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Abstract

This paper describes an approach to use an adapted EvdBitategies (ES) algorithm to generate improved
sequences for producing unique parts in a flow shop. alg@ithm uses principles from both genetic algorithms
and Evolution Strategies. While several alternative algorithere wonsidered, the focus of this paper is on the one
that performed the best for this problem domain. The dlgstithm is an ES that implements a new mapping
technique (Genotype-Phenotype) to convert its real-valued gepresentation into a valid job sequence. The
approach also uses production heuristics to generate tla¢ $eitiof sequences, thus providing a better starting point
and accelerating the optimization process. The fitness of eactnseggenerated by the algorithm is evaluated by a
discrete-event simulation model of the flow shop. Thmrhm and simulation model are a part of a decision-
support system that was developed to optimize ship gametruction at Northrop Grumman Ship Systems. A
design-of-experiments approach is used to configure flogeaty of the algorithm for different problem sizes. This
analysis helps select the optimal set of parameters. This papetdas details of routines and provides results from
various optimization runs.
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1. Introduction

The flow-shop scheduling problem (FSP) is a well-knowsbfem found in many manufacturing applications. The
FSP is known to be NP-Complete for relatively larggpb, m machine problems. Due to its complexity it is
necessary to use heuristic approaches to solve the probleaonitiidgs and heuristics developed to solve flow shop
problems include Johnson’s rule (for a 2 machine problaaf)u search, simulated annealing and genetic
algorithms. Evolutionary computing (EC) is widely usedimilar combinatorial problems; ample contributions are
present in literature for solving the traveling salesmamlpro (TSP), a similar combinatorial problem. However,
only few EC solution approaches for solving FSP have Heealoped. This paper presents an adapted Evolutionary
Strategies (ES) solution approach to the FSP. This optimnizatgorithm is part of an elaborate decision support
system (DSS) developed for Northrop Grumman Ship Systéinpanel shop responsible for manufacturing
components for ships is considered for experimentatidrtfam actual workflow is evaluated using a discrete-event
simulation model of the shop. The following sectionsvjate details on the ES approach, implementation, and
results.

2. Evolutionary Computation Methods

Evolutionary computation methods are heuristics that spéknum solutions by mimicking biological evolution
processes. These methods use dire@ival of the fittest principle to promote evolution over generations. Each
generation consists of individuals, collectively knownaagopulation. Each individual is a representation of the
parameters related to the fithess function. The representatiam @fdividual is called a chromosome and is
analogous to chromosomes present in living cells that dasitewacteristics of an organism. The best individuals in
a population are selected as parents to breed the next gemefdte new population members compete within
themselves and the best individuals are selected again. Thispofcesection combined with sporadic mutation
contributes to the progression of the population tow#rdgglobal optimum. Evolutionary computation is a broad



term that envelops all methods mimicking evolution; differarthods have been proposed and developed over the
years. Genetic Algorithm (GA) and Evolution Strategies @&S®)just two of the more popular methods.

The GA is a method that uses binary values in its chromedomepresent the variable values; it was proposed by
Holland [1] and further developed by Goldberg [2]. The G%s crossover and mutation operators to create a new
set of individuals. GAs though effective, lack speed and effai when compared to more recent methods. A GA
requires very large population sizes and the binary chronmmsepresentation increases the length, thereby
reducing efficiency. Crossover is considered to be thermeapution factor in the GA with mutation preventing the
algorithm from being trapped in a local optimum. Variodamations have been developed to solve specific
problems, such as the TSP, and some adaptations have ij@geentations with special crossover and mutation
operators.

The ES proposed by Schewfel [3, 4] is based on a real-vapresentation of variables and is generally used to
optimize mathematical functions. An ES operates using reaévabjective function variables by applying
recombination (crossover) and mutation [6]. A solutisrrepresented in a gene format, consisting of function
variables and strategy parameters. An ES defines and usedeg\sfparameter for every variable present in the
objective function. The gene resembles an array of sizevBeren is the number of variables in the objective
function that need to be optimally determined. The first Bet\walues corresponds to the variables and the mext
values form the strategy parameters. Function variables reptksesolution, whereas the strategy parameters help
the algorithm traverse the solution space more effectively uttgting function variables. The mutation is a simple
neighborhood search process where the given variable valuadifed by adding or subtracting a normal variate
based on the variable value and the strategy parameter. Muktienthe main role in the ES optimization process
to improve the population and avoid being trapped in lopgima. In general, ES are considered to be more
efficient and faster than GA implementations and work wiittall population sizes.

In an EC algorithm each gene is associated with a fitness vh&igalue is evaluated by using the variable values
from the gene and substituting it in the objective functidre EC operates with just the evaluated value and has no
knowledge of the objective function. Thus any problem withfigurable parameters can be optimized using an EC
approach. A fitness-based selection process is used, whehe @bpulation members are sorted based on their
fitness values and the best members are selected to be the frardmsnext generation. The best is dependent on
the minimization or maximization goal. Other more complexrtament-type selections can be used where every
individual in the population competes with randomly-chaselividuals and population members are selected based
on the number of wins. The selection process also invoh@gieal decision, i.e., elitism, which influences the
behavior of the algorithm. Elitism, in general, means givimeference to higher individuals; in evolutionary
terminology it means giving preference to the best indalgluegardless of its age. This enables the parents to
compete with the offspring and have a chance for survif/&litism is allowed in an EC, a good solution will
survive through generations and will be selected to produge wifspring. However elitism can also lead to an
early convergence to local optima. In ES terminology, elifsatenoted by the notatiopA) wherep denotes the
number of parent solutions aiddenotes the number of offspring. The ‘+’ representsttietelection process will
consider both parents and offspring. The non-elitistestyy is represented by, ).

Both the GA and ES have been used in different problenanhsnand have established their significance in the field
of optimization. Several modifications of the basic approatiza® been proposed and implemented to address
specific problems. Large combinatorial problems, such asSReaRd TSP, are routinely solved using modified GA
methods. On the other hand, ES methods have limited apmhidatisolving combinatorial problems. In one case,
Rudolph [5] uses a mapping technique for applying ES lesa TSP problem, but no research could be found
where an ES was used to solve a FSP problem. Even ti@Rjtand FSP are different problem formulations with
different constraints, they appear identical from the ECpgetiase. Both problems, when formulated for any EC
method, essentially represent a non-repetitive integer sequehigh forms either the travel route or the job
sequence. This similarity lead to the adaptation of aroE8Ive the FSP problem, details of this implementation are
provided in the next section.

3. Optimization Approach
The objective of a flow shop problem is to find the bestisege in which to process jobs through the flow shop.
“Best” is evaluated in terms of the throughput of the shep;produce a given set of jobs through the flow shop



the shortest time possible, given the operational, palysand programmatic restrictions. The jobs need to be
processed on a single series of machines and are processedamthorder as they enter the system. Personnel and
machine resources and space limitations control the pace of poyducti

An ES algorithm is employed to “optimize” the flow shamsencing problem. The core algorithm is described in
the following pseudo code:

1. START
2. Generate initial population
(&) Randomly generate values for variables
(b) Initialize strategy parameters for each variable
(c) Evaluate initial population
3. Generate next generation
(a) Select two parent members at random
(b) Create an offspring solution by selecting each variable vatume dither of the parent’s corresponding
variable (discrete recombination)
(c) Define strategy parameters for the offspring as an averabe obrresponding two parent values
(d) Mutate strategy parameters
(e) Mutate each variable of the offspring based on the new sirpgegmeter
Evaluate the objective function
Sort the solutions
Repeat from Steps 3 through 5 until the desired toleraraahisved
END

No gk

The basic ES algorithm needs to be modified in ordempdeiment it on an FSP. Modifications include a mapping
scheme, fithess function, seeding the initial populatiod, @arameter adjustments. The behavior of the algorithm
can be controlled by adjusting a set of parameters incluifiiigl strategy parameter values, parent to offspring
ratio, elitism, maximum number of generations and talegaThe stopping criterion is either the maximum number
of generations or a tolerance that is defined as theeliife between the best solution fitness and the averagssfitn
of parent solutions. All parameters are accessed througmfagumtion file, thereby enabling the end user to
calibrate the algorithm as required for different problenhss $ection provides details on these modifications.

Since the FSP involves sequences of non-repetitive intdgerare used to represent a job sequence, a new form of
representation or translation is required. The GA chromescan be easily modified to be represented as a set of
integers; however, a similar approach to the ES is notlgesskudolph [6] solved a TSP by obtaining a valid
sequence from a set of real numbers using the idea of Genotyphanotype mapping to develop an encoding and
decoding process. Phenotype can be defined as the obseraébleftan organism which are caused by a specific
gene combination or structure called the genotype. In singrers, the phenotype is all that can be seen and the
genotype is the more complex structure well hidden in thanisg that controls the characteristics. Since the
fitness function is related to behavior, a proper genotyphémotype mapping will ensure that an accurate fitness
evaluation is made. The adaptation of the ES lies in the emgedheme which allows the ES to operate on its real
values while being translated to relevant information ferabttual problem. The solution or chromosome values are
not altered in this process, a new array of numbers corresgptodihe sequence is generated which is passed out of
the algorithm for fitness evaluation. Once the fitness vdeall solutions are found they are applied back to the
population and then sorted for the selection process.

Encoding is achieved by assigning randomly-generatecbersm0,1) to the given sequence after sorting. The
assignment ensures that the lowest number is assignedidaveret job identifier, and proceeds until all integers are
mapped. As shown in the example in Table 1, a set obramdimbers (0.482, 0.002, 0.945, 0.205, 0.567)riedo

in ascending order (0.002, 0.205, 0.482, 0.567, (.848 assigned to the original set of integers accotdimgnk.
Since the algorithm is designed to pass the complete real-\@li®s set to the next generation, there is no need
for any future encoding. Encoding is performed onhtli@ initial parent population.

Table 1. Encoding example.
Input Sequence (Input) 5 1 2 4 3 |
Encoded Chromosome (Output)| 0.945| 0.002 0.205 0.567 0.482




Decoding of the chromosome is performed by assigning ranttetset of real values present in the chromosome
that represents the objective function variables. As showheirsmall example in Table 2, the lowest humber is
assigned an index value 1. Index value 2 is assigned tee#téowest number and this process continues until all of
the real values are numbered. If a tie in ranking exists, thandam assignment is made. This ranking process can
be simplified by using the array index value after the rallesset is sorted in ascending order. Ranking ensures that
no duplicates are created. This encoding and decoding pramessict disturb the original chromosome consisting
of the variable and mutation parameters.

Table 2. Decoding example.
Chromosome Values (Input)| 0.345| 0.683 0.12% 0.567 0.001
Decoded Sequence (Output) 3 5 2 4 1

An objective function value is associated with each gene, inabe of the FSP, this objective function value is the
makespan (in days) to complete all jobs. Complex objectimetiins can also be defined by incorporating
additional measures like tardiness. Due dates, if presentpeamsed to measure tardiness and added to the
makespan for use by the optimizer as it attempts to miniorizeaximize this objective function as required. The
fitness values are used in the selection process, the basissfliased selection of and ES is retained. Another
decision parameter, elitism, is to be defined for the seteptiocess. BothuttA) and (1,A) strategies are built into
the algorithm and a configuration parameter that is defiggduser enables the selection.

Generally, initial population members are generated randamligrder to enable a wide range of solutions.
However, a totally random start will delay the algorithm @gence. Therefore, in order to achieve faster
improvement, the initial population is generated using asteda efficient heuristic scheduling rules. A similar
process of seeding the initial population was also useddgyes [6], where one of the random initial population
members is replaced with a heuristic solution. Reeves emptbogetlEH algorithm from Nawaz, et al. [7] and
showed that this seeding process significantly reducesntteetti find an optimal solution. The seeding approach
was adopted in the ES implementation where, common schgdlfiorithms such as Shortest Processing Time
(SPT), Earliest Due Date (EDD) and Critical Ratio (CR) @sed for generating additional starting solutions. The
SPT orders components according to their expected procegamgSPT is near optimal for finding the minimum
total completion time and weighted completion time. The Eibdvides a sequence based on component due dates
and effectively reduces tardiness. The CR is the ratio ofriferiémaining to the work remaining; it works well on
minimizing average lateness. The solutions provided by éugidtics may not be optimal, but provide a more
efficient starting point for the search. More solutionsittiee required initial population can be provided as ingut
the optimizer algorithm, and then the algorithm will evaluates@ltions and select the required number of best
solutions to form the initial population. This enablies tiser to employ similar heuristics to generate a braader
of solutions.

4. Implementation

The optimization algorithm is developed as part of a DS$hpanel shop that is considered to be the bottleneck
for the shipyard [8]. The shop fabricates and assembles §jamkich are major components that are used in all
ships. The panel shop primarily operates as an assemblyeleh; panel goes through the same sequence of
processing steps, although the work content varies greathchtstep. The panels are composed of very large plates
of steel which are unique and vary considerably in termbef physical attributes and work content. The panel
shop is essentially a flow shop; however the problemigkih complicated with the consideration of due dates,
dynamic resources and high variability. A static model foatmh will not truly represent the complexity of the
system. However, a simulation model adequately captures ti@enitys of the panel shop. The simulation model is
an accurate representation of the original system consistialj resources (people and machines) and operations
logic and parameters that approximate the behavior of the Bamh sequence generated by the ES optimization
algorithm is processed by the discrete-event simulationemodhe simulation model is used to evaluate the
objective function. The number of days late and makespan are cadctriamn the simulation model output and are
used by the optimizer as it attempts to optimize thigaibje function. It is observed that the optimizer primyaril
focuses on reducing tardiness. This behavior is atéibt the fact that the bottleneck of the panel shop is an
automated process and there is little time variation pessibthe makespan with changes in schedule. The DSS
controls and coordinates the operation of the simulatiotiefrand the optimization algorithm.



It has also been observed that the algorithm has to be eatljfest achieving the best performance for different
problem sizes. Since there are many configuration parameters thdiecaat at numerous levels, a perfect
combination cannot be defined without further analysisstlidy the effect of each of these parameters a design-of-
experiments approach is suggested by Ruiz, Maroto and AlcdiawH®re statistical analyses are performed to
select the best combination of parameter values using restdiimesb from a quick limited run. The parameter
values are then used for obtaining the global optimumtHerTaillard FSP problem set [10], by allowing the
optimizer to run longer.

In order to provide a faster optimization algorithm a siméitudy is performed. A complete factorial design between
the factors: number of parent solutioasparent-offspring ratiol/y, initial strategy parameter values, and elitist
strategy, is evaluated. The simulation model is not tmethis experiment, a simple code segment (math moslel) i
employed to evaluate the makespan of a sequence for a giveshibpnproblem data. The math model functions as
a simple flow shop and does not consider variability, dates and other problem specific restrictions. Researchers
have commonly used the Taillard FSP test set [10] foetladuation of their algorithms. Selected problem instances
from the same data set are used in this experiment. Thrbkempraets of 20, 100 and 200 jobs are used. A full
factorial design is setup with 8x8x6x2 treatment combinatifum the factors defined earlier respectively. The
statistical analysis shows some critical interaction effects bativeetype of elitist strategy and the initial sigma
values used. Only these two factors and their interactigmifisantly affect the optimization performance. In
general the g+ 1) strategy performed better than thed) strategy. As the number of panels increases, a reduction
in the initial strategy parameter values improved convergeraigle 3 shows suggested values of configuration
parameters for different problem sizes. This experiment cantbaded to derive a regression model where in the
parameters can be defined from the problem data and then ukecdbistimizer.

Table 3. Configuration parameter suggestions based on exp¢airanalysis

Number of Jobs Initial strategy Elitist strategy Number of parents | Parent — offspring
parameter ratio
20 0.05t0 0.1 (WA) >6 >6
100 0.001 (U+A) >4 >7
200 0.001 (U+A) >4 >5
5. Results

The algorithm is evaluated using six sets of panels ofasiorg quantity. The original schedule, Earliest Start Date
(ESD), which the panel shop currently uses, is definddeabase schedule. This base schedule is used to generate
three schedules using heuristics. Then each of thesgusebés evaluated using the simulation model. The fithess
value, a combination of makespan and the total tardinessabdr are collected and the optimizer is allowed to run
for 100 generations. The optimizer disables variability @mg evaluates one replication in the simulation model fo
each sequence during the optimization process. Once the héginss determined, it is evaluated for multiple
replications in the simulation model and the fitness valumikcted. Table 4 presents the fitness values of the
initial population and the final best solution, for 1liegtion and 25 replications.

Table 4. Comparison of fitness between heuristics and E8thlgo
ESD (Base) EDD SPT CR OPT Best : OPT % | Base : OPT %
IESEZI/S 1 | 25| 1| 25| 1|25 1|25 1 |25] 1 25 1 25
20 161| 1251 143 11% 161 125 168 133 100 1.00.99 13.30] 37.91 19.8p
50 1.79| 1.19| 147 119 179 119 2381 1)79 100 1.00.98 15.66] 44.02 16.1p
100 1.80| 159 1.1 101 179 189 265 2{18 100 1.083.641] 1.04] 44.47 37.0p
150 1.73| 164 1114 102 175 162 289 284 100 1.00509 1.66] 42.074 39.1p
200 203| 180 123 1.14 192 1747 295 2|57 100 1.08.98 11.99( 50.73 44.5D
250 196| 1.70] 1.14 106 184 1.5 2.y3 2)32 100 1.0@.65] 571 49.09 41.0p

The data has been normalized within each row. Data for botltatigns is presented in order to make a
comparison between the final outcome of the ES and the igdfiations provided. The comparison has to be made
between data of the same replication count. Variability playsjarmole in increasing the make-span; this effect



reduces the quality of the fithness value when replicated. The :B@fT and Base : OPT columns show the
percentage improvement the optimizer achieved over the begteomitial solutions and the base solution
respectively. It is obtained using the relationship (intiiegt — final best)/ final best.

As shown in Table 4, the ES optimizer outperformed alflhef heuristics. A comparison between the heuristics
shows that the EDD fares better than the base schedule andathistidts. The trend in increasing improvement of
the optimizer over the base case as the number of panels increaseattabuied to longer schedule time periods.
The longer time periods may provide enough flexibildyreduce tardiness by changing the production sequence.
EDD if employed will lead to better solutions as tardinisspart of the objective function. However to achieve
higher improvements the optimization algorithm is recommentiled results shown are based on a single instance
and hence do not represent a problem size. All schedulegidnpanels, for example, may not produce the same
improvement results. This is primarily due to high vaoiatin work content of the panels.

6. Conclusion

An evolution strategies algorithm is developed for sohardynamic flow shop problem for a specific shipbuilding
application. A real-valued ES algorithm is modified to aseapping technique to produce valid job sequences and
to use heuristic solutions as the initial population. Thishnique enables the optimization features of ES to be
applied to a combinatorial problem. The optimization approacieveloped, tested, and imbedded in a DSS for use
in a real manufacturing shop problem. Statistical analyses adeaiset different configuration parameters for the
ES algorithm to achieve faster and better results. A &dtoirial design is used for this purpose. The algorithm
through the DSS provided better schedules as an alternatdrtexisting ones. The DSS also provides a chance to
evaluate any changes, using the model, before actual implemenTat@®nptimizer is built in a generic, adaptable
form, which enables it to be integrated and used with simpitablems seamlessly. Further research includes
experimental methods to simplify decision making in seftiagameter values, provision of additional mutation and
crossover options, and methods to improve convergence rates
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