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Abstract: Recent studies have shown that the Land Surface Temperature (LST) data
measured by Moderate Resolution Imaging Spectro-Radiometer (MODIS) from
both the Terra and Aqua platforms can be successfully used for linear regression
estimates of daily maximum and minimum air temperatures at a local scale. Incorpo-
ration of these estimates into spatial interpolation schemes results in accuracy
improvement of the surface air temperature, provided that the correlation coefficient
(R) between the air temperature and LST is rather high. The purpose of this work
was to examine the importance of pixel resolution (1.0 and 5.0 km2), satellite over-
pass time, season, land cover type, and the vegetation fraction (depending on the
view zenith angle of the MODIS instrument) in controlling the observed level of R.
The relative contribution of these factors in producing R variations has been assessed
over the state of Mississippi during 2000–2004. Similarly, the sensitivity analysis of
the difference between daily maximum and minimum air temperatures and LST to
the same factors was performed. Results from these analyses have shown that R and
the average difference between temperatures exhibited rather consistent variations
depending on the above factors. The difference between maximum air temperature
and LST increased linearly with the view angle (having typical range of 1–2°C for
angle changes from 0° to ±65°) and remained constant or slightly decreased for daily
air minimum temperatures. Both Terra and Aqua 1.0 km2 LST exhibited a small but
persistent increase of R between the air temperature and LST as compared with that
of using 5.0 km2 LST. Changing from Terra to Aqua LST did not alter significantly
estimated values of R. This result suggested that the time difference between the
moment of the satellite overpass and the time when maximum or minimum air tem-
perature was observed was not critical for controlling the R value between the air
temperature and LST at the involved spatial scales.
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INTRODUCTION

The air temperature (Ta) of the surface atmospheric boundary layer (ABL) repre-
sents an important element of a regional climate (Oke, 1987; Garratt, 1992). There-
fore, daily maximum and minimum values of Ta are commonly used as an input in
various environmental applications, including agricultural/forestry (Reddy et al.,
1997; Régnière, 1996) and ecological models (Focks et al., 1995) to predict likely
changes at field- and landscape-level attributes. The overall and differential spatial
performance of these models is essentially dependent on the spatial/local accuracy of
Ta fields (Reddy et al., 2002). Because routine meteorological observations (NOAA
NCDC, 2004) are available at discrete points in space, typically separated by a dis-
tance of 30–50 km or more, a spatial interpolation is necessary to produce Ta data
with a resolution ≤1.0 km2.

Different interpolation schemes ranging from rather simple distance-weighted
procedures to advanced methods utilizing knowledge about the observed spatial sta-
tistical structure of interpolated fields (Cressie, 1991), known as kriging interpolators,
have been suggested and used for Ta estimates between observation points. Regional
regression and kriging schemes (Bolstad et al., 1998; Florio et al., 2004) have been
proven to be the most usable interpolators for daily or monthly averaged Ta fields.

The interpolation accuracy of both methods can be improved by the incorpora-
tion of any additional covariates related to Ta. Previous studies (Florio et al., 2004)
demonstrated that use of Land Surface Temperature (LST) measured from a satellite
as an additional covariate resulted in an improvement of Ta spatial estimates quality
over the areas not covered with meteorological observations. The overall accuracy of
temperature spatial interpolation using regional regression and kriging methods is
about the same, with a typical value around 2°C. However, rather limited experiences
of using LST in regression and kriging interpolation schemes, based mainly on
Landsat and Advanced Very High Resolution Radiometer thermal infrared bands
measurements, have been reported in literature. Unlike these satellite data, measure-
ments from Moderate-Resolution Imaging Spectro-Radiometer (MODIS; MODIS,
2001) provide more comprehensive sets of LST products available from two plat-
forms (Terra and Aqua), both with different spatial resolution (1.0 and 5.0 km2). An
approach has recently been suggested for spatial interpolation of Ta and Ts fields that
involves a special fitting procedure of thin-plate smoothing spline to represent
spatially distributed data available over a limited number of observation points
(Prince et al., 2000). This method is of particular importance for the interpolation of
noisy fields.

Remotely sensed LST has been amply used for field- and regional-scale esti-
mates of the surface heat flux (Norman et al., 1995; Kustas et al., 1999), and much
experience has been gained in this area. A rather close empirical relationship has been
found between the local vegetation fractions described by the normalized vegetation
index (NDVI) and surface skin temperature (Prihodko and Goward, 1997). Based on
this finding, a method was developed to estimate Ta using remotely sensed LST and
vegetation indices (Prince et al., 1998). This approach is known as the thermal-
vegetation index (TVX) procedure, providing an estimate of a root mean square error
in the range of 3–4°C for Ta. Much progress has also been achieved in integrating
LST data into surface soil-vegetation/plant-ABL transfer (SVAT) models, resulting in
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the accuracy improvement of spatial representation for basic environmental variables
(Houborg and Soegaard, 2004). Generally, not only LST, but also other remotely
sensed surface and atmospheric parameters (including biophysical characteristics of
vegetation and their combinations) are assimilated into SVAT models. An example of
improving yield prediction mapping by using leaf area index (LAI) estimates from
MODIS surface spectral reflectance measurements and by assimilating these esti-
mates into a crop simulation model has been reported by Doraiswamy et al. (2004).

The main objective of this study was to investigate point correlations between
daily maximum/minimum air temperatures (available from operational measurements
at the surface network of meteorological stations) and various MODIS LST products
having different spatial resolutions and overpass times. It is important to evaluate sea-
sonal and spatial variations of these correlations because they represent a necessary
empirical basis for statistical interpolation methods including regional regression and
kriging models, which use LST data to predict Ta. These methods cannot be applied
successfully if correlations are low. A statistically based approach has been adopted in
this study because it is quite difficult to properly consider different factors affecting
LST remote sensing estimates and formulate a reliable physical model for accurate
prediction of daily max/min Ta from LST data. A summary of these interacting fac-
tors, which control LST value, has been readily illustrated by Sandholt et al. (2002).
Clear benefits of using remotely sensed LST for statistical estimating of daily max/
min air temperatures have been documented in previous similar studies (Kawashima
et al., 2000; Jones et al., 2004; Park et al., 2005). Jones et al. (2004) showed that sta-
tistical forecasting of daily minima from MODIS LST (late evening and night over-
passes) could result in a better accuracy of predicted values and give more spatial
details in comparison with National Weather Service operational forecasts and diag-
nostic fields based on surface observations. Statistical relationships between LST and
the daily maximum of Ta and association of their difference with water budget factors
have been reported recently by Park et al. (2005). The above studies are not numer-
ous, covering only limited periods ranging from several days to a season. Therefore, a
more comprehensive comparison in terms of extended temporal coverage (several
years) and use of LST products from various satellite platforms with different spatial
resolution (1.0 and 5.0 km2)2 is certainly relevant. It can be expected that the results
of this comparison may facilitate a user’s choice of the appropriate satellite platform
and resolution among various LST MODIS products.

It should be clear that remotely sensed LST with a thermal infra-red (TIR) sensor
is essentially the directional surface radiometric (temperature) or surface skin temper-
ature (Norman and Becker, 1995; Jin et al., 1997). Note that symbols Ts and LST will
be applied equally for this temperature throughout the paper. The adjective “direc-
tional,” indicating angle dependence of surface emissivity, is generally omitted from
the LST definition. LST spatial distribution depends critically on variations in surface
characteristics, including the vegetation fraction/index (Gallo et al., 1993). Addition-
ally, Kawashima et al. (2000) has shown a strong linear relationship between the min-
imum air temperature and NDVI. Therefore, another important goal of this study was
to examine the relative role of environmental and instrument-related factors in con-
trolling correlation levels between point observations of Ta and spatially aggregated

2The 5 km2 symbolic notation for the pixel resolution is used to denote a 5 × 5 km2 pixel.
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LST data. The LAI and vegetation fraction, cover type, and MODIS instrument view
angle and aggregation scale were among these factors (Campbell and Norman, 1998).
Numerous previous studies have shown that distribution of remotely sensed LST at
1.0 km2 resolution is highly correlated with vegetation fraction and cover density/
greenness measured in terms of NDVI over the regions having typical extent of sev-
eral hundred kilometers (Price, 1990; Hope et al., 2005). An empirical approach in
conjunction with simple analytical estimates was applied for the sensitivity analysis
of Ta-LST relationship to these factors. Results of this sensitivity study are also criti-
cal for an adequate interpretation of satellite-derived LST data, in particular, when
performing analysis of inter-annual variability of LST sets to assess the climate
change (Jin and Dickinson, 2002).

This study was performed over an area spanning 4.0° in longitude and 5.5° in lat-
itude, encompassing the entire state of Mississippi and small parts of adjacent states’
territories. Both in situ surface observations of the air temperature and MODIS LST
data were selected for the period from June 2000 to the end of 2004. Obtaining Ta
values from LST data using a linear regression between them is a rather simple and
straightforward procedure that has been well described in detail in numerous previous
studies (e.g., Kawashima et al. 2000). Both Ta and Ts are involved in the surface
energy equation (Garratt, 1992) that can be used for analytical estimates of an
expected relationship between them. An example of such estimates was documented
by Gao (1995), and was used in this study. Another attractive feature of the surface
energy equation is that it can be applied for spatial interpolation of involved terms or
variables (Gash, 1987).

METHODS

Surface Observations

Observations of daily maximum and minimum air temperature at 161 surface sta-
tions were used to assess statistical relationships between Ta and LST values at station
locations. The validated surface meteorological data for these stations were obtained
from the National Climatic Data Center (NCDC) online archive (NOAA NCDC,
2004). The study area and locations of the chosen stations are shown in Figure 1. The
air temperature values refer to the observation height (approximately 1.5 m above
ground), often called shelter height. Of 161 selected stations, approximately 30 were
reporting Ta hourly and were used in this study.

MODIS LST and LAI

Two groups of MODIS LST products with 1.0 km2 (fine) and 5.0 km2 (coarse)
resolutions were used. They represent current validated version (v004) and were
available globally at approximately 10:30 AM/PM (Terra) and 1:30 AM/PM (Aqua)
local solar time. Table 1 provides a summary of the MODIS LST products used. Two
basic approaches were adopted for retrieving LST from TIR MODIS clear-sky mea-
surements: a generalized split window algorithm for fine resolution (Wan and Dozier,
1996) and a physics-based day/night method (Wan and Li, 1997) for coarse-resolution
data was applied. The physical basis of both MODIS LST retrieving algorithms has
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Table 1. Summary of the LST MODIS Products Used in This Study

Product name Algorithm Nominal 
accuracy

Pixel/mesh 
resolution

MODIS TIR 
band no.

MOD11A1 (Terra)

MYD11A1 (Aqua)

Generalized split-
window

(Wan and Dozier, 1996)

±1 K 1×1 km2 31 and 32

MOD11C1 (Terra)a

MYD11C1 (Aqua)b

Physics-based
day/night method

(Wan and Li, 1997)

±1 K 0.05° × 0.05° 
latitude-longitude 

cell

20, 22, 23, 29, 
and 31-33

aBased on MOD11B1 5 km resolution LST.
bBased on MYD11B1 5 km resolution LST.

Fig. 1. Geographical distribution of the surface observation points.
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been described in detail by Wan (1999). The MODIS LST HDF-files (MODIS, 2001)
were downloaded from the Land Processes Distributed Active Archive Center (LP
DAAC). Terra files were available from June 2000 and Aqua files from July 2002.

The split-window method described by Wan and Dozier (1996) requires mea-
surements from two TIR bands; the surface emissivity, ε, is assumed to be known at
every 1.0 km2 pixel, and it is specified from the land-cover type data that is based on
the MODIS land product (MOD12C1). The a priori knowledge of the land-cover type
classification—based ε is essential for the accurate retrieval of LSTs. This database
for ε relies on homogeneity of the surface properties within the pixel. In many cases,
the actual surface of the 1.0 km2 pixel exhibits a certain heterogeneity; therefore, as
noted by Wan et al. (2004), errors might occur in specifying ε from land cover types,
especially in arid and semi-arid areas, where overestimates of ε are often observed.
The same authors indicated that another source of uncertainty in the application of the
split-window algorithm was a deficiency of understanding the emissivity variations
with the instrument view angle. Testing results of this algorithm showed that the accu-
racy of LST estimate was less than 1°K over homogeneous surfaces such as water,
crop, and grassland surfaces (Wan et al., 2004).

A pair of daytime and nighttime MODIS coarse-resolution measurements taken
under clear-sky conditions in seven TIR bands has been used in the physics-based
day/night algorithm for retrieving both LSTs and surface emissivities (Wan and Li,
1997). The algorithm involved a solution of 14 nonlinear equations, and the whole
range of the MODIS instrument zenith view angle (0°–65°) was binned into five
unequal intervals3 to represent a view-angle dependence of ε. The physics-based
method also showed remarkable performance with a typical LST accuracy of 1°K
over homogeneous surfaces and an increase in uncertainty of LST estimates when
substantial variations of temperature occurred within 5.0 km2 pixel.

Wan et al. (2002), having accounted for the intrinsic features of both algorithms
and results of comparisons with in situ observations suggested using LST split-window
1.0 km2 product over water bodies, snow/ice, and densely vegetated surfaces and the
5.0 km2 LST data retrieved from the physics-based method over bare soil or over
surfaces with sparse vegetation. Physical and computational aspects of the above-
mentioned algorithms have been subjected to permanent improvement by their authors,
and soon a new version (v005) of advanced-quality MODIS LST products will be
available for the scientific community. LST products (MOD11C1 and MYD11C1)
generated on the regular latitude-longitude grid also assimilate 1.0 km2 observations
over the 5.0 km2 pixels with missing data, thus providing substantially better spatial
and temporal coverage (according to our estimates, it is higher by 25–30% on average)
as compared with that of fine- and coarse-resolution LST products only. Here we are
primarily interested in the analysis and further utilization of MOD11C1 and
MYD11C1 products because they virtually represent 0.05° × 0.05° latitude-longitude
averaging/generalization of both resolutions of LST data. For comparison with Ta, LST
data have been interpolated to station locations shown in Figure 1. The nearest neigh-
bor and the bilinear interpolators (with weightings inversely proportional to the dis-
tance) were used for 1.0 and 5.0 km2 products, respectively.

3The interval size diminishes with the view angle, so the largest size corresponds to viewing from the
nadir.
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The MODIS green LAI product (MOD15A2), represented by eight-day average
values with fine-resolution data, was used in this study to estimate the fractional veg-
etation cover, which also depends on the view zenith angle of the MODIS instrument.
The MODIS LAI algorithm is based on the numerical solution of the radiative-
transfer equation (Knyazikhin et al., 1998). Depending on the input surface spectral
reflectance and on their uncertainties and on the vegetation canopy type (biome),
results of the solution are organized in the form of look-up tables that provide effi-
cient basis for retrieving LAI fields. Only six biome types were used to represent glo-
bal variability of vegetation cover corresponding to 1.0 km2 resolution. A preliminary
study of MODIS LAI quality has shown the exceptional performance of this product
in reproducing spatially averaged LAI estimates generated from independent high-
resolution (30 m) measurements (Myneni et al., 2002). Because of the heterogeneous
nature of fine-resolution pixels (they often contain more than one vegetation class),
an adequate aggregation of sub-pixel variability represents an attractive property of
the current MODIS LAI algorithm.

Also, because the definition of the fractional vegetation cover depends on the
vegetation density and how it is distributed within the pixel (Gutman and Ignatov,
1998), the LAI and the vegetation fraction are not completely independent parameters
(Carlson and Ripley, 1997). This nontrivial topic requires special consideration,
which is beyond the scope of the present paper. Details of LAI dependence on the
scale ranging from 1.0 km to 64 km and heterogeneity of a pixel have been published
by Tian et al. (2002). Although it was more common to estimate fractional vegetation
cover from NDVI, here we have used MODIS LAI for this purpose (Gallo and
Daughtry, 1987; Wittich and Hansing, 1995; Gutman and Ignatov, 1998; Zeng et al.,
2000). This approach was adopted because it facilitated an interpretation of view-
angle-dependent LST measurements representing the TIR signal as a superposition of
the vegetation  component and a corresponding part originating from the background
soil. View-angle-dependent estimates of the vegetation fraction from LAI are readily
accepted by the research community, especially over completely vegetated canopies
(Campbell and Norman, 1998; Friedl, 2002). Estimates of the vegetation fraction
from NDVI and LAI should produce similar results if the view zenith angle of the
TIR sensor is close to the nadir and both estimates represent only an approximate
measure of ground truth.

Energy Balance of the Surface and (Ta – Ts) Difference

The difference between Ta and Ts (∆ =  Ta – Ts) represents an important parameter
of regional climate, which controls the partition of available energy flux, mainly rep-
resented by net solar radiation (Rn), between sensible heat and other fluxes within the
surface layer. Also, it can be considered as a footprint influenced by other surface
parameters such as albedo, roughness, vegetation canopy type, and soil physical prop-
erties. All of these parameters, including delta temperature, are interrelated through a
fundamental energy conservation law applied for the surface layer, known as the sur-
face energy balance (Oke, 1987). Therefore, before performing a statistical analysis
between Ta and Ts, it would be instructive to consider ∆ estimates from the surface
balance equation and then use these estimates as a guideline for the interpretation of
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correlation/regression features between Ta and Ts. The surface energy equation can be
written as:

Rn + Rl – εσTs
4 = H + LE + G, (1)

where H and LE are vertical turbulent fluxes of sensible and latent heat, respectively,
Rl is the downward flux of longwave radiation, ε is the emissivity of the surface, σ is
the Stefan-Boltzmann constant, and G is the soil heat flux. At least two basic
approaches can be applied for estimating H and LE turbulent fluxes within the ABL
containing a vegetation canopy. One is known as a bulk method that relates sensible
heat flux to ∆ and represents a rather simple modeling approach describing the verti-
cal transfer of energy without partitioning of H and LE fluxes into specific land sur-
face cover types. This approach represents the local surface area as one element,
implying an implicit aggregation of various surface components over that area. The
method is known as the bulk approach and has been successfully adopted by Voogt
and Grimmond (2000) for the modeling of urban heat fluxes.

A more advanced methodology known as SVAT, which describes the vertical
exchange of momentum, heat, and moisture and accounts for the local horizontal het-
erogeneity within ABL, also could be applied. SVAT modeling involves locally
explicit and separate consideration of various types of vegetation and soil/land sur-
faces; although it includes numerous external adjustable parameters (and sometimes it
is very difficult to specify them accurately) describing physical properties of vegeta-
tion and land/soil. Numerous useful simplifications of SVAT models have been also
suggested to assimilate remotely sensed atmospheric and land parameters (e.g., Friedl
1995; Houborg and Soegaard, 2004).

Bulk Approach

The bulk procedure for describing momentum and heat vertical fluxes is relevant
and beneficial when the nature of the problem under study does not require an inde-
pendent consideration of vegetation and bare land surfaces at involved spatial scales.
For example, the vertical sensible heat flux can be expressed as follows (Garratt,
1992; Sun et al., 1999; Mahrt and Vickers, 2004):

 = –CH(Ri, z, z0m, z0h)U(z)[Ta – T0], (2)

where CH is the exchange coefficient for heat at level z where observations of the
wind speed U and Ta are available, T0 is the air temperature close to the surface at
level z0h that is the roughness length for heat, ρ is the air density, Cp is the specific
heat of air at constant pressure, Ri is the bulk Richardson number for the surface
ABL, and z0m is the roughness length for momentum. The coefficient CH can be eval-
uated analytically from the universal approximations suggested by Louis (1979) to an
accurate but not analytical description of CH from the ABL similarity theory (Garratt,
1992) for a given set of Ri, z, z0m, and z0h parameters.

H
ρCp
----------
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For the purpose of H estimating from remotely sensed Ts data, the equation (2)
can be simply accommodated as (Sun and Mahrt, 1995):

 = –CHR U(z)∆, (3)

where CHR is the radiometric exchange coefficient that accounts for substitution of T0
by Ts in the expression (2). It is important to note that unlike CH, the coefficient CHR
cannot be evaluated from the universal ABL functions involving Ri, z, z0m, and z0h
parameters (Sun and Mahrt, 1995).

Using a linear empirical relationship between G and Rn (G = βRn , where β is an
empirical constant), expression (3), and first-order Taylor approximation for the Ts

4

term, the energy balance of the surface can be rewritten as:

Rs (1 – β)(1 – a) + Rl – εσ (Ta
4 + 4 Ta

3∆) = LE – ρCp CHR U(z)∆, (4)

where Rs is the solar radiation flux at the surface and a is the surface albedo. The
temperature in the surface balance should be expressed in Kelvin. A similar, but more
general, approach was developed by Gao (1995) mainly for Ta assessment, using sat-
ellite observations for the remaining terms/variables involved in the balance. He used
a second-order Taylor approximation both for Ts

4 and LE terms and assumed a satura-
tion condition for the water vapor at the surface having temperature Ts. A universal
application of this condition could be questioned because it is certainly valid for spe-
cific surface types only; therefore, we did not apply a Taylor expansion for the LE
term.

For a given set of Rs, LE, and other terms, equation (4) can be used to estimate
the difference between air and surface temperatures (∆). Under clear skies, radiation
energy components (Rs and Rl) vary gradually and rather slowly in space as compared
with LE component, a, Ts, and wind speed variables, which typically can experience
quick and sharp changes over relatively small distances of about 1.0 km.  These
sudden changes are modulated by corresponding spatial variations of the surface’s
physical properties depending on soil moisture, vegetation cover type, and surface
roughness and shape alternations that can be traced very effectively by remote sens-
ing instruments. The magnitude of ∆ is controlled by the positive difference between
Rs(1-a) and LE over mid-latitude/subtropical grasslands (Brutsaert, 1982) during late
morning and early afternoon hours. Other terms in equation (4) produced substan-
tially minor impacts on ∆. With this simplification, it is almost clear that one can
expect a linear relationship between Ta and Ts temperatures from equation (4) in the
following form: Ta = Ts + const, having the slope equal to one. Indeed, as it will be
shown further, empirical relationships between Ta and Ts manifest the slope, which is
approximately equal to one (Figs. 3–5). Equation (4) essentially describes the surface
energy budget of a point size (Friedl, 2002), implying a horizontal homogeneity
within ABL/vegetation and underlying soil columns. Applying the equation with
remotely sensed LSTs required a spatial averaging to provide pixel-aggregated esti-
mates of Ts.

H
ρCp
----------
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Averaging Effects

A spatial averaging of the non-linear elements produces additional terms propor-
tional to covariations between variables involved (Equation 4). Because the main goal
of this section is to illustrate qualitatively the effect of averaging, symbolic forms for
LE and G terms are retained for the sake of simplicity. The use of usual gradient-flux
forms for these terms will only result in additional covariations between variables
involved in them. Before performing this averaging, a minor simplification of the
equation was adopted. Considering that the Rl (which is proportional to Ta

4) and εσTa
4

terms are relatively small during the daytime as compared to the difference between
the net radiation and LE terms and almost cancel each other, the above two small
terms may be omitted. Using the notation F = Rs(1–β)(1–a) – LE, assuming that CHR
is a constant and neglecting a very small covariation between Rs and albedo a, the
simplified, spatially averaged surface energy budget can be written as follows:

, (5)

where the overbar denotes a spatial average and a prime stands for a deviation from
this average. It is essential to understand that the averaged surface budget accounts
for a spatial aggregation of remotely sensed Ts (Friedl, 2002). The aggregation/aver-
aging scale can be represented by both data resolutions of the MODIS LST.

The covariation term involving temperatures  is typically smaller than the
corresponding mean component , because, in general,  (  is about
280–300 K and T'a is in the range 5–10 K usually) and  has the same order as ∆'.
Conversely, covariations involving the wind speed  have values that can be as
large as those of the mean term  because the wind speed deviation U'(z) and

 typically are of the same magnitude. Previous studies have not considered these
covariations (Gao, 1995, Friedl 2002; Caparrini et al., 2003). Equation 5 shows that
the average difference between temperatures  is controlled not only by the mean
fields of  and , but also depends on spatial statistics including covaria-
tions of these variables.

The covariation term  has a particular significance because it can be
rewritten as σ2

a – ρas, where σ2
a =  is the variance of the air temperature and ρas =

denotes the covariation between Ta and Ts, thus providing a framework for ρas
or correlation estimation from the averaged energy budget (Equation 5). The equation
can be readily used for ρas evaluation at any arbitrary moment of time, t.  Further-
more, it is easy to relate ρas to covariations between both Ta

max and Ta
min with Ts.

Another (empirical) way to estimate the correlation coefficient R between Ta and Ts
temperatures (R is defined as the value of ρas normalized by standard deviations of Ta
and Ts) is considered in the next section of this paper.

Considering that the spatial deviations T'a and T's are interrelated as follows T's  =
–σ0 T'a  (Gao, 1995), it is possible to rewrite the covariation  as α2

a (1–α0).
Here α0 = 1/αT and αT is the temperature transfer coefficient reflecting a decreasing
rate of the temperature spatial deviations with height. This coefficient may vary in the
range of 0.45–0.95 (Gao, 1995), increasing with surface roughness and decaying with
the observation height z. Bearing in mind the above relation between T'a and T's, one

F 4εσ Ta
3∆ 3Ta

2 Ta
′ ∆′( )+[ ] ρCpCHR U z( )∆ U′ z( )∆′+[ ]–≈

Ta
′ ∆′( )

Ta∆ Ta Ta
′» Ta

∆
U′ z( )∆′

U z( )∆
U z( )

∆
Ta Ts, U z( )

Ta
′ ∆′( )

Ta
′2

Ta
′ Ts

′

Ta
′ ∆′( )
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can compare the covariation term with the mean temperature term . After minor
rearrangements, the ratio between these terms can be expressed as 3 σ2

a(1– α0)/
. This ratio is proven to be less than 0.01 (or 1%) for given typical values of

involved quantities (αT = 0.9, σa = 2.25 K,  = 290 K, and  = 5 K). This result
indicates that the temperature covariation term has an overall negligible impact on the
spatially averaged surface energy budget. Also, the spatial derivatives of this covaria-
tion term might be as large as those of the mean temperature term. These spatial
derivatives of the terms involved in the surface energy balance in Equation 5 have
been used in the interpolation routines (Gash, 1987).

RESULTS

Plots of daily maximum and minimum Ta show a relatively high day-to-day vari-
ability of these temperatures exceeding in the average 15ºC during a period from
October to May (data not shown). This variability is apparently associated with the
passage of cold fronts through the study area with a characteristic periodicity in the
range of 6–12 days. Conversely, a lower day-to-day variability with related changes
not exceeding 6–8ºC is manifested during the June–August period. These relatively
low air temperature variations are modulated primarily by precipitation and/or cloud
cover changes. Cold fronts could affect the study area during late June or August,
although generally there is no sharp temperature change associated with the atmo-
spheric fronts in this season. A joint analysis of Ta and Ts plots at selected locations
over the state of Mississippi demonstrated a rather close agreement between them,
indicating that MODIS LST can mimic observed day-to-day air temperature variabil-
ity reasonably well, especially for the October–May “cold” season and the minimum
temperature. This fact represents necessary empirical background for the current
study and supports use of linear regression models to produce adequate estimates of
Ta temporal variations from the MODIS LST.

Figure 2 shows examples for clear-sky diurnal variations of the normalized air
temperature defined as (Ta – Ta

min)/ (Ta
max – Ta

min), where Ta
min and Ta

max are the daily
minimum and maximum air temperatures, respectively. A regular diurnal cycle of the
normalized temperature is evident, with a rather strong association between air nor-
malized temperature at Terra and Aqua overpass time intervals shown as vertical
dashed lines and corresponding values of  Ta

min and Ta
max. Figure 2 explains the gen-

eral idea for regression estimation of Ta
min and Ta

max from remote LST measurements,
provided that LST and air temperature at satellite overpass time are strongly related.

Diurnal Cycle and Aggregation Scale

Terra satellite overpass time, t0 (both AM and PM), may differ from the time
when the daily maximum or minimum of the air temperature occurs. Thus, the impact
of this time difference must be assessed, roughly estimated as 3 h for Ta

max and 8 h for
Ta

min, on linear regression estimates of Ta
max and Ta

min from Ta. Scatterplots shown in
Figure 3 illustrate how closely Ta sampled at t0 is related to Ta

max and Ta
min using air

temperature observations at Tupelo Regional Airport (AP) during 2000–2004. To pro-
vide homogeneity of meteorological conditions and thus better comparability
between different dates, only measurements under all day/night clear-sky conditions

Ta
3∆

Ta∆( )
Ta ∆
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were used in Figure 3. Partly cloudy or overcast weather will result in distortion of the
relatively regular diurnal cycle of Ta, illustrated in Figure 2, leading to additional scat-
ter between temperatures plotted in Figure 3. The above estimates of the relationship
between the air temperature sampled at t0 and its maximum or minimum daily values
might be considered as an ideal regression supposing that Ta could be retrieved by sat-
ellite with perfect accuracy and neglecting potential deviations of the air temperature
between in situ point surface measurements and area-averaged satellite data. Plots
presented in Figure 3 indicate that even in these ideal conditions there is a noticeable
scatter between Ta sampled at satellite AM/PM overpass time and daily maximum/
minimum air temperature. This scatter can be evaluated as a standard deviation or σ
of ∆max = Ta

max – Ta (10:30 AM) and of ∆min = Ta
min – Ta (10:30 PM).

These ideal/expected relationships represent reference regression cases. Closer
agreement and less scatter (σ is about 1°C on average) are observed between Ta
selected at 10:30 AM and Ta

max, reflecting a smaller time span of about 3 hours
between observation times for these variables, than between Ta sampled at 10:30 PM
and Ta

min (the σ value of ∆min exceeds 2°C), as is plainly depicted in Figure 3 and
Table 2. This Table also shows (both for the Terra and Aqua platforms and for differ-
ent spatial resolutions) other relevant statistics for Ta

max versus LST and Ta at 10:30
AM and Ta

min versus LST and Ta at 10:30 PM, including the correlation coefficient

Fig. 2. Daily cycle examples of normalized air temperature observed at Tupelo Regional
Airport, Mississippi during clear-sky days/nights covering summer–fall period of 2000.
Vertical dashed lines represent Terra overpass time interval (upper frame) and that of for Aqua
(lower frame).
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Fig. 3. Scatterplots between observed air temperature for Tupelo Regional Airport, Mississippi
at 10:30 AM and daily maximum (A, B) and between observed Ta at 10:30 PM and daily
minimum temperature (C, D) are shown by squares. Crosses indicate relationships between
MODIS Terra LST measured around 10:30 AM and Ta

max (A, B) and LST around 10:30 PM
and Ta

min (C, D). Left (A, C) and right (B, D) frames depict global MODIS Terra LST data with
0.05° latitude-longitude resolution (approximately 5.0 km2) and 1.0 km2 resolution,
respectively. Correlation coefficients are depicted in lower right corners (upper row value
stands for correlation between air temperatures, and lower row—for correlation between Ta and
LST).
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(R) and the mean value. Note that R values reflect the strength of the linear relation-
ship between temperature variables.

The elevated level of point scattering for the Ta
min – Ta relationship is mainly

attributed to significant variations of Ta values observed around 10:30 PM (Fig. 2). As
can be expected, similar plots created for Aqua overpass time (1:30 PM and 1:30
AM), which is very close to the Ta

max and Ta
min observation time (Fig. 2B), produce

substantially less scatter between Ta and its daily maximum and minimum values
(with σ values of 0.63°C and 1.32°C, respectively), particularly between Ta sampled
at 1:30 PM and Ta

max (Fig. 4 and Table 2). Comparing the performance of this ideal
regression for both platforms, one cannot but infer that Aqua LST fields provide bet-
ter results than those of Terra. Indeed, the σ values for ∆max decrease about twofold in
value from 1.46°C to 0.63°C and from 2.67°C to 1.32°C. Note that σ value of ∆ is a
general measure of scattering between variables (in the above case they are Ta, Ta

max,
and Ta

min) involved in the regression. Clearly lower values of σ result in more accu-
rate regression estimates.

Similar scatterplots were also generated to evaluate regression performance
between MODIS LST and daily Ta

max and Ta
min. Crosses in Figure 3 show corre-

sponding relationships between them. It is reasonable to analyze relationships involv-
ing Ta

max and Ta
min separately, and at first we consider the Ta

max case. Using Terra late
morning overpass LST (with 0.05° × 0.05° latitude-longitude resolution) instead of Ta
leads to deterioration of the regression with Ta

max. This is mainly manifested in sig-
nificant lowering of the correlation from 0.99 for Ta

max and Ta pairs to 0.94 and 0.97
for Ta

max and LST pairs at 0.05° latitude-longitude (approximately 5.0 km2) and at
1.0 km2 resolution, respectively. Using the LST instead of Ta also results in increasing
the standard deviation of ∆max from 1.46°C to 3.12°C for 5.0 km2 and to 2.09°C for
1.0 km2 resolution (Table 2). There is no escape from the conclusion that LSTs with
1.0 km2 resolution are in better and closer agreement with Ta

max in terms of higher R
and lower standard deviations as compared with those of the 5.0 km2 LST product.
This conclusion is also valid for the Aqua LST product (Table 2 and Figs. 4A–4B).
Unlike the ideal regression case between Ta

max and Ta at 10:30 AM, a change from the
Terra to the Aqua platform while using LST in place of Ta does not lead to a regres-
sion improvement for both data resolutions. Corresponding changes in R remain
insignificant at the 95% significance level and  σ values remain at the same level as is
shown on the left side of Table 2.

The results reported in this section reflect relationships between temperatures
under clear-sky conditions (whole daily cycle of Ta) only. These results may change if
we relax all-day clear-sky sampling and select a broader sample of temperatures, per-
mitting cloudiness to be present between MODIS overpass times. Therefore, R and
standard deviations were recalculated for all cases with available LST observations.
For convenience we refer to these results as a sample A, which is highlighted in
Table 2. MODIS LST products are retrieved under clear skies, implying only a negli-
gible amount of clouds present within a MODIS pixel at the overpass time, and cer-
tainly some cloudiness may exist at the time of observed daily Ta

max and Ta
min.

Additionally, one more estimate of R and standard deviation (B results) based on a
selection of cloud-free conditions using a 1.5 h time-window around the MODIS
overpass time and utilizing hourly in situ observations of cloudiness fraction were
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performed (Table 2). Variations of R and σ between A and B samples are attributed to
a difference among in situ observed and MODIS-related cloud-free definition.

Comparing R and σ of the ideal regression results for Ta
max between all-day clear

skies and B sampling, one can conclude that observed variations of cloudiness
between MODIS overpass times have little effect on the regression performance.
There are no statistically significant changes in R (Table 2). Similarly, only slight

Table 2. Correlation Coefficient (R) between Ta(max/min) and LST (or Ta)a

MODIS 
observation 

time

Param-
eter

Pixel 
size, 
km

Ta
max Ta

min

R Rlow/up
Mean 
∆, °C

σ∆, °C R Rlow/up
Mean 
∆, °C

σ∆, °C

10:30 AM/
PM

Ta Point 0.990 0.988 4.65 1.46 0.944 0.929 -5.62 2.67
0.992 0.955

0.990 0.988 1.55 0.961 0.956 2.65
0.991 0.966

LST
(Terra)

5 0.938 0.921 -1.58 3.12 0.971 0.962 -4.04 1.89
0.952 0.978

0.874 0.857 0.55 4.34 0.923 0.913 -2.53 3.44
0.928 0.888 3.41 0.899 0.932 4.13

1 0.970 0.954 -0.73 2.09 0.975 0.962 -2.10 1.47
0.980 0.983

0.972 0.962 -0.81 2.17 0.961 0.949 -1.64 2.07

0.969 0.979 2.20 0.970 0.970 1.73

1:30 PM/
AM

Ta point 0.998 0.997 1.08 0.63 0.986 0.983 -2.48 1.32
0.998 0.989

0.997 0.996 0.79 0.989 0.987 2.07

0.997 0.990

LST
(Aqua)

5 0.914 0.880 -3.63 3.54 0.977 0.966 -2.60 1.68
0.939 0.984

0.848 0.823 -1.13 4.58 0.900 0.882 -1.22 3.80

0.913 0.870 3.56 0.857 0.916 4.25

1 0.968 0.935 -3.18 2.24 0.989 0.979 -0.81 0.97

0.984 0.994

0.960 0.937 -2.63 2.52 0.973 0.958 -0.93 1.49

0.963 0.975 2.34 0.977 0.982 1.25
aRlow/up are lower and upper bounds of 95% confidence interval for R. Mean and standard deviation (σ)
of ∆ = Ta(max/min) – LST (or Ta). Statistics are estimated for all-day clear-sky (CLR) and for any cloud-
iness conditions (grey shading), including CLR during day/night at Tupelo Regional Airport. Note that
MODIS LST is available only under CLR or almost-CLR conditions, implying at least a negligible
amount of clouds present within a MODIS pixel at observation time. Bold values indicate statistics sam-
pled for CLR within the 1.5 h time-window around the MODIS observation time.
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Fig. 4. Scatterplots between observed air temperature for Tupelo Regional Airport, Mississippi
at 1:30 AM and daily maximum (A, B) and between observed Ta at 1:30 PM and daily
minimum temperature (C, D) are shown by squares. Crosses indicate relationships between
MODIS Aqua LST measured around 1:30 AM and Ta

max (A, B) and LST around 1:30 PM and
Ta

min (C, D). Left (A, C) and right (B, D) frames stand for global MODIS Aqua LST data with
0.05° latitude-longitude resolution (approximately 5.0 km2) and 1.0 km2 resolution,
respectively. Legend for correlation values is explained in Figure 3.
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reductions in R and increase of σ values occur when we change from clear-sky to B
sampling for the regression between Ta

max and LST at both resolution. Conversely,
both the Terra and Aqua data show a dramatic lowering of R and increasing σ values,
which are observed for the Ta

max/LST pair when sampling strategy A has been used at
5.0 km2 resolution (Table 2). Therefore, sampling LST at MODIS 10:30 AM overpass
time based on cloud-free conditions inferred from in situ surface observations can sig-
nificantly improve original regression estimates between  and LST (Table 2).

In contrast to the case of Ta
max, an application of night-overpass LST instead of Ta

leads to a closer relationship with Ta
min and less scatter (Fig. 3C and Table 2). This is

particularly distinct for Terra LST, when R increases from 0.94 (ideal Ta
max regres-

sion) to 0.97 and 0.98 at 5.0 and 1.0 km2, respectively. All these changes in R are sta-
tistically significant at the 95% level, as depicted in Table 2. There are no significant
variations in R for the Aqua LST data. Corresponding σ changes demonstrate
decreases from 2.67°C (1.32°C) for ideal regression to 1.89°C (1.68°C) and to 1.49°C
(0.97°C) for the regression with LST at 1.0 and 5.0 km2, respectively.4

The high level of R values shown in Table 2, which typically exceed a 0.9 thresh-
old, were not an unexpected result, representing mainly seasonally substantial and
coherent changes in Ta and LST temperatures. Applying stratification of R for specific
seasons results in an overall decrease of correlation coefficient values. At most sta-
tions over the study area, R drops on average to as low as 0.6–0.9 (Mostovoy et al.,
2005) for season samples at individual points and exhibits marked seasonal variations
(Fig. 11 and Table 3).  Migration to the lower (32 km2) resolution for Ta and Ts data,
available every three hours from the North American Regional Reanalysis (NARR)
online archive (Mesinger et al., 2004), results in little seasonal variability of point
correlation coefficients (Mostovoy et al., 2005). These findings are also confirmed by
a similar temperature data analysis at other hourly-reporting locations (Fig. 5).

The above results clearly show that sampling conditions substantially affect Ta
max

versus Terra or Aqua 5.0 km2 LST regression performance estimated in terms of R
and standard deviation values. They change significantly when going from all-day
cloud-free to LST sampling (A sampling), leading to a marked deterioration of the
regression. The LST sampling based on the surface in situ observations of the cloudi-
ness (B sampling) leads to closer agreement with the ideal regression. This result

Table 3. Correlation Coefficient R between Ta(max/min) and Ts, for Different 
Combinations of Land Cover Types and Seasonsa

Land cover 
types Statistic

Rmax Rmin

May–Sept. Oct.–Apr. May–Sept. Oct.–Apr.

Crops and 
grasslands

Mean 
σ

0.68 0.85 0.91 0.90
0.13 0.05 0.03 0.04

Forests Mean 
σ

0.73 0.84 0.91 0.90
0.09 0.04 0.08 0.05

aσ values indicate standard deviation of R. The sample size is the same as in Table 4.

4Values in parentheses stand for the statistic based on the Aqua data.
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Fig. 5. Scatterplots between observed air temperature for Jackson International Airport,
Mississippi at 10:30 AM and daily maximum (A, B) and between observed Ta at 10:30 PM and
daily minimum temperature (C, D) are shown by squares. Crosses indicate relationships
between MODIS Terra LST measured around 10:30 AM and Ta

max (A, B) and LST around
10:30 PM and Ta

min (C, D). Left (A, C) and right (B, D) frames stand for global MODIS Terra
LST data with 0.05° latitude-longitude resolution (approximately 5.0 km2) and for 1 km2

resolution, respectively. Legend for correlation values is explained in Figure 3.
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provides the potential for improvement of Ta
max regression estimates using 5.0 km2

LST data by the appropriate sampling of the clear-sky conditions at MODIS overpass
times. In contrast, both the Terra and Aqua 1.0 km2 LST products demonstrate that R
and σ values are almost insensitive to changes in sampling method. A change from
5.0 to 1.0 km2 resolution only slightly improves the overall regression performance
between Ta(max/min) and LST (Table 2 and Figs. 3 and 4). The relationship between
LST and Ta

min is proven to be closer in terms of higher R values and lower standard
deviations as compared with those for Ta

max regression for both resolutions of Terra
data.

View Angle and Vegetation Fraction

The MODIS TIR sensor view zenith angle θ varies between ±65°, and a negative
sign of θ means the TIR sensor is viewing the pixel from the east. The angle θ con-
trols the LST value over partially vegetated pixels, since the view angle regulates dis-
tribution of the TIR signal between the vegetation and the background soil
components. These components usually have different temperatures, and spatial and
day-to-day changes of θ over the study area may cause LST variability. Therefore,
when performing the regression analysis between Ta and Ts temperatures, it is impor-
tant to evaluate the potential impact of view-angle variations on regression estimates
at a regional scale. First, we consider dependence of ∆max and ∆min, which describe
the difference between Ta(max/min) and Ts measured at MODIS Terra overpass times
upon θ. Although θ typically changes sign for a given pixel every other day, our pre-
liminary study reveals no feasible difference in temperature between two Ts sets sam-
pled for positive and negative view angles. Thus, both positive and negative
(substituted by abs(θ)) values of θ are used together in this study.

Neglecting differences in thermal emissivity between bare soil and vegetation
and taking into account that both emissivities are close to unity, remotely sensed sur-
face temperature may be expressed as (Norman et al., 1995):

Ts
4 (θ) = (1 – f)Ts

4
0 + fTv

4, (6)

where Ts0 is the bare soil temperature and Tv is the vegetation canopy temperature. A
fraction of the TIR radiometer field of view f(θ) occupied by vegetation can be writ-
ten as (Norman et al., 1995):

f(θ) = 1 – exp[–0.5LAI/cos(θ)]. (7)

Equation 7 is valid for the random canopy with a spherical leaf angle distribution
that is represented by the extinction coefficient 0.5 in the exponent and predicts an
overall growth of f with increasing θ (Campbell and Norman, 1998). The rate of this
growth is LAI dependent, so that lower values of LAI result in higher growth rates of f
with view angle. The dashed lines in Figure 6 (A, C) show the f(θ) function for differ-
ent LAI values (1, 2, and 3); additionally, the function [1- f(θ)] is depicted for LAI = 1
and LAI = 3 in Figure 6 (B, D). Formulae (6) and (7) describe the dependence of Ts
upon a view zenith angle, canopy architecture, and LAI. The f value at θ = 0 is known
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as a vegetation fraction (Norman et al., 1995), but we will use this compact name to
denote f in the rest of the paper without regard for the θ value.

During the clear-sky day Ts0 > Tv usually, so we can assume for simplicity that
they are interrelated as follows: Ts

4
0 Tv

4 + 4Tv
3δ, where the first-order Taylor

expansion for Ts
4
0 is used, and δ = Ts0 – Tv . Substitution of this relationship results in

the following approximate expression for the surface temperature: 

Ts (θ) Tv [1 + 4(1 – f) δ/Tv]1/4. (8)

The equation predicts decreasing Ts with the growth of f for a specified constant
value of the temperature difference δ between soil and vegetation. For example, if δ =
5 K, Tv= 290 K and f changes from 0.6 to 0.9 (due to θ variations from 0° to 65°,
respectively). Ts measured by TIR at θ = 0° (as compared with that retrieved at θ =
65°) decreased by 0.51% (the absolute value of the lowering of Ts is 1.4°C), and
increased up to 2.9°C for the larger temperature difference δ = 10 K. Both values rep-
resent a significant change in Ts that cannot be ignored when performing Ts spatial
analysis or interpolation. Due to daily variations in the surface temperature and diffi-
culties in choosing an appropriate/universal scaling or normalization for this variabil-
ity, there were no obvious indications of decreasing Ts with increasing θ in MODIS
TIR data over the state during day/night hours. The absence of θ dependence in the
MODIS LST data is very likely masked by relatively high day-to-day variations of Ts.
Typically, during late evening and night hours δ ≈ 0 or even less than zero, so θ-
dependence of Ts must be weak or nearly absent. Also the equation predicts an
increase in TIR-measured surface temperature with θ in case of δ < 0.

Figures 6 and 7 represent scatterplots for ∆ and θ at Tupelo (34.27°N, 88.77°W)
and Saucier (30.63°N, 89.05°W) for the periods May–September and October–April.
Here we adopted the following notation: ∆max = Ta

max – Ts  (10:30 AM) and ∆min =
Ta

min – Ts (10:30 PM). These examples clearly demonstrate that,  contrary to Ts, ∆
reveals rather θ-consistent behavior that correlated well with predictions of Ts from
equation (8), so that typically ∆max increase and ∆min slightly decrease or remain con-
stant with the view angle. The LST 5.0 km2 resolution data illustrated in Figures 6
and 7 indicate a linear regression relationship between ∆ and θ that is obtained by
application of the robust least-squares procedure (Holland and Welsch, 1977). This
procedure relaxed the influence of outliers in the data upon regression estimates and
might be advantageous in the present case of considering noisy LST satellite mea-
surements. Figures 6 and 7 describe f (A, B) or (1-f) (C, D) θ dependence estimated
for different values of LAI (Equation 7).

Figure 6 (A, B) illustrates that a positive slope parameter of the regression
between ∆max and θ, reflecting an increase of ∆max with the view angle, is dominant
during the May–September period. For a given slope parameter value (presented in
the lower left corners of the plots in Figure 6) and θ change from 0° to 65°, this
increase of ∆max may range from 2.84°C to 1.33°C at Tupelo and Saucier, respec-
tively. The above gradual changes in ∆max are in perfect agreement with θ-related
variations of Ts during the daytime, estimated from equation (8) earlier in this section.
Histograms of the slope parameter in Figure 9A for all available points over the study
area also strongly support the dominance of positive values of this parameter for the
May–September period by producing a remarkable shift toward positive numbers.

≈

≈



MODIS LST DATA OVER THE STATE OF MISSISSIPPI 99

Fi
g.

 7
. R

el
at

io
ns

hi
ps

 fo
r O

ct
ob

er
–A

pr
il 

20
00

–2
00

4 
(A

) a
nd

 (B
) b

et
w

ee
n 

∆
 =

 T
am

ax
 –

 T
s a

nd
 z

en
ith

 v
ie

w
 a

ng
le

 θ
; a

nd
 (C

) a
nd

 (D
) b

et
w

ee
n 

∆ 
= 

T a
m

ax
  –

T s
 a

nd
 θ

. T
ria

ng
le

s r
ef

er
 to

 5
.0

 k
m

2  T
s d

at
a 

an
d 

cr
os

se
s t

o 
1.

0 
km

2 . 
So

lid
 li

ne
s s

ta
nd

 fo
r l

ea
st

-s
qu

ar
e 

ap
pr

ox
im

at
io

ns
 o

f r
eg

re
ss

io
n 

be
tw

ee
n 

∆
 a

nd
 θ

 fo
r

5.
0 

km
2  d

at
a.

 S
ca

tte
rp

lo
ts

 a
re

 sh
ow

n 
by

 sq
ua

re
s (

A
) a

nd
 (B

) b
et

w
ee

n 
ve

ge
ta

tio
n 

fr
ac

tio
n 

f a
nd

 θ
; a

nd
 (C

) a
nd

 (D
) b

et
w

ee
n 

(1
 –

 f)
 a

nd
 θ

. P
lo

tte
d 

va
lu

es
of

 f 
an

d 
(1

 –
 f)

 w
er

e 
m

ul
tip

lie
d 

by
 1

0.
 L

eg
en

d 
is

 th
e 

sa
m

e 
as

 in
 F

ig
ur

e 
6.



100 MOSTOVOY ET AL.

Fig. 8. Geographical distribution of intercept values for the regression between ∆max = Ta
max –

Ts and view zenith angle. Outputted fields were averaged for May–Sept. (upper frame) and for
Oct.–Apr. (lower frame), 2000–2004. Various symbols indicating land cover types show
locations where intercept values were estimated as follows: (1 ) evergreen needle leaf trees; (2)
evergreen broadleaf trees; (4) deciduous broadleaf trees; (6) grass; (7) cereal crops; (8)
broadleaf crop; and (9) urban and built-up areas.
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Unlike the ∆max case, the slope parameter of the regression between ∆min and view
angle is almost normally distributed with a small, noticeable shift toward negative
values. This pattern is also consistent with predictions of weak θ dependence of Ts
during nighttime hours. At the same time, there are no such peculiarities in the slope
distribution between ∆max and ∆min during October–April (Fig. 9).

Table 4. Comparison of ∆ = Ta(max/min) – Ts between Different Land Cover Types 
and Seasonsa

Land cover 
types Statistic

∆max, °C ∆min, °C

May–Sept. Oct.–Apr. May–Sept. Oct.–Apr.

Crops and 
grasslands

Mean 
σ

–1.45 –1.81 –3.08 –3.96
1.71 1.60 1.08 1.11

Sample size 77.00 83.00 44.00 80.00

Forests Mean 
σ 

–0.21 –0.77 –3.69 –4.45
1.34 1.43 1.23 1.12

Sample size 40.00 45.00 24.00 41.00
t-value –4.158 –3.696 2.072 2.298

aσ values indicate standard deviation of ∆.

Fig. 9. Histograms of the slope parameter for linear regression between ∆ = Ta –Ts and view
zenith angle (Figs. 6 and 7). Counts in each bin were normalized by the total number of
observations that are presented in Table 4 for May–Sept. (A) and Oct.–Apr. (B) periods.
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Taking into account the relatively small values of the slope, within ± 0.01°C/deg
range (Fig. 9), the regression intercept parameter can be considered as a mean
estimate of the ∆ value. Figure 8 illustrates the geographical distribution of mean ∆max
values for the May–September and October–April periods generated by cubic spline
interpolation from station points. Additionally, Figure 8 shows symbols at station
locations indicating a dominant MODIS PFT category within 1.0 km2 using a land
cover classification derived from MOD12Q1. Applying other classifications like the
International Geosphere-Biosphere Programme Scheme did not significantly alter the
results (Townshend et al., 1994).

Considering fields of ∆max and cover types together allows us to conclude that the
temperature difference ∆max is negative, in general, over crops and grassland pixels
(PFT types 6-8) and usually is slightly positive over forests (PFT types 1-4). Table 4
provides solid support for this preliminary inference. The mean value of ∆max changes
from –1.45°C (–1.81°C) for the crops and grasslands to –0.2°C (–0.77°C) for the for-
est cover types during the May–September period.5 The observed changes in the
mean values of ∆max and ∆min between various cover types shown in Table 4 are statis-
tically significant at the 99% and 95% levels, respectively. These results are also in
good qualitative agreement with Figure 8 in Goetz (1997), showing a systematic
decrease in the surface temperature with an increase of the green vegetation fraction
measured by the spectral vegetation index.

Figure 10 illustrates scatterplots between ∆max and f and between ∆min and (1-f)
for all available stations over the study area. Both for the May–September and
October–April periods, the relationship between ∆max and f proves to be closer than
between ∆min and f, with R values of 0.48 and 0.43, respectively. Figure 11 shows
scatterplots of the correlation coefficient between Ta(max/min) and LST (10:30 AM/
PM) versus the vegetation cover f. There was no apparent relationship between values
of these correlations and cover types and vegetation fractions except for correlations
between Ta

max and LST at 10:30 AM during the May–September period (Fig. 11A).
The smallest scattering of R values with f is observed for Ta

max versus LST during
October–April (Fig. 11B). R demonstrated rather broad variations between different
stations, even for fixed cover types and the same range of f. These substantial varia-
tions of R could be associated with surface heterogeneity at the sub-pixel scale, and
we intend to analyze this link in future work.

CONCLUSIONS

MODIS TIR LST measurements can be used for linear regression estimates of
daily air maximum and minimum temperatures for any geographical region. If the
correlation level between the air temperature and LST is high, assimilation of these
estimates can improve the local/regional accuracy of air temperature fields produced
by spatial interpolation from point surface observations. This property of the LST sat-
ellite product is of particular importance for various environmental and ecological
models, which require the surface air temperature fields with a spatial resolution of
about 1 km2. Predictions of these models depend critically on the quality of input

5Numbers in parentheses correspond to values for the October–April season.
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fields. Previous studies also showed the benefits of using nighttime LST as a valuable
predictor for operational forecasts of the daily air minimum temperature.

The correlation coefficient (R) and the difference between the air temperatures
and LSTs have shown rather consistent variations with pixel resolution, view zenith
angle of the MODIS instrument, satellite overpass time, season, land-cover type, and
the vegetation fraction over the state of Mississippi during the years 2000–2004.
While R values between maximum temperature and LST were well stratified and sep-
arated depending on season (May–September or October–April) and time of day
(maximum or minimum temperature), there were no certain indications for any
dependence of R on cover type and the vegetation fraction. Therefore, seasonal
weather variability (related to the frequency and intensity of cold atmospheric fronts
affecting the study area) has proven to be more important than surface cover as a
factor controlling observed level of R at 1.0 and 5.0 km2 aggregation scales of
MODIS LST data.

The difference between maximum air temperature and LST demonstrated linear
increase with view angle (1–2°C for angle changes from 0° to ±65°) and remained
constant or slightly decreased in case of the daily air minimum temperature. These
changes were in a good agreement with predictions from a simple mixed-pixel model
including both bare soil and vegetation-cover components of the TIR signal. While an
average interpolation accuracy of 1–2°C for air temperature is acceptable by some
applications, angle dependence can be neglected. By using LST data selected by
applying the view zenith angle threshold (±40° or ±20°), interpolation accuracy can
be improved at some locations while effectively reducing the availability of LST data,
and therefore indirectly lowering the quality of representation (spatial detail) of the
interpolated air temperature.

On average during May–September, the absolute value of this difference
revealed a marked reduction by 1°C over more vegetated areas such as forests in com-
parison with less vegetated or more open ground such as crops or grassland. This fea-
ture was more distinct for the difference between maximum air temperature and LST,
and was in overall qualitative agreement with numerous previous findings. This dem-
onstrated that LST decreased linearly and approached screen air temperature asymp-
tomatically as long as the fraction of the green vegetation cover increased.

The contribution of non-linear effects associated with non-zero spatial covaria-
tions between variables involved in the surface energy balance equation has been
proven to be negligible for temperature terms; the covariation contribution to the
mean difference between air temperature and LST was <1% for a typical range of
environmental variables. Sampling data from all-day clear skies based on hourly in
situ observations resulted in a statistically significant improvement of correlation and
in a lowering of the standard deviation for difference between air temperature and 5.0
km2 LST. This result indicates a marked degradation of the relationship between air
temperature and LST due to partly-cloudy sky and sub-pixel cloudiness.

Both Terra and Aqua high-resolution LST exhibited a small, but persistent,
increase in correlation between the air temperature and LST, as compared with the
coarse-resolution LST. However, the overall improvement was not as much as might
be expected from using higher resolution. Changing from Terra to Aqua LST did not
substantially alter estimated correlations, indicating that a time difference between the
moment of the satellite overpass and the time when maximum or minimum air
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temperature was observed was not critical for controlling the correlation level
between air temperature and LST. This inference was also supported by exceptionally
strong correlations (R ≥ 0.99) observed between maximum air temperature and that of
measured at 10:30 AM. These high R values for air temperatures suggested that fac-
tors other than the time difference acting to lower observed correlations and to
increase scattering between the air temperature and LST. Therefore, Terra globally
gridded LST fields (MODIS name MOD11C1) with coarse resolution are probably
most useful for regression estimates of the screen air temperatures, implying a certain
tradeoff between better spatial coverage and quality/accuracy of this LST product in
comparison with the high-resolution fields.

ACKNOWLEDGMENTS

This research was sponsored by the National Aeronautical and Space Adminis-
tration–funded GeoResources Institute at Mississippi State University, Mississippi
State, MS. We appreciate accurate and timely consultations provided by the LP
DAAC Helpdesk. The authors also acknowledge very helpful consultations provided
by Wesley Ebisuzaki, NOAA Climate Prediction Center (Camp Springs, MD) on
reading and understanding NARR datasets. The authors greatly appreciate thorough
comments provided by reviewers.

REFERENCES

Bolstad, P. V., Swift, L., Collins, F., and J. Régnière, 1998, “Measured and Predicted
Air Temperatures at Basin to Regional Scales in the Southern Appalachian
Mountains,” Agricultural and Forest Meteorology, 91:161-176.

Brutsaert, W., 1982, Evaporation into the Atmosphere, Theory, History, and Applica-
tions, Boston, MA: D. Reidel, 219 p.

Campbell, G. S. and J. M. Norman, 1998, An Introduction to Environmental Biophys-
ics, 2nd ed., New York, NY: Springer-Verlag, 286 p.

Caparrini, F., Castelli, F., and D. Entekhabi, 2003, “Mapping of Land-Atmosphere
Heat Fluxes and Surface Parameters with Remote Sensing Data,” Boundary-
Layer Meteorology, 107:605-633.

Carlson, T. N. and D. A. Ripley, 1997, “On the Relation between NDVI, Fractional
Vegetation Cover, and Leaf Area Index,” Remote Sensing of Environment,
62:241-252.

Cressie, N. A., 1991, Statistics for Spatial Data, New York, NY: John Wiley & Sons,
900 p.

Doraiswamy, P. C., Hatfield, J. L., Jackson, B., Akhmedov, B., Prueger, J., and A.
Stern, 2004, “Crop Condition and Yield Simulations using Landsat and MODIS,”
Remote Sensing of Environment, 92:548-559.

Florio, E. N., Lele, S. R., Chi Chang, Y., Sterner, R., and G. E. Glass, 2004, “Integrat-
ing AVHRR Satellite Data and NOAA Ground Observations to Predict Surface
Air Temperature: A Statistical Approach,” International Journal of Remote Sens-
ing, 25:2979-2994.

Focks, D. A., Daniels, E., Heile, D. G., and J. E. Keesling, 1995, “A Simulation-
Model of the Epidemiology of Urban Dengue Fever: Literature Analysis, Model



MODIS LST DATA OVER THE STATE OF MISSISSIPPI 107

Development, Preliminary Validation, and Samples of Simulation Results,”
American Journal of Tropical Medicine And Hygiene, 53:489-506.

Friedl, M. A., 1995, “Modeling Land Surface Fluxes Using a Sparse Canopy Model
and Radiometric Surface Measurements,” Journal of Geophysical Research,
100:25,435-25,446.

Friedl, M. A., 2002, “Forward and Inverse Modeling of Land Surface Energy Balance
Using Surface Temperature Measurements,” Remote Sensing of Environment, 79:
344-354.

Gallo, K. P. and C. S. T. Daughtry, 1987, “Differences in Vegetation Indices for Simu-
lated Landsat-5 MSS and TM, NOAA-9 AVHRR, and SPOT-1 Sensor Systems,”
Remote Sensing of Environment, 23:439-452.

Gallo, K. P., McNab, A. L.,  Karl, T. R., Brown, J. F., Hood, J. J., and J. D. Tarpley,
1993, “The Use of NOAA AVHRR Data for Assessment of the Urban Heat
Island Effect,” Journal of Applied Meteorology, 32:899-908.

Gao, W., 1995, “Parameterization of Subgrid-Scale Land Surface Fluxes with Empha-
sis on Distributing Mean Atmospheric Forcing and Using Satellite-Derived Veg-
etation Index,” Journal of Geophysical Research, 100:14,305-14,317.

Garratt, J. R., 1992, The Atmospheric Boundary Layer, New York, NY: Cambridge
University Press, 316 p.

Gash, J. H. C., 1987, “An Analytical Framework for Extrapolating Evaporation Mea-
surements by Remote Sensing Surface Temperature,” International Journal of
Remote Sensing, 8:1245-1249.

Goetz, S. J., 1997, “Multi-sensor Analysis of NDVI, Surface Temperature and Bio-
physical Variables at a Mixed Grassland Site,” International Journal of Remote
Sensing, 18:71-94.

Gutman, G. and A. Ignatov, 1998, “The Derivation of the Green Vegetation Fraction
from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models,”
International Journal of Remote Sensing, 19:1533-1543.

Holland, P. W. and R. E. Welsch, 1977, “Robust Regression Using Iteratively
Reweighted Least-Squares,” Communications in Statistics: Theory and Methods,
A6: 813-827.

Hope, A., Engstrom, R., and D. Stow, 2005, “Relationship between AVHRR Surface
Temperature and NDVI in Arctic Tundra Ecosystems,” International Journal of
Remote Sensing, 26:1771-1776.

Houborg, R. M. and H. Soegaard, 2004, “Regional Simulation of Ecosystem CO2 and
Water Exchange for Agricultural Land Using NOAA AVHRR and Terra MODIS
Satellite Data. Application to Zealand, Denmark,” Remote Sensing of Environ-
ment, 93:150-167.

Jin, M. and R. E. Dickinson, 2002, “New Observational Evidence for Global Warm-
ing from Satellite,” Geophysical Research Letters, 29:10.1029/2001GL013833.

Jin, M., Dickinson, R. E., and A. M. Vogelmann, 1997, “A Comparison of CCM2-
BATS Skin Temperature and Surface Air Temperature with Satellite and Surface
Observations,” Journal of Climate, 10:1505-1524.

Jones, P., Jedlovec, G., Suggs, R., and S. Haines, 2004, “Using MODIS LST to Esti-
mate Minimum Air Temperatures at Night,” in 13th Conference on Satellite
Meteorology and Oceanography (preprints), Norfolk, VA: AMS, 4.13 (CD-
ROM).



108 MOSTOVOY ET AL.

Kawashima, S., Ishida, T., Minomura, M., and T. Miwa, 2000, “Relations between
Surface Temperature and Air Temperature on a Local Scale during Winter
Nights,” Journal of Applied Meteorology, 39:1570-1579.

Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J., and S. W. Running,
1998, “Synergistic Algorithm for Estimating Vegetation Canopy Leaf Area Index
and Fraction of Absorbed Photosynthetically Active Radiation from MODIS and
MIRS Data,” Journal of Geophysical Research, 103:32,257-32,275.

Kustas, W. P., Prueger, J. H., Humes, K. S., and P. J. Starks, 1999, “Estimation of
Surface Heat Fluxes at Field Scale Using Surface Layer versus Mixed-Layer
Atmospheric Variables with Radiometric Temperature Observations,” Journal of
Applied Meteorology, 38:224-238.

Louis, J. F., 1979, “A Parametric Model of Vertical Eddy Fluxes in the Atmosphere,”
Boundary-Layer Meteorology, 17:187-202.

Mahrt, L., and D. Vickers, 2004, “Bulk Formulation of the Surface Heat Flux,”
Boundary-Layer Meteorology, 110:357-379.

Mesinger, F., DiMego, G., Kalnay, E., Shafran, P., Ebisuzaki, W., Jovic, D., Woolen,
J., Mitchell, K., Rogers, E., Ek, M., Fan, Y., Grumbine, R., Higgins, W., Li, H.,
Lin, Y., Manikin, G., Parrish, D., and W. Shi, 2004, “North American Regional
Reanalysis,” in Proceedings of the 20th InternationalConference on Interactive
Information and Processing Systems (IIPS) for Meteorology, Oceanography, and
Hydrology, Seattle, WA: 84th AMS Annual Meeting,  13 p. (CD-ROM).

MODIS Data Products, 2001, Land Processes Distributed Active Archive Center
[http://edcdaac.usgs.gov/modis/dataproducts.asp].

Mostovoy, G. V., King, R., Reddy, K. R., and Kakani, V. G., 2005, “Using MODIS
LST Data for High-Resolution Estimates of Daily Air Temperature Over
Mississippi,” in Proceedings of the 3rd  International Workshop on the Analysis of
Multi-Temporal Remote Sensing Images, May 2005, Biloxi, MS, IEEE 5 p. (CD-
ROM).

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang,
Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T.,
Voltava, P., Nemani, R. R., and S. W. Running, 2002, “Global Products of Vege-
tation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data,”
Remote Sensing of Environment, 83:214-231.

NOAA NCDC (National Oceanic and Atmospheric Administration, National Climate
Data Center), 2004, Climate Data Online [http://cdo.ncdc.noaa.gov/CDO /cdo].

Norman, J. M. and F. Becker, 1995, “Terminology in Thermal Infrared Remote Sens-
ing of Natural Surfaces,” Agricultural and Forest Meteorology, 77: 153-166.

Norman, J. M., Kustas, W. P., and K. S. Humes, 1995, “A Two-Source Approach for
Estimating Soil and Vegetation Energy Fluxes from Observations of Directional
Radiometric Surface Temperature,” Agricultural and Forest Meteorology, 77:
263-293.

Oke, T. R., 1987, Boundary Layer Climates, 2nd ed., New York, NY: Methuen, 435 p.
Park, S., Feddema, J .J.,  and S. L. Egbert, 2005, “MODIS Land Surface Temperature

Composite Data and Their Relationships with Climatic Water Budget Factors in
the Central Great Plains,” International Journal of Remote Sensing, 26:1127-
1144.



MODIS LST DATA OVER THE STATE OF MISSISSIPPI 109

Price, J. C., 1990, “Using Spatial Context in Satellite Data to Infer Regional-Scale
Evapotranspiration,” IEEE Transactions on Geoscience and Remote Sensing,
28:940-948.

Prihodko, L. and S. N. Goward, 1997, “Estimation of Air Temperature from
Remotely Sensed Observations,” Remote Sensing of Environment, 60:335-346.

Prince, D. T., McKenney, D. W., Nalder, I. A., Hutchinson, M. F., and J. L. Kesteven,
2000, “A Comparison of Two Statistical Methods for Spatial Interpolation of
Canadian Monthly Mean Climate Data,” Agricultural and Forest Meteorology,
101:81-94.

Prince, S. D., Goetz, S. J., Dubayah, R. O., Czajkowski, K. P., and M. Thawley, 1998,
“Inference of Surface and Air Temperature, Atmospheric Precipitable Water and
Vapor Pressure Deficit Using Advanced Very High-Resolution Radiometer Satel-
lite Observations: Comparison with Field Observations,” Journal of Hydrology,
212-213:230-249.

Reddy, K. R., Hodges, H. F., and J. M. McKinion, 1997, “Crop Modeling and Appli-
cations: A Cotton example,” Advances in Agronomy, 59:225-290.

Reddy, K. R., Kakani, V. G., McKinion, J. M., and D. N. Baker, 2002, “Applications
of a Cotton Simulation Model, GOSSYM, for Crop Management, Economic and
Policy decisions,” in Agricultural System Models in Field Research and Technol-
ogy Transfer, Ahuja, L. R., Liwang Ma, and T. A. Howell (Eds.), Boca Raton,
FL,: CRC Press, 33-73.

Régnière, J., 1996, “A Generalized Approach to Landscape-Wide Seasonal Forecast-
ing in Temperature-Driven Simulation Models,” Enviromental Entomology,
25:869-881.

Sandholt, I., Rasmussen, K., and J. Andersen, 2002, “A Simple Interpretation of the
Surface Temperature/Vegetation Index Space for Assessment of Surface Mois-
ture Status,” Remote Sensing of Environment, 79:213-224.

Sun, J., Massman, W., and D. A. Grantz, 1999, “Aerodynamic Variables in the Bulk
Formulation of Turbulent Fluxes,” Boundary-Layer Meteorology, 91:109-125.

Sun, J. and L. Mahrt, 1995, “Determination of Surface Fluxes from the Surface Radi-
ative Temperature,” Journal of the Atmospheric Sciences, 52:1096-1106.

Tian, Y., Wang, Y., Zhang, Y., Knyazikhin, Y., Bogaert, J., and R. B. Myneni, 2002,
“Radiative Transfer Based Scaling of LAI Retrievals from Reflectance Data of
Different Resolutions,” Remote Sensing of Environment, 84:143-159.

Townshend, J. R. G., Justice, C. O., Skole, D., Malingreau, J.-P., Cihlar, J., Teillet, P.,
Sadowski, F., and S. Ruttenberg, 1994, “The 1 km Resolution Global Dataset:
Needs of the International Geosphere and Biosphere Programme,” International
Journal of Remote Sensing, 15:3417-3442.

Voogt, J. A. and C. S. B. Grimmond, 2000, “Modeling Surface Sensible Heat Flux
Using Surface Radiative Temperatures in a Simple Urban Area,” Journal of
Applied Meteorology, 39:1679-1699.

Wan, Z., 1999, “MODIS Land-Surface Temperature Algorithm Theoretical Basis
Document (LST ATBD),” Version 3.3, University of California, Santa Barbara,
CA [http://www.icess.ucsb.edu/modis/LstUsrGuide/atbd_mod11.pdf].

Wan, Z. and J. Dozier, 1996, “A Generalized Split-Window Algorithm for Retrieving
Land-Surface Temperature from Space,” IEEE Transactions on Geoscience and
Remote Sensing, 34:892-905.



110 MOSTOVOY ET AL.

Wan, Z. and Z.-L. Li, 1997, “A Physics-Based Algorithm for Retrieving Land-
Surface Emissivity and Temperature from EOS/MODIS Data,” IEEE Trans-
actions on Geoscience and Remote Sensing, 35:980-996.

Wan, Z., Zhang, Y., Zhang, Q. and Z.-L. Li, 2002, “Validation of the Land-Surface
Temperature Products Retrieved from Terra Moderate Resolution Imaging Spec-
troradiometer Data,” Remote Sensing of Environment, 83:163-180.

Wan, Z., Zhang, Y., Zhang, Q., and Z.-L. Li, 2004, “Quality Assessment and Valida-
tion of the MODIS Global Land Surface Temperature,” International Journal of
Remote Sensing, 25:261-274.

Wittich, K-P. and O. Hansing, 1995, “Area-Averaged Vegetative Cover Fraction
Estimated from Satellite Data,” International Journal of Biometeorology,
38:209-215.

Zeng, X., Dickinson, R. E., Walker, A., Shaikh, M., DeFries, R. S., and J. Qi, 2000,
“Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for
Land Modeling,” Journal of Applied Meteorology, 39:826-839.


