
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
Published online 7 June 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1198

Cooperative Grid Vortals

Tomasz Haupt∗,† and Anand Kalyanasundaram

Cooperative Computing Group, Center for Advanced Vehicular Systems,
Mississippi State University, Box 5405, Mississippi State,
MS 39759, U.S.A.

SUMMARY

Vertical Grid portals, or Vortals, proved to be useful by providing access to applications running on
high-performance computational platforms and to distributed data enabling data sharing and other
forms of collaboration. This paper identifies the commonalities between Vortals in various application
domains, i.e. application-independent patterns of orchestrating Grid services employed by a typical Vortal.
These patterns can be captured as façades—a software layer between the Vortal business logic and generic
Grid services that promotes a horizontal integration. The façades are reusable and considerably simplify
the development of new Vortals. Furthermore, the façades foster interactions between different Vortals, and
hence making them the cooperative Grid Vortals. Copyright c© 2007 John Wiley & Sons, Ltd.

Received 30 December 2005; Revised 17 July 2006; Accepted 13 February 2007

KEY WORDS: Grid portals; Web services; Service Bus

1. INTRODUCTION

Computational power is constantly opening new opportunities for numerical simulations, and in
turn opening opportunities for new science. This computational power is expected to be a low-
cost alternative for design and validation, boosting efficiency of manufacturing, and be a reliable
source of forecasts. Moreover, vast networks of computing resources continue to grow, forming a
computational Grid. These computational resources include hardware, software, sensors, instruments,
data, information, and knowledge. This enhanced access is empowering scientists and engineers
through faster turnaround, improved accuracy and quality, access to real-time data, and improved
capability to share results and transfer technology.

However, as computing systems continue to become more powerful they also become more complex,
requiring more expertise to use them. Furthermore, the Grid is inherently heterogeneous making it

∗Correspondence to: Tomasz Haupt, Cooperative Computing Group, Center for Advanced Vehicular Systems, Mississippi State
University, Box 5405, Mississippi State, MS 39759, U.S.A.
†E-mail: haupt@cavs.msstate.edu

Copyright c© 2007 John Wiley & Sons, Ltd.



1672

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

T. HAUPT AND A. KALYANASUNDARAM

even more difficult to use for the domain experts that need it. It is thus imperative to make these
computational resources available to scientists and engineers as easily as accessing other utilities, such
as power or phone grids. Grid portals, or other Grid Computing Environments, that manage the complex
details of the Grid infrastructure have the potential of enabling scientists and engineers to securely
access computational resources anywhere and anytime, through customized, intuitive interfaces. The
interfaces are critical. They must precisely convey the specifics of the user applications preserving all
the functionality the user needs and use outside the Grid environment. Therefore, the concept of a
Vortal is as follows: a vertical Grid Portal tailored for a specific application domain.

There is a vast ongoing research and development to create Grid Computing Environments and
numerous Vortals have been deployed. Among the most successful are GEON, the Geosciences
Network [1], GriPhyN, the Grid Physics Network [2], and NEESgrid [3], the Network for Earthquake
Engineering Simulations. Those are just a few examples, and many others will be certainly reported
during this workshop. Much ongoing research concentrates on developing tools that substantially
simplify deployment of Vortals—often referred to as ‘Grid-of-the-box’ solutions—such as GridSphere
[4] or CHEF/Sakai [5]. While extremely useful, these efforts do not yet realize the true vision of the
Grid, i.e. on-demand access to the resources made available by various, independent providers.

One of the most important concepts of the Grid is the virtualization of resources. The resources are
exposed to the users as services with all implementation details hidden behind standardized interfaces.
For example, a compute server can be ‘hidden’ behind Globus GRAM interface and consequently the
job submission process looks identical regardless of the platform, operating system or scheduler of
the target machine. Similarly, OGSA-DAI interface provides a standardized access to databases and
file systems. Unfortunately, these interfaces are too low level to capture the specific requirements of a
Vortal. Additional software layers are needed to generate RSL strings or SQL queries to satisfy needs
of the Vortal-specific applications. These additional software layers make implementations of different
Vortals incompatible, and consequently non-interoperable.

This paper discusses interoperable or cooperative Vortals. Based on the experience of developing a
number of Vortals, the authors identify the common functionality of Vortals in Section 2 and express
it in terms of Vortal façades in Section 3. In Section 4, these Vortal services are decomposed into
basic services that are supported by the Grid infrastructure either directly or using custom adapters to
accommodate possible difference in the interfaces defined by different service providers. Finally, in
Section 5, several Vortals that were developed by employing the approach outlined in this paper are
described.

2. FUNCTIONALITY OF A VORTAL

A Grid Portal provides a user interface to a distributed Grid environment. As such, it necessarily
generates latencies that discourage the users. Moreover, the application-specific user interfaces offered
by the Grid Portals are often too restrictive in that they do not allow the user to do what needs to
be done in the way the user wants it to be done. To become relevant for the end user, a good Vortal
must offer functionality that is not available without employing Grid infrastructure, while reducing or
hiding overheads. The authors’ experience developing application-specific Grid Vortals resulted in the
classification of Portal features that makes a Vortal an attractive tool.

Copyright c© 2007 John Wiley & Sons, Ltd.



1673

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

COOPERATIVE GRID VORTALS

1. The Vortal frees the user from the installation of the application software—this is particularly
important if the installation procedure is complex, and requires administrative privileges as well
as the experience of a system administrator.

2. The Vortal provides access to high-performance computing facilities, in particular when cycles
are explicitly allocated to the Vortal users.

3. The Vortal negotiates the access privileges and other security issues with the resource or service
providers on behalf the user given the credentials provided by the user at the beginning of the
Vortal session.

4. Most scientific and engineering applications are driven by application-specific scripts or textual
input files that specify the actions to be taken. The user must be given the full control of these
files, including capabilities for uploading them directly from the user desktop. In addition, the
Vortal may provide support for editing and error checking of the scripts.

5. The Vortal should provide a searchable repository of the input files (scripts). It should make
the files in the repository shareable between selected groups of users or made them public at
the discretion of their owners. Conversely, the Vortal must provide means for the user to upload
scripts that they wish to share with the community and generate metadata enabling meaningful
queries.

6. The Vortal must provide a means for the discovery, search, and access data files. This includes
access to remote file systems, databases, and on-line repositories.

7. The Vortal must provide a workspace where the user may compose and configure a
computational task. The front-end tools must provide support for selecting applications, and
if applicable, define a workflow. For each application, the user must be able to upload its
components (scripts and data) from either their desktop as well as private, group, or public
repositories. Many applications support the modularization of the input scripts. This means that
a complete application input may consist of many files, possibly organized as a tree of folders
and files.

8. The user may want to maintain more than one application at a time, and therefore the workspace
should support organizing the applications into a tree of folders and files.

9. A composed and configured application can be submitted for execution on a target system
specified by the user, or selected on behalf of the user. The Vortal must hide all details of the
submission process, regardless whether it is a single application or a complex workflow.

10. The user must be given a support for monitoring the progress of the workflow and each individual
job. The information about each job must be available also after the job completes and its entry
is removed from the back-end job scheduler.

11. At any time the Vortal must provide the access to all input files and parameter values used for job
submission so that the job provenance is preserved. Any changes in the workspace made by the
user after submitting the job must not modify any information that captures the job provenance.

12. The Vortal must provide access to all output files that the job generated during its execution.
Access means a capability to preview the files, download for analysis, or real-time streaming.

3. GRID SERVICES ACCESS PATTERNS EMPLOYED BY A VORTAL

The Vortal is an intermediary between the user and the Grid. The management of the users, users’
sessions, and users’ credentials is typically provided by the portal container, such as GridSphere.

Copyright c© 2007 John Wiley & Sons, Ltd.



1674

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

T. HAUPT AND A. KALYANASUNDARAM

Figure 1. Common features of Vortals.

The business logic of the Vortal—composing, running, and monitoring of computational tasks—is
achieved by invoking Grid services to perform actions on the back-end resources. Following the
discussion in Section 2, the interaction between the Vortal and Grid services falls into four categories,
as depictured in Figure 1. The user needs the access to script and data repositories, to configure the
computational task (workspace), to submit the task, and finally to monitor the progress of the task
and access the results. These four steps are performed regardless of the application domain and define
distinct Grid services access patterns that can be captured and reused between different Vortals. In
the remainder of this section we discuss these patterns and introduce façades that implements these
patterns.

3.1. Repository façade

Without access to data, computing does not make much sense. Different application domains have
different, often very challenging, data access requirements such as processing massive real-time data
streams from sensors or performing complex, semantic-driven searches of geographically dispersed
databases and repositories containing diverse data in terms of data formats as well as differing

Copyright c© 2007 John Wiley & Sons, Ltd.



1675

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

COOPERATIVE GRID VORTALS

conventions, terminologies, and ontological frameworks. Aside providing the access to the ‘external
data’ which is a focus of several projects in progress such as GEON, SCOOP, or GriPhyN, a Vortal must
provide a repository for user and community data, including application scripts and job provenance
information. Accessing the repository follows a specific pattern of Grid services invocations worth
defining as a façade.

The repository is a place where user data are stored. Each data item has associated metadata which
provides description of the files and enables searching for repository entries satisfying some selection
criteria. The repository provides means for uploading, downloading and manipulating (moving,
copying, altering, etc.) data and metadata. The GUI displays the contents of the repository as if it
was organized as a tree of directories and files (cf. Figure 2).

Each entry in the repository is labeled by a Uniform Resource Identifier (URI) assigned by the
repository. The URI is opaque and it uniquely identifies the metadata record of the entry. The metadata
record includes a logical name of the entry—the file name assigned by the user and displayed in
the GUI, the entry type (script, input file, output file, folder, etc.), a textual description of the entry
provided by the user and additional fields used to query the repository to locate entries of interest. It is
the repository implementation responsibility to provide mechanisms for resolving the entry URI into
the actual file name and location, i.e. the Uniform Resource Locator (URL). There may be different
implementations of this service. The implementation may choose to use the file URL as its URI making
the translation of URI to URL trivial, or it may use a Replica Locator service to resolve the URI to the
URL of one of many copies of the file, or it may employ other mechanisms.

The repository façade offers a single interface for accessing the repository data separating the front-
end developer from the implementation details, such as the interface of the metadata service that may
vary depending on what implementation of the service is actually used. For example, given a data
item’s URI (known to the client by performing a query against the repository or otherwise) the façade,
after verifying that the user has sufficient access privileges, streams the contents of the corresponding
file back to the client, making all necessary Grid services invocations needed to satisfy the request
behind the scene.

3.2. Workspace façade

The central concept of the workspace is an application, which is a container for collecting scripts, data,
and other auxiliary files needed to submit a job. The workspace interface provides means for adding
and removing files to and from the application and specifying application parameters, for example
by editing the scripts (cf. Figure 3). Similarly to the repository, the workspace is organized as a tree
with nodes and leaves, each labeled with a unique URI. In contrast to the repository, the leaves of the
tree structure are applications rather than individual files. An application may have an internal structure,
where the files in the application are organized as a tree of folders and files, mimicking the organization
of scripts and data in a file system.

Grouping the files into applications is critically important for a Vortal. It provides an environment
where the user composes a simulation, and the Vortal GUI provides means to display the contents
of applications, one application at a time. The application defines a ‘submission unit’, which means
that all files comprising the application have to be staged on the target machine, preserving the folder
structure, before the application can be started. Finally, the auxiliary files transparently associated
with the application ‘remember’ the run configurations. Therefore, each time when the application is

Copyright c© 2007 John Wiley & Sons, Ltd.



1676

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

T. HAUPT AND A. KALYANASUNDARAM

 

Figure 2. Three examples of the repository façade GUIs: captured motion data repository (top), simulated
earthquake ground motion data repository (middle), and repository of OpenSees scripts (bottom). In each case the
user selects the data set by examining the corresponding metadata record, by performing keyword-based searches,
or by previewing a data set (an animation of the captured motion data, a distribution of a ground motion variable

such as Peak Ground Acceleration, or the contents of the script file).

Copyright c© 2007 John Wiley & Sons, Ltd.



1677

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

COOPERATIVE GRID VORTALS

 

Figure 3. Example of a workspace GUI. The user simulations are organized into a tree (top left). Once a simulation
is selected, all scripts comprising the simulations are shown (middle). Each script can be modified either by directly

editing the script in the built-in editor or using one of the visual tools provided by the Vortal (bottom right).

to be resubmitted the user needs to introduce only incremental changes instead of going through the
configuration process over and over again. Finally, applications prepared for execution in the workspace
can be organized into workflows.

The workspace service, similarly to the repository service, aggregates the back-end metadata, data
access, replica locator, and authorization services. However, the pattern for how these services are
invoked is different and thus justifies a separate façade.

3.3. Job submission façade

The job submission service does whatever it takes to submit a simulation defined in the workspace.
Central to the job submission façade is an application descriptor—a metadata record describing
the application and providing a complete ‘recipe’ expressed in the Job Submission Description

Copyright c© 2007 John Wiley & Sons, Ltd.



1678

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

T. HAUPT AND A. KALYANASUNDARAM

Language (JSDL) describing what needs to be done in order to submit the application for the execution.
A more detailed description of the application descriptor format can be found in [6]. Adding a new
application to the Vortal is thus reduced to the generation of a new job descriptor by the application
experts. The user may browse existing descriptors to select the right application for the task in hand
(through a GUI that displays the application signature and description). For a selected application, the
GUI displays its parameters so that the user may adjust their values, and specify the location of input
and output files.

During the submission process, the descriptor is parsed to discover the need for the creation of
working directories and file transfers (staging the files). Since no scheduler accepts JSDL at this time,
the information in the application descriptor is converted to Globus RSL, if Globus GRAM is used,
or equivalent. Once the job submission request is created, it is sent to the job submission service, and
an entry in the job table of the Job Monitoring Service (described in Section 3.4 below) is created.
All notifications from GRAM are forwarded by the façade to the Job Monitoring Service, and, once
the job completes, the façade moves the results (output files, standard output, and standard error) to the
location specified in the job descriptor. This pattern of invoking Grid services is captured as the Job
Submission façade.

3.4. Job monitoring and job table façade

The job table gathers information on all jobs submitted by the user through the Vortal. This includes
jobs that never made to the target system (the submission failed) and jobs that completed (successfully
or not) and they are no longer accessible through the batch system interface. The user jobs stay in
the job table until explicitly deleted by the user. The job table interface provides access to runtime
information (date of submission, date of completion, if completed, etc.), job configuration (where it
was run, how many processors were used, what working directory was used, etc.), scripts and input
data files used for the run (they could have changed in the workspace after the job has been submitted),
and to all output files, as shown in Figure 4. Accessing the job status and its results follows yet another
specific pattern of accessing metadata, data, and other Grid services that gives the rationale for defining
a façade.

4. PROXY SERVICES AND COOPERATIVE VORTALS

Each façade introduced in Section 2 provides a distinct Vortal functionality by custom orchestrating
the Grid-level services identified in Section 2 usage patterns. So far, for the Vortals developed by us,
five types of Grid services are needed: job submission, file service, replica locator, metadata service,
and XML-database service. The standardized interfaces of the façades make the implementation of the
Vortal front-end easy. The façades serve as data models, and the front-end implementation just needs
to add custom controllers and viewers satisfying the particular application domain needs.

The façades are reusable as long as the interfaces for the Grid-level services are standardized.
Even though there is an ongoing GGF effort to achieve standardization, at this time this assumption is
not true: there are many alternative implementations of the Grid services. For example, there are many
different possible implementations of the metadata service available, from generic DAIS to custom
developed services based on J2EE, SRB, or other alternatives. To accommodate the differences in the

Copyright c© 2007 John Wiley & Sons, Ltd.



1679

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

COOPERATIVE GRID VORTALS

 

Figure 4. Example of the job table GUI. The GUI shows the status of all user jobs (top left). For each job the user
may examine the job properties (top right) and access all its input and output data (bottom left) or preview the

results using Vortal tools (bottom right).

interfaces of various implementations of services, the cooperative Vortal infrastructure makes use of
proxy services. The proxy services act as clients to the concrete back-end, Grid-level services, and the
differences between the interfaces between the proxy and the concrete services are accommodated
using adaptors. Each proxy service may have more than one adapter associated with it, and may
switch between them in real time depending on the request. For example, the job descriptor passed
to the Job Submission service proxy has an attribute describing the access method for the remote
system (currently GT2, GT3, GT4, and Kerberos). Depending on the actual value of this attribute,
either Kerberos adapter that generates a batch script and submits it for execution using krsh, or Java
COG-based adapter that generates the RSL string and invoke GRAM methods is used.

The adapters make it easy to retarget the Vortal to a different middleware or to take the advantage
of the new features added to the existing one. New features might include resource brokers, resource
schedulers, or other that would increase the quality of services without requiring changes to the proxy
services interfaces.

Copyright c© 2007 John Wiley & Sons, Ltd.



1680

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

T. HAUPT AND A. KALYANASUNDARAM

Figure 5. Interoperable Vortals. The Service-Oriented Architecture combined with MOM enables horizontal
integration of loosely coupled services, including the Vortal services.

The Vortal services such as façades and proxies are implemented as a loosely coupled Web services
and as such they foster cooperation between different Vortals, as shown in Figure 5. The Vortal services
interact with the rest of the Grid infrastructure including other local or remote Vortal services through
events (i.e. asynchronous messages). The Message-Oriented Middleware (MOM) forms a Service
Bus—a term used by the software industry (e.g. Sonic Software) [9]. The Service Bus enables the
exchange of messages (either point-to-point or on the subscription basis), and it is responsible for
message routing and transformations as well as for providing support for the discovery of services.
The Service-Bus-based architecture extends the traditional, centralized ‘hub & spoke’ architecture
which is typical for the ‘Grid-out-the-box’ solutions, and it promises a more flexible use of the
inherently distributed Grid services and resources.

The implementation of the Vortal services as loosely coupled Web services allows advantages to
be gained from the use of the Service-Bus-based architecture. In the simplest case, different Vortals
may offer different implementations of the façades (invoking proxies with different adaptors), each
optimized for a particular type of the resources. A Vortal might thus reuse services offered by other
interoperable Vortals on demand.

5. EXAMPLES OF VORTALS

The approach described in this paper has been successfully applied to a number of Vortals developed
at Mississippi State University. The list includes NEESport [7], SPURport [8], Captured Motion
data repository, and the Vortal for NWChem. NEESport and SPURport are two different portals for

Copyright c© 2007 John Wiley & Sons, Ltd.



1681

Concurrency Computat.: Pract. Exper. 2007; 19:1671–1681
DOI: 10.1002/cpe

COOPERATIVE GRID VORTALS

the Earthquake Engineering community. NEESport offers the Web interface for remote execution of
OpenSees simulations [9]—seismic response of structural and geotechnical systems. Captured Motion
data repository is a tool used by ergonomics specialists, and NWChem Vortal provides access to
popular computational chemistry simulation software.

Regardless of the application domain, the basic functionality of these Vortals is similar, even though
each has a customized front end. Each Vortal uses the repository to share the data and scripts, the
workspace to compose the jobs, the job submission service that allows specifying the target system, the
batch queue and number of processors to be used. Finally, each Vortal provides support for monitoring
the progress of the job and accessing the results. Consequently, each Vortal uses the same middleware.
Each front-end invokes methods of the same set of façades that in turn invokes methods of the same
proxy Grid services with the potential to invoke the concrete Grid services provided by different third
parties. An extreme example is the NEESport. Originally it has been developed for Grid deployed
at MSU (Globus Toolkit 2.4 with a dedicated J2EE-based metadata service). To become compatible
with the rest of the NEESgrid infrastructure, new adapters were developed to support Globus Toolkit
3.2 and proprietary NEESgrid services, in particular the NEESgrid metadata service (NMDS). With the
NEESgrid development transferred for operational use, a new middleware is being developed at SDSC.
This change does not affect the architecture of the Vortal, and no modifications in the Vortal front-end
are needed.

The Vortal front-end are tailored to match the needs of the end user. The NEESport and NWChem
Vortals allow the user to upload arbitrary complex scripts (OpenSees and NWChem, respectively) to the
portal and run them using dedicated high-performance computers (at SDSC and MSU, respectively).
In addition, the Vortals provide tools that simplify the user task to customize the scripts. SPURport
on the other hand provide access to repositories of ground motion data, structures, and inventories
of structures allowing the user to investigate the seismic performance of urban regions. Each Vortal
provides custom tools to preview the results of the simulations. A practical use of interoperable Vortals,
e.g. utilizing the services offered by other Vortals, remains to be demonstrated.

REFERENCES

1. GEON, Geosciences Network. http://portal.geongrid.org [10 April 2007].
2. GriPhyN, Grid Physics Network. http://www.griphyn.org [10 April 2007].
3. Brown GE Jr. NEES, Network for Earthquake Engineering Simulations. http://www.nees.org [10 April 2007].
4. GridSphere. http://www.gridsphere.org [10 April 2007].
5. Sakai Project. http://www.sakaiproject.org [10 April 2007].
6. Haupt T, Pierce M. Distributed object-based Grid computing environments. Grid Computing: Making the Global

Infrastructure a Reality, Berman F, Fox G, Hey T (eds.). Wiley: New York, 2005.
7. Haupt T, Kalyanasundaram A, Ammari N, Chandra K. NEESport: Grid portal for earthquake engineering community.

Proceedings of the IASTED International Conference on Modeling and Simulation (MS 2005), Cancun, Mexico, 18–20
May 2005. ACTA Press: Calgary, AB, 2005.

8. Haupt T, Kalyanasundaram A, Ammari N, Chandra K, Das S, Durvasula S. SPURport: Grid portal for earthquake
engineering simulations. Proceedings of the 2005 International Conference on Computational Science, Atlanta, GA, 22–25
May 2005. Springer: Berlin, 2005.

9. Chappell D. Enterprise Service Bus. O’Reilly Media: Sebastopol, CA, 2004.

Copyright c© 2007 John Wiley & Sons, Ltd.


