics

research, and in particular the past few years of high-

throughput genomics, have set the stage for new advances

in comparative biology. For the first time, we have access

to large numbers (and in some cases all) of the genes in a

genome, albeit for a small subset of angiosperms. Now we

can begin the long process of sifting through the many

molecular-level differences that have accumulated during

the approximately 170–235 million years [3] since the

angiosperms diverged from a common ancestor, to seek

specific changes that contribute to variation in life history

traits, biochemistry, morphology and development, and

adaptation to the biotic and abiotic environment.

While comparative biology offers valuable insight into

divergence at many taxonomic levels, of particular inter-

est is comparison of members of the two major angio-

sperm subclasses, monocots and dicots. The largely

finished sequence of the dicot Arabidopsis [4], together

with the rapidly progressing sequence of the monocot

Oryza (rice) [5��–9��] provide a natural framework for this

work. Genetic maps, physical maps and expressed

sequence tag (EST) resources for a host of additional

taxa permit early assessments of diversity within each of

the angiosperm subclasses, and provide important con-

textual information by which to better relate major events

in the Arabidopsis and Oryza lineages to the plant family

tree. In this review, we explore early messages arising

from comparison of the content and organization of

monocot and dicot genomes, address key consequences

of polyploidy for angiosperm comparative genomics, and

compare and contrast methods that are likely to be

important to further description and study of angiosperm

genomic diversity.

Gene repertoire
Many functions in diverse eukaryotes are directed by

genes that exhibit much similarity at the amino acid and

even nucleotide level [10], including the angiosperms.

The Arabidopsis transcriptome is currently estimated to

include 30 078 genes (http://www.ncbi.nlm.nih.gov). The

rice transcriptome appears to be more complex, with

estimates based on genomic shotgun sequencing of 46

022–55 615 genes [9��] and 32 277–61 668 genes [5��].
Higher estimates based on finished sequencing (62 500

genes [6��]) may reflect more effective gene prediction.

For example, the finished rice chromosome 10 sequence

contains 3471 predicted genes, but the corresponding

shotgun reads contain only 1724 [8��], although this
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difference partly results from the inclusion of transposa-

ble element-related genes in the chromosome 10 count.

About 80.6% [9��] to 85% [5��] of Arabidopsis predicted

proteins are homologous to rice predicted proteins, with

average identity of 49.5% and modal identity of 33% [5��].
Curiously, these findings are not transitive — much lower

frequences of rice genes show matches to Arabidopsis
(47% [6��]; 49.4% [9��]; 43.8% [7��]; 67% [8��]). Factors

that influence this may include differences in GC content

between rice and Arabidopsis genes [9��] or a greater

abundance of retroelement-like genes in rice. Most

Arabidopsis predicted proteins that lack homology to rice

are classified as ‘hypothetical’ (or other similar terms),

suggesting the possibility of mis-annotation [5��,6��].

Although many genes and functions are widely distrib-

uted across the tree of life, there may exist substantial

populations of angiosperm-specific genes, as well as

monocot- and dicot-specific genes. About 8000 (30%)

Arabidopsis genes are found in the rice ssp. japonica shot-

gun sequence, but not in Drosophila, Caenorhabditis ele-
gans, Saccharomyces or sequenced bacterial genomes [5��].
Analysis of 33 620 unigenes for the monocot sugarcane

[11�] showed that 82% had matches to the rice genome,

versus 71% with matches to the Arabidopsis genome,

perhaps suggesting that 11% (roughly 3600) may be

monocot-specific.

Chromosome and genome organization
Given that the vast majority of angiosperms lack com-

plete sequences, genetic maps continue to be a central

tool for studying their chromosome organization. Most

major crops, and many botanical models, enjoy detailed

sequence-tagged site (STS)-based genetic recombination

maps that are suitable not only for comparative biology,

but also for crop improvement. While these maps have

been successfully applied to many needs using traditional

restriction-fragment length polymorphism or simple

sequence repeat based methods, genetically mapped

STSs can readily be used to discover single-nucleotide

polymorphism (SNPs) or small insertion/deletion poly-

morphisms [12�] that can then be genotyped by a wide

range of more economical SNP-based technologies. The

ability to acquire such polymorphism information for

corresponding loci in many genotypes increases the value

of STS maps and reduces the costs associated with their

wider utilization.

Limitations to the centiMorgan-scale resolution of

genetic recombination maps might be improved to kilo-

base level by their integration with physical maps based

upon large-insert clones such as bacterial artificial chro-

mosomes (BACs) [13,14]. ‘Gene mapping’ by hybridiza-

tion of cloned or synthetic DNA probes [15] to large-

insert libraries offers many of the advantages of somatic

cell genetics, in particular obviating the need for genetic

polymorphism which may impose a bias on the subsets of

DNA probes that can be ‘mapped.’ Similarly, mapping

based either upon radiation hybrids [16] or on genetic

stocks containing partial deletions of individual chromo-

somes [17�] have accelerated progress in genomics

research for taxa with few DNA polymorphisms.

Ancient polyploidy and its consequences
Comparative studies of plant chromosome evolution

show important differences from early results in animals.

Gene order conservation along the chromosomes of ver-

tebrates is evident after hundreds of millions of years of

divergence [18,19], but comparisons of the Arabidopsis
sequence to partial gene orders of other angiosperms

(flowering plants) sharing common ancestry �170–235

million years ago [3] have yielded conflicting results.

Although gene order conservation is considerable in con-

familial taxa such as Arabidopsis and Brassica ([20,21,22�]),
and even in diverse dicots [23�], comparison of the

Arabidopsis sequence to selected fully sequenced rice

BACs or contigs have led to disparate conclusions ranging

from ‘scant collinearity’ [24,25] to ‘frameworks of con-

served genes’ [26].

The recurring observation of ‘networks of synteny’ [27],

with target regions of rice [26], tomato [21,27], soybean

[28,29,30�], and Medicago truncatula [31�] showing non-

random relationships with multiple unlinked regions of

Arabidopsis was an important clue to resolving the seem-

ing difference in rates of genome structural evolution

between plants and animals. Many angiosperm genomes

have been through one or more genome-wide duplication

or ‘polyploidization’ events [32,33]. Early hints at the

possibility of duplication even in the small genome of

Arabidopsis [34,35] were borne out by detailed analysis of

the nearly finished sequence, revealing widespread dupli-

cation accompanied by loss of many duplicated gene

copies [4,36–38].

Recent progress in revealing the history of ancient dupli-

cation events clarifies our understanding of plant chromo-

some evolution. Ancient duplication has two major

consequences for comparative genomics. First, it appears

to be followed by ‘diploidization’, or loss of many single

members of homologous pairs, obscuring and complicat-

ing analysis of colinearity. This process is initially rapid

[39–42], but continues for a long time [43��]. Second,

knowledge of the timing of duplication events relative to

divergence of taxa from a common ancestor is essential

[44,45��]. Only if taxon divergence postdates duplication

are traditional ‘one-to-one’ genomic comparisons suffi-

cient. If duplication in one or both lineages postdates

taxon divergence, more complex approaches are needed.

By using a phylogenomic approach to relate specific

duplication events to the plant family tree, together with

finished sequence information to infer the likely gene

order in hypothetical ancestors of modern duplicated
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chromosomal segments, the level of gene order conserva-

tion discerned in diverse angiosperm lineages is improved

[43��]. Early evidence in Oryza [46–48] also reflects wide-

spread [49�], perhaps genome-wide [50�], duplication.

Analysis of large-scale duplications has necessitated the

development of new bioinformatics tools, going beyond

whole-genome alignments that rely on the presence of

unique sequence matches [51,52]. Especially promising

alternatives are FISH (Fast Identification of Segmental

Homology) [53�] and ADHoRe (Automatic Detection of

Homologous Regions) [54�]. Programs for homolog iden-

tification and phylogenomic analysis of specific duplica-

tion events are also available [55�].

Further insights into angiosperm genomic
diversity
While botanical models provide seminal information that

can be extrapolated to a degree by comparative ap-

proaches, comprehensive information about angiosperm

diversity will require detailed exploration of many ad-

ditional genomes. The greatest challenge to their wide-

spread genomic analysis, and a practical motivation for

many comparative genomics efforts, is that angiosperms

exhibit about 1000-fold variation in genome size due

mostly to repetitive DNA. EST sequencing is a first step

toward further characterization of angiosperm genomic

diversity. More than 20 angiosperm species, representing

many diverse branches of the plant family tree, each enjoy

more than 10 000 ESTs in GenBank at time of writing,

and the number of species and ESTs is growing rapidly.

As EST sequencing reaches diminishing returns (typi-

cally at �50% of the genes in a genome), two new

approaches show promise toward completing the sets

of gene sequences from large-genome taxa. ‘Methyl

filtration’ based upon degrees of differential methylation

of expressed versus non-expressed sequences [56,57�]
reduces the abundance of repetitive DNA in plant (but

not animal [58�]) genomic DNA libraries. Cot-based clon-

ing and sequencing (CBCS) [59��–61��] involves the frac-

tionation of a genome into ‘components’ based on the

degree of sequence repetition (Cot analysis) [62,63�],
followed by cloning and sequencing of corresponding

clone libraries to a depth appropriate to represent the

‘sequence complexity’ of the respective component(s).

Perhaps the most important difference between these

methods lies in the implicit assumptions made about the

nature of the DNA that is ‘filtered’. By accessing only

hypomethylated DNA, methyl filtration is subject to the

variable relationship between methylation and gene

expression across genes and taxa, which has been

reviewed in detail [59��,60��]. Differences in methylation

associated with abiotic stresses (radiation [64], tissue

culture [65,66]) raise new questions about the stability

of this relationship. Although its validation by comparison

of hypomethylated DNA to random genomic DNA shows

enrichment for known genes [56], the higher ‘genome

reduction factor’ afforded by methyl filtration [67] might

reflect loss of many genes that are methylated to some

degree. By contrast, CBCS provides access to the entire

genome. For this reason, its validation was necessarily

different from that for methyl filtration, comparing spe-

cific quantifiable properties of different genomic fractions

to one another. To minimize the risk that repetitive

CBCS clones contained parts of two or more different

element families (thus obscuring empirical verification of

their copy number), it was essential that validation be

performed on DNA sheared to �300 nucleotides, to-

gether with removal (after Cot hybridization) of single-

stranded overhangs by mung bean nuclease [59��].

CBCS is flexible to a wide range of permutations [59��]
based on the biology of the system and the goals of the

investigator. For example, capturing the sequence com-

plexity of the low-copy DNA in a genome would be made

more efficient by using longer clones than were appro-

priate for validation studies [59��,60��]. In the well-

studied cereals, for example, the distance between genes

appears to be correlated with differences in genome size

in different taxa, but with noteworthy exceptions in the

form of ‘gene-rich’ regions that largely lack repetitive

DNA [68]. Such gene-rich regions should be well-covered

by Cot clones that are long enough (1–2 kb) to offer

sequencing economies and sufficient information for

assembly [59��,60��,69]. Depending on the (genome-spe-

cific) number and dispersion patterns of repetitive DNA

families, at some point increased DNA fragment length

may tend to cause under-representation of terminal

(50 and 30) regions of many genes, plus entire short genes

in close proximity to repetitive DNA. Sequencing clones

from multiple Cot libraries sheared to different average

fragment sizes may provide the best balance between

gene discovery and sequencing economics.

In principle, one could envision superimposing CBCS on

methyl filtration, or vice versa; however, more informa-

tion is needed to determine the cost-benefit balance of

this approach. Some have argued [57�] that the use of host

cells with intermediate tolerance of methylated DNA

might have affected CBCS validation studies; however,

these arguments are invalid, failing to note that the

efficacy of genomic fractionation by CBCS was demon-

strated by empirical determination of copy number by

hybridization studies, by empirical comparison of the

highly repetitive (HRCot) fraction to a sampling of ran-

dom genomic DNA to demonstrate that it did indeed

represent the percentage of the genomic DNA estimated

(from the Cot curve) to be highly repetitive, and through

detailed annotation and characterization of the Cot

sequences showing that they were comprised of DNA

element types appropriate to the respective fractions

[59��,61��].
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Finally, knowledge of the sequences and distribution of

the repetitive DNA that accounts for most of angio-

sperm genomic diversity is of much value. Knowledge of

repetitive DNA improves EST and genome annotation

[70��], and better understanding of its physical distribu-

tion could help to identify ‘gene-rich’ genomic domains

that are priorities for early sequencing [68]. Use of the

‘Alu’ element family empowered many advances in

human genome research far before the sequence was

available [71]. CBCS is ideally suited to direct analysis

of repetitive DNA. Only 253 sequences from the sor-

ghum HRCot fraction were sufficient to account for

15% of its genomic DNA, exactly the fraction predicted

by Cot analysis [59��]. A recent study (TM Wicker et al.,
unpublished) describes characterization of the majority

of repetitive DNA in an entire genome by CBCS.

Methyl filtration eliminates some repetitive DNA from

sequencing libraries, but because some plant transpos-

able elements are hypomethylated it is less effective

than CBCS at separating the two fractions, at least in

maize [72�].

Conclusions
The identification of multiple polyploidization events

in the Arabidopsis lineage, together with methods to miti-

gate the effects of these events on comparative genomics,

sets the stage for a re-evalation of gene order conservation

across diverse angiosperms. The Oryza sequence will

provide the information needed to study the course of

monocot genome evolution, and then to perform truly

orthologous comparisons within and among monocots and

dicots. Detailed study of these two lineages will provide a

framework of gene orders and sequences valuable to

future analyses of other angiosperm genomes (whether

completely sequenced, or represented as STS-based

genetic maps). Synteny information about monocots

and dicots will permit new inferences about the probable

genomic organization of common ancestors of the angio-

sperms, and foster exploration of possible parallels with

more distantly related taxa.

Much additional information from many more taxa will

be needed to elucidate the specific events responsible for

the morphological and physiological diversity that adapts

different angiosperms to different ecological niches, crop

production systems and human needs. Selected angio-

sperms have been domesticated because they exhibit

one or more extraordinary features, such as the large

carbohydrate-rich seeds of the cultivated cereals, the

remarkably long and strong single-celled fibres of cotton,

the curd-like semi-sterile inflorescence of cauliflower,

and the bulbous berry of tomato. Each crop is an elegant

‘model’ that offers unique opportunities to make new

advances in (comparative) plant biology, but will ulti-

mately require detailed genomic exploration. Efficient

new methods promise that such information will grow at

an accelerating rate.
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