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Abstract

In the absence of a complete genome sequence, considerable insight into genome structure can be gained from survey sequencing of
genomic DNA. To facilitate high-throughput characterization of genome structure based on shotgun sequence reads, we have developed
an automated sequence read classification pipeline (SRCP). The SRCP uses a battery of novel and standard sequence analysis algorithms
along with a sophisticated decision tree to place reads into ‘‘best fit’’ functional/descriptive categories. Once ‘‘primed’’ with genomic
sequence data, the SRCP also permits estimation of gene/repeat enrichment afforded by reduced-representation sequencing techniques.
To our knowledge, the SRCP is the only tool that has been designed to provide a description of a genome or a genome component based
on sample sequence reads. In an initial test of the SRCP using sequence data from Sorghum bicolor, it was shown to provide results sim-
ilar in quality to results generated by manual classification. Although the SRCP is not a replacement for manual sequence characteriza-
tion, it can provide a rapid, high-quality overview of genome sequence content and facilitate subsequent annotation. The SRCP
presumably can be adapted for analysis of any eukaryotic genome.
� 2007 Elsevier Inc. All rights reserved.
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Although complete genome sequencing represents an
ideal means by which the genomes of organisms can be
compared, it is not currently economically feasible for most
eukaryotes. This is especially true for the numerous organ-
isms that have large, highly repetitive genomes including
many important plants and animals. With this said, sample
sequencing of random genomic DNA can be used to gain
considerable information about genome structure in lieu
of a complete sequence [1,2]. However, it is often difficult
for researchers to characterize the sequences they have
obtained, especially if they have generated large sequence
data sets for organisms for which previous sequencing
research has been limited.

At present, numerous automated and semiautomated
gene characterization programs are available [3,4]. Like-
wise, there are a growing number of programs designed
to characterize repetitive elements [5–7]. However, to our
knowledge, there is no program or pipeline designed to
provide an overview of the sequence composition of an
entire genome based on shotgun sequence reads. To permit
such characterization, we have constructed a sequence read
classification pipeline (SRCP)1 in which a battery of exist-
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ing and novel algorithms are used to place random geno-
mic query sequences into descriptive/functional sequence
categories. The SRCP calculates the fraction of base pairs
in each category, thus providing an overview of genome
structure while facilitating initial annotation of query
sequences (Fig. 1). In addition, the efficacy of reduced-rep-
resentation sequencing techniques [8,9] can be assessed by
comparing SRCP results for random genomic sequence
with SRCP results for gene- or repeat-enriched DNA. With
respect to basic configuration, the SRCP uses the program
BLAST (Basic Local Alignment Search Tool) to query
sequences against highly curated, custom local databases.
The BLAST data are filtered, stored in a relational data-
base, and analyzed to derive the final classification of each
query sequence. The results of the analysis are available via
a Web interface. The system is implemented as a series of
Perl scripts, database scripts/queries, and dynamic Web
pages.

Materials and methods

General considerations

1. Because our research is focused primarily on study of
seed plants (Phylum Spermatophyta), we developed the
SRCP for analysis of sequences from spermatophytes.
However, the basic SRCP structure can be adapted for
study of any organism or group of organisms.

2. The different sequence categories in the SRCP are based
on those used by Peterson and co-workers [10].

3. The addresses of public Web pages and databases not
generated as part of our research are given in Table 1.

4. Interested parties can obtain source codes and/or down-
loads of novel tools and access the contents of our local
sequence databases at http://www.mgel.msstate.edu/
tools.htm.

5. The version of BLAST (Linux-ia32, Version 2.2.14) used
in this pipeline was obtained from the National Center
for Biotechnology Information (NCBI).

Technologies

Traditionally, bioinformatics projects have used Linux/
Unix platforms. However, there are a number of powerful
and often neglected Windows-based software development
technologies that afford rich functionality without exten-
sive de novo programming. For this research, we devel-
oped a hybrid Linux and Windows system to use the
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Fig. 1. General overview of the sequence read classification pipeline (SRCP). (A) Query sequences are compared using BLAST (Basic Local Alignment
Search Tool) to the contents of two gene (light gray rectangles), four repeat (dark gray rectangles), and two organellar (white rectangles) highly curated,
local sequence databases. (B) For each query sequence, data from the BLAST analyses are evaluated with a decision tree algorithm that places that
sequence into a ‘‘best fit’’ descriptive gene, repeat, or organellar DNA category; those sequences that do not possess significant homology to sequences in
any of the local sequence databases are classified as unknown. (C) Two independent algorithms interrogate those sequences classified as gene or unknown
to see if they are possibly repetitive based on their frequency within the data set. Additionally, the unknown sequences are analyzed with tblastn to
determine if they share significant homology with nontransposon proteins. Based on these secondary analyses, some query sequences are reclassified. (D)
Each query sequence is placed into one of 11 final sequence categories. (E) The output of the SRCP is a graph (along with data and statistics) illustrating
the composition of the query sequence set.

Table 1
Database and Web page addresses

Database or Web
page

Web address

NCBI www.ncbi.nlm.nih.gov
Core Nucleotide DB www.ncbi.nlm.nih.gov/entrez/

query.fcgi?CMD=search&DB=nuccore
EST DB www.ncbi.nlm.nih.gov/entrez/

query.fcgi?CMD=search&DB=nucest
Entrez Help

Document
www.ncbi.nlm.nih.gov/entrez/query/static/help/
helpdoc.html

Display Formats www.ncbi.nlm.nih.gov/entrez/query/static/help/
Summary_Matrices.html#Display_Formats

Plastid Organelles www.ncbi.nlm.nih.gov/genomes/ORGANELLES/
plastids.html

Viridiplantae
Mitochondria

www.ncbi.nlm.nih.gov/genomes/ORGANELLES/
plants.html

The Inst. for
Genomic Res.

www.tigr.org/

TIGR Gene Index
FTP site

ftp://ftp.tigr.org/pub/data/tgi/

Canad. Bioinf. Help
Desk

gchelpdesk.ualberta.ca
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strengths of both operating systems. The power of the
Linux operating system lies in its robustness, scalability,
and high availability of compatible bioinformatics soft-
ware. Therefore, we chose to run Linux on the computa-
tional server that runs bioinformatics tools. With respect
to Windows tools, our database server runs SQL Server
2000 (SQL = Structured Query Language), and we use
its built-in Data Transformation Services (DTS) for bulk
upload of large XML (Extensible Markup Language) files
containing BLAST results. We also use DTS to imple-
ment the classification logic of the pipeline (see below).
Our Web server runs IIS (Internet Information Services)
6.0, which provides powerful native lock-down mecha-
nisms. The freely available URLScan program (http://
www.microsoft.com/technet/security/tools/urlscan.mspx)
can be used to secure all versions of IIS. Running IIS
allows us to use ASP.NET (ASP = Active Server Pages)
for our Web interface. ASP.NET provides a collection
of powerful and easily customizable Web controls, most
notably the ‘‘data grid’’ control, which is ideal for dis-
playing large data sets in a table structure with editable
cells.

Populating the repeat and organellar local databases

For all repeat and organellar sequences, we currently
download sequence information in the GenBank file for-
mat, which includes not only the sequence, its accession
number, and its title, but detailed annotation and Internet
links.

Spermatophyte transposon, rDNA, and centromere
sequences were extracted from the NCBI Core Nucleotide
Database by conducting searches using boolean text strings
(Supplementary Table 1). Search results were used to create
Transposon, rDNA, and Centromere local databases.

Chloroplast genome sequences were downloaded from
NCBI’s Plastid Organelles page and placed in the Chloro-
plast local database. Spermatophyte mitochondria
sequences were downloaded from NCBI’s Viridiplantae
Mitochondria page and placed in the Mitochondria local
database.

Each local database was assigned a version number
containing the date it was populated and a two- or
three-letter abbreviation indicating its contents (e.g., the
first version of the Mitochondria local database was des-
ignated MC_2005-10-01). We update these local databases
every 6 months.

Because many repeat sequences are found as annotated
sections within larger genomic sequence entries (i.e., are
not archived as individual GenBank entries), we developed
a Perl script that extracts repeat regions and their annota-
tions from select GenBank files. Extracted repeats were
placed in an Annotated Repeat local database. Because
of the large number of annotated repeats in plant whole-
genome sequences, for this initial test we limited our extrac-
tion to manually annotated sequences available for
Sorghum bicolor.

Populating the ‘‘gene sequence’’ local databases

Spermatophyte EST, cDNA, and mRNA (EMC)
sequences were originally extracted from the NCBI EST
Database and Core Nucleotide Database by conducting
searches using a boolean search string (Supplementary
Table 1). Because of the relatively large number of
retrieved sequences, sequence data were downloaded in
FASTA format [11] rather than in GenBank format.
Downloaded sequences then were BLASTed (blastn)
against the Chloroplast, Mitochondria, rDNA, Centro-
mere, and Transposon local databases (see above). Any
sequence exhibiting a significant hit (bit score = S 0 P 60)
to one of these local databases was eliminated from the
data set by Perl scripts. The remaining sequences were
deposited in the EMC local database.

Spermatophyte ‘‘gene’’ sequences in FASTA format
were downloaded from The Institute for Genome Research
(TIGR) Gene Index FTP (File Transfer Protocol) site.
Downloaded files were then scanned using a Perl script that
eliminates those entries containing the following ‘‘repeat-
affiliated’’ words in their titles (where asterisks indicate
wild-card characters): retrovirus, retroelement, transpos*,
gag, pol, polyprotein, env, reverse transcriptase, integrase,
stowaway, MITE, miniature, copia, gypsy, RT, helitron,
maverick, polinton, mul*, insertional, mitocondri*, chloro-
plast, capsid, and nucleocapsid. Remaining sequences were
then BLASTed against the Annotated Repeats, Chloro-
plast, Mitochondria, rDNA, Centromere, and Transposon
local databases. Sequences exhibiting a significant hit
(S 0 P 60) to one or more of these databases were eliminated
using the Perl scripts mentioned above. The remaining
sequences were deposited in the Gene Index local database.

Preparation of query sequences

Random S. bicolor genomic shotgun sequences (Gen-
Bank Accession Nos. CW512190–CW514008) [12] were
used as a sample ‘‘unfiltered’’ query sequence set. These
1819 sequences, collectively representing 1,088,783 bp, have
a mean length of 599 bp (SE ± 38). To study the effect of
sequence length on SRCP results, two representations of
the sequence data were initially tested. The first representa-
tion contained the original GenBank sequences without any
size adjustments (i.e., full-length query sequences); the sec-
ond representation contained the same sequences digitally
fragmented into 80- to 179-bp (average 105 bp ± SE 0.14)
pieces, that is, short-length query sequences. The level of
genome coverage of the short-length query sequence set
was the same as that of the full-length query sequence set.

To further explore relationships between query sequence
length and classification, a series of sequence subsets were
prepared. Each subset contained DNA taken from the ran-
dom S. bicolor genomic sequences used above. Names and
details of the subsets are given in Supplementary Table 2.

To examine the ability of the SRCP to estimate gene
and/or repeat enrichment afforded by Cot filtration (a
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reduced representation sequencing technique), Cot-filtered
sequences manually classified by Peterson et al. [10] (Gen-
Bank Accession Nos. AZ921847–AZ923007) were catego-
rized by the SRCP following analysis of the unfiltered
query sequences (see below).

Analysis of random genomic DNA query sequences

The basic steps in analysis of random genomic query
sequences are outlined in Fig. 1. Specifics are illustrated
in Fig. 2 and further detailed below.

Fig. 2. Steps in categorization of random genomic query sequences. (A) A query sequence set is compared with sequences in the eight local sequence
databases. In the diagram, the query sequence set is composed of 26 reads (represented by the lowercase letters a–z). BLAST (Basic Local Alignment
Search Tool) parameters are set so that only the three most significant hits (if applicable) for each query sequence are recorded. (B) A Perl script removes
unnecessary text and eliminates all hits with bit scores (S 0) < 45 from the BLAST output files. (C) A script uploads the resulting ‘‘summary’’ files to an
SQL Server database. (D) In the SQL database, the BLAST results from each local sequence database are stored in their own data table. In the diagram,
each BLAST results table lists only the names of query sequences that produce a hit to a sequence in that local sequence database (left most column) and
the bit scores of each query sequence’s (up to three) most significant hits. In reality, the data tables contain highly detailed information including each hit’s
accession number(s), annotation, and alignment information with the query sequence. (E) As a means of detecting repetitive sequences in the EMC (EST/
mRNA/cDNA) and Gene Index (GI) local sequence databases, an UPDATE query analyzes the EMC and Gene Index query BLAST data tables to see if
multiple query sequences are recognizing the same local database entry, an indication that the entry and the query sequences may represent repetitive
elements. On the basis of this analysis, some query sequences are marked as ‘‘Ambiguous Repetitive’’ (ar) or ‘‘Probable Repetitive’’ (pr). In the diagram,
arEMCs, prEMCs, arGIs, and prGIs are represented by light blue, violet, gold, and yellow cells, respectively. (F) A UNION query integrates the
information from all eight BLAST data tables. (G) A nested SELECT query eliminates hits with bit scores <60 and selects the best three hits from all of the
data tables for each query sequence. Each query sequence with at least one S 0 P 60 hit is included in the query result set. (H) A decision tree assigns each
query sequence in the query result set to a descriptive sequence category based on the (up to three) best hits for that sequence. The decision-making process
is relatively complex. Rectangles mark instances in which the decision tree assigns a query sequence to a sequence category that differs from the name of
the local sequence database to which that sequence shows its most significant hit. For simplicity, all query sequences that are ‘‘called’’ arEMCs or arGIs
are assigned to the ‘‘Possible Repeat’’ category, whereas all those ‘‘called’’ as prEMCs or prGIs are assigned to the ‘‘Probable Repeat’’ category. (I) Query
sequences that produce no significant hits to any of the local sequence databases are assigned to the temporary ‘‘No Hit’’ group. (J) Depending on the level
of genome coverage, either ReAS [7] or blastn is used to compare ‘‘No Hit’’ sequences to each other. Those query sequences marked as repetitive by ReAs

or exhibiting significant homology (S 0 P 60) to a number of other ‘‘No Hit’’ query sequences in excess of a mathematically defined threshold are placed in
the ‘‘Probable Repeat’’ category. (K) Remaining ‘‘No Hit’’ query sequences are electronically ‘‘translated’’ by a Perl script into proteins representing each
of the six potential reading frames. The program tblastn is then used to compare the translated ‘‘No Hit’’ query sequences into translated versions of the
EMC and GI local sequence databases. If a translated ‘‘No Hit’’ sequence produces a significant (S 0 P 60) tblastn hit to the EMC and/or GI local
sequence databases, it is reclassified based on the highest of its bit scores. If the highest EMC and Gene Index bit scores are equal, the ‘‘Gene Index’’
classification is selected. ‘‘No Hit’’ sequences that are not classified in step J or K are placed in the ‘‘Genome Sequences of Unknown Character’’ (GSUC)
category. (L) The query sequence set is displayed in a histogram showing the percentage of base pairs found in each sequence category.
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Blast

An entire query sequence set is BLASTed against each
of the local databases (Fig. 2A). We set –b and –v blastall

flags to 3 to collect only the top three hits for each
sequence, minimizing the sizes of the resulting XML files,
which, depending on the number of query sequences,
may otherwise become unmanageably large.

The output XML files are processed with a Perl script
that creates summary XML files. At this point, hits that
do not satisfy a certain minimal bit score threshold may
be filtered out using this Perl script. Summary files are then
used by DTS scripts to bulk upload the data to an SQL
Server database based on the corresponding XML Schema
Definition files. Results from each local database BLAST
comparison are stored in their own table (Figs. 2B and C).

First-round detection of repeat sequences

A common means used to assess the gene content of a
batch of query sequences is comparison of the query
sequences with ESTs. However, such an approach
requires considerable caution as EST databases often con-
tain numerous repetitive DNA sequences. Some of these
repeats are simply organellar, rDNA, or genomic repeat
sequences that were not eliminated during the mRNA iso-
lation process. Others are the expressed regions of trans-
posons such as retroelement genes. Because transposons
are typically found in numerous copies per genome and
contain only genes that promote their own propagation
or movement, they are typically classified as repeats.
Repeats are eventually ‘‘weeded out’’ of most EST dat-
abases, although it may be many years before the culling
process is complete.

Recognition of the same EST database entry by multiple
genomic query sequences is one means by which query
sequence repetitiveness has been estimated and repeat
sequence contaminants have been identified in ‘‘low-copy-
sequence’’ databases [10,13,14]. In this regard, several
SQL queries were used to identify EMC local database
entries that were the top significant EMC hit for multiple
query sequences. Assuming that query sequences in the
EMC BLAST table represent single-copy genes, the aver-
age number of times a query sequence would represent a
given gene can be predicted by dividing the number of
query sequences in the EMC BLAST table by the predicted
number of genes for the test organism. For example, in our
analysis of the full-length sorghum query sequences, 972
query sequences exhibited their most significant hit
(S 0 P 60) to the EMC local database. If sorghum has
roughly 25,000 nonrepetitive gene sequences like Arabidop-
sis [15], the average expected number of hits by an EMC-
recognized query sequence to any one of the hypothetical
sorghum genes is (972 ‚ 25,000 =) 0.0389. The probability
of multiple EMC-recognized query sequences recognizing a
particular ‘‘single-copy EST’’ (�gene) sequence by chance
can be roughly estimated using the Poisson probability dis-
tribution function,

PðX Þ ¼ lx � ðelX !Þ;
where P = probability, X = number of occurrences, and
l = is the population mean number of occurrences in a unit
of space or time [16]. If l = 0.0389 (see above), the proba-
bilities of two, three, four, and five EMC-recognized query
sequences tagging the same single-copy EST by chance are
7.3 · 10�4, 9.4 · 10�6, 9.2 · 10�8, and 7.1 · 10�10,
respectively.

In our implementation, the first value of X to produce
a P(X) less than 0.01 can be represented by the variable
Y. SQL queries mark a query sequence as an ‘‘Ambigu-
ous Repeat EMC’’ if its most significant hit is to an
EMC that is the most significant hit of Y query
sequences in the dataset. Any query sequence that has
its most significant hit to an EMC that is the most sig-
nificant hit for > Y query sequences is classified as a
‘‘Probable Repeat EMC’’.

The repeat detection procedure is applied to the Gene
Index local database as well with some query sequences
being reclassified as ‘‘Ambiguous Repeat Gene Index’’ or
‘‘Probable Repeat Gene Index’’.

Classification of query sequences with significant local

database BLAST hits

Local database BLAST results tables are combined in a
UNION query. Query sequences with no significant local
database hits are not included in the UNION query result
set, but, rather, are given the temporary classification of
‘‘No Hit’’ and used to generate a corresponding FASTA
file for further analysis (see below). For those query
sequences with at least one significant local database hit,
an SQL query (see Supplementary Materials, SQL Query)
is used to determine the (up to) three best hits with bit
scores P60 for each query sequence from the UNION
query result set (Figs. 2F–H).

A DTS script within SQL Server 2000 uses the output of
the query above and runs it through a decision tree that
places the results in a new table inwhich each query sequence
with at least one hit has three sets of columns for its (up to)
three best hits arranged from most significant to least signif-
icant (except in instances where two or more bit scores are
equal).Generation of this combined results table allows each
query sequence to be represented by a single record.Also, the
classification calculations are performed only once and
stored permanently in the results table precluding the need
to run complex SQL SELECT queries over large data tables
every time the results are fetched.

Each query sequence with at least one significant hit is
classified into one of 11 different categories (see Fig. 2)
using the decision tree algorithm mentioned above. The
heuristics of this algorithm are presented below:

1. The TIGR Gene Index contains sequences that have
been shown to code for protein (and, thus, are likely
to actually represent genes), whereas there is no such
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prerequisite for a sequence to be included in the EMC
Local Database. Consequently, Gene Index is
favored over EMC.

2. Because Gene Index and EMC local databases are
likely to contain some repeat sequences, significant
hits to organellar or repeat local databases are given
priority over Gene Index and EMC hits.

3. If the first hit’s bit score is at least 20% greater than
the next two hits (if any) and the preceding heuristics
are not violated, then the query sequence is classified
based on the first hit’s local database.

4. If the first and second hits or first and third hits are to
the same local database, then the query sequence’s
classification is set to this local database.

5. If a query sequence is not classified in step 1, 2, 3, or
4, it is given the temporary classification of Flag. In
the case of a Flag classification where the two best
hits are to different repeat local databases (Ambigu-
ous Repeat EMC, Ambiguous Repeat Gene Index,
Probable Repeat EMC, Probable Repeat Gene
Index, Annotated Repeats, Transposon, or Probable
Repeats), the query sequence is classified by the local
database to which it produces the highest bit score.
The Probable Repeat local database is used only
when analyzing reduced-representation sequences
(see below).

6. If the classification is still Flag and the two best hits
are to EMC and/or Gene Index, EMC is chosen if
it has a higher bit score. Otherwise, Gene Index is
chosen.

7. If the classification is still Flag, at least one of the hits
is to Chloroplast, and none are to rDNA, then the
classification is set to Chloroplast.

8. If the classification is still Flag, at least one of the hits
is to rDNA, and none are to Chloroplast, then the
classification is set to rDNA.

9. If the classification is still Flag and at least one of the
hits is to Centromere with a bit score within 20% of
the first hit’s bit score, the query sequence is given
the classification of Centromere.

10. If the classification is still Flag and all hits are to EMC,
Gene Index, Ambiguous Repeat EMC, Ambiguous
Repeat Gene Index, Probable Repeat EMC, or Proba-
ble Repeat Gene Index, the classification is set to the
repetitive database with the highest bit score.

11. For simplicity, those query sequences classified as
Ambiguous Repeat EMC or Ambiguous Repeat
Gene Index are placed in the ‘‘Possible Repeat’’ cat-
egory, whereas those query sequences classified as
Probable Repeat EMC and Probable Repeat Gene
Index are placed in the ‘‘Probable Repeat’’ category
(see Fig. 2).

If Flag query sequences remain, they can be manually
classified via the SRCP’s Web interface or the decision
tree algorithm can be modified. Although the decision
tree algorithm described above resulted in automated

classification of all Flag query sequences, other data
and/or local database sets may produce unresolved flags
indicating that fine tuning of the algorithm may be
appropriate.

Identifying repeats in the ‘‘No Hit’’ query sequences

The ‘‘No Hit’’ query sequence group can be further ana-
lyzed to identify novel repetitive elements based on their rel-
ative iteration in the query sequence set. If the genome
coverage is at least 1.58X, the ‘‘No Hit’’ query sequence
group is analyzed usingReAS [7], an ab initio repeat-finding
program that has proven especially robust in side-by-side
comparisons with other database-independent repeat identi-
fication tools (our personal observations).However, the gen-
ome coverage in sample sequence-based genome
characterization projects is often below the genome coverage
levels necessary for most repeat analysis programs. Conse-
quently, we developed a method to calculate which ‘‘No
Hit’’ query sequences are probable repeats when genome
coverage is below 1.58X. First, we determine the k-mer
length (sequence of length k) that will afford one chance in
a thousand that two random query sequences will share an
identical sequence of length k for a genome of size G. This
determination, based on Batzoglou [17], is made using the
following logic:

1. There are four nucleotides in DNA; thus, the total num-
ber of potential k-mers is 4k.

2. Becauseof thedouble-strandednatureofDNA,ak-mer and
its exact complement will be considered identical by blastn.
This means that the number of ‘‘unique k-mers’’ is 4k/2.

3. Hence, the probability of a given ‘‘unique k-mer’’ occur-
ring once in a genome of size G is 2G/4k.

4. The probability of a specific ‘‘unique k-mer’’ occurring
twice is 4G2/42k. The probability of any ‘‘unique k-
mer’’ occurring twice is 2G2/4k [i.e. (4G2/42k) * 4k/2].

5. A 0.001 probability that two reads will share an identical
sequence of length k by chance is equivalent to
1000 * 2G2/4k. Hence, the length of this unique k-mer
is k = ceiling(log4G

2 + log42000).

The ‘‘No Hit’’ query sequences are BLASTed (blastn)
against each other with the word size parameter set equal
to the k calculated as described above. Those query
sequences that share a k-mer with one or more other
‘‘No Hit’’ query sequences are detected. We then use the
Poisson distribution to determine a threshold contig depth
d [7] that is expected at error rate 0.1% for the level of gen-
ome coverage k as per the equation

p ¼ ðe�kkdÞ � d!

Those query sequences that share a unique k-mer to Pd

other ‘‘No Hit’’ query sequences (see Supplementary Table
3) are assigned to the ‘‘Probable Repeat’’ sequence cate-
gory (Fig. 1). When genome coverage is 60.04X (and
d + 1 = 2), the BLAST output file is parsed by a Perl script
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that classifies query sequences as ‘‘Probable Repeats’’ if
they have at least one hit to another query sequence, that
is, share a unique k-mer. For data sets with coverage values
between 0.05X and 1.57X, we use another Perl script that
classifies a query sequence as ‘‘Probable Repeat’’ only if
it has at least the minimal number of hits sharing the same
k-mer. ‘‘Probable Repeat’’ query sequences are then placed
into a consolidated BLASTable local database of the same
name. The Probable Repeats local database is used when
analyzing sequences that have been generated through re-
duced-representation sequencing (see below).

Classification of remaining ‘‘No Hit’’ query sequences

As shown in Fig. 2K, all remaining ‘‘No Hit’’ sequences
are translated by the Perl script three_frames.pl, available
from the Canadian Bioinformatics Help Desk, and com-
pared with sequences in the EMC and Gene Index Local
Databases using tblastn [18]. Such comparison can allow
detection of potential gene orthologs that have undergone
substantial divergence at the DNA level but have relatively
conserved amino acid sequences. Those query sequences
producing a significant tblastn hit (S 0 P 60) to an EMC
or Gene Index entry are reclassified as described in
Fig. 2. ‘‘No Hit’’ query sequences that do not produce a
significant tblastn hit to EMC and/or Gene Index local dat-
abases are placed in the sequence category ‘‘Genome
Sequence of Unknown Character.’’ This part of the analy-
sis is the most computationally expensive and may be per-
formed using BLAT [19] and/or a computer cluster.

Output

Once classification has been completed, summary statis-
tics are calculated. They can be viewed or saved in an Excel
file via a Web interface.

Contig assembly

After classification, all query sequences are collectively
analyzed using Phrap (www.phrap.org). An ACE file gener-
ated by Phrap is then parsed by Perl scripts that generate
two summary XML files::one of the summary XML files
contains data grouped by sequences and the other has data
grouped by contigs. Both of the XML files include padded
sequence data. These data are then bulk uploaded to the
SQL Server database. A graphical interface has been
designed to permit rapid visualization of contigs and the
classification assigned to each query sequence within a con-
tig. Desired outcomes of contig analysis include assembly of
genes, characterization of repeat families, correction of
potential erroneous classifications, and/or detection of
improperly labeled/annotated GenBank/TIGR entries.
With respect to error correction, visual inspection of assem-
bly reads aided by color-coded classifications (Supplemen-
tary Fig. 1) allows rapid detection of query sequences that
appear conspicuously out of place. If deemed appropriate,

classifications can be changed and the source of the original
classification traced back to the top three hits. It is antici-
pated that contigs visualized in this manner can potentially
limit the snowballing effect of incorrect annotations and
improve the quality of the local databases.

Analysis of reduced representation sequences

Analysis of reduced-representation query sequences clo-
sely follows the scheme used for genomic query sequences
(Fig. 2). However, the Probable Repeats local database
(see above) generated after analysis of random genomic
sequences is used as a ninth local database during the initial
classification. Additionally, when analyzing ‘‘NoHit’’ query
sequences, the genome sizeG is replacedby the fraction of the
genome in a particular reduced-representation component.
For example, according to Peterson et al. [10], the sorghum
genome consists of highly repetitive, moderately repetitive,
and single-/low-copy components that account for roughly
0.15, 0.41, and 0.24 of the genome, respectively. As the sor-
ghum genome is about 760 Mb [20], the highly repetitive
component of sorghum would contain 114 Mb of DNA
(i.e., 0.15 * 760 Mb) while moderately repetitive and single/
low-copy components would account for 311.6 and
182.4 Mb, respectively. To allow for consistent analysis of
all reduced representation-enriched fractions, repetitive
query sequences identified in reduced-representation data
sets during the ‘‘No Hit’’ repeat analysis are not added to
the Probable Repeats local database.

Results and discussion

SRCP analysis of random genomic sorghum query sequences

Initially, two representations of the same S. bicolor

sequence set were analyzed by the SRCP. The first repre-
sentation consisted of ‘‘full-length’’ genomic shotgun
sequence reads of a size typical of trimmed reads produced
via automated Sanger sequencing (mean length = 599 bp).
The second representation consisted of the original full-
length reads digitally fragmented into pieces between 80
and 179 bp in length (mean length = 105 bp) to simulate
short read lengths such as those produced by 454 DNA
sequencing [21]. The results of these analyses are summa-
rized in Fig. 3A. As shown, shorter query sequence lengths
resulted in an increase in the broadly defined Probable
Repeats and Genome Sequence of Unknown Character
categories with concomitant decreases in all other classes.
This suggests that shortening query sequence length to
about 100 bp often disrupts features that permit placement
of query sequences into more narrowly defined categories,
most notably EMC, Gene Index, and Transposon.

Comparison of Cot analysis and SRCP data

Cot analysis is the study of the kinetics of DNA reas-
sociation in solution. It can be used to learn much about
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the general structure of a genome, including genome size,
number and size of kinetic components, amount of repet-
itive DNA, amount of single-/low-copy DNA, and kinetic
complexities of unique and repeat components [22]. To
permit comparison with Cot analysis data, percentages
of Transposon, Annotated Repeat, Probable Repeat, Cen-
tromere, rDNA, and Possible Repeat categories were
grouped together and deemed percentage repetitive geno-
mic DNA. Conversely, the EMC and Gene Index catego-
ries probably represent single-/low-copy DNA and were
grouped as such. The contents of the Genome Sequence
of Unknown Character category may represent either
low-copy and/or a combination of repetitive and low-
copy sequences depending on the depth to which repeat
components have been sequenced. With a sufficiently
large sequencing depth or with fairly comprehensive
repeat local databases, the rigorous repeat search con-
ducted by the SRCP may afford a relatively high proba-
bility that sequences that end up in the Genome
Sequence of Unknown Character category are also low-
copy DNA. For this initial analysis, we conservatively
assumed that 50% of the Genome Sequence of Unknown
Character bases were low-copy DNA. Half the percentage
of the Genome Sequence of Unknown Character category
was added to the EMC and Gene Index percentages to
yield a rough estimate of genomic single-/low-copy
sequences. Based on SRCP analysis of full-length query
sequences, the percentage of repetitive DNA in the S.

bicolor genome is 58.2%, whereas short-length query
sequence analysis provides a repeat value of 45.9%. A pre-
vious Cot analysis of sorghum [10] suggested that the gen-
ome is composed of at least 56% repetitive DNA, a value

that falls within the range predicted by full- and short-
length SRCP analyses. The percentage of single-/low-copy
DNA as detected by SRCP analysis of full-length sor-
ghum query sequences is 32.7%, whereas that of short-
length query sequences is 29.4%. The Cot analysis sug-
gested that single-/low-copy DNA makes up at least
24% of the sorghum genome. Considering the various
biases inherent in Cot analysis and SRCP classification
techniques, the similarity in repeat and low-copy sequence
percentages between the two types of results is
encouraging.

The effect of query sequence length on classification

The SRCP uses an ‘‘all or nothing’’ approach, assigning
every base in a query sequence to a ‘‘best-fit’’ sequence cat-
egory. Although this is not a perfect classification solution,
dissection and annotation of the parts of each query
sequence would be a tremendous undertaking. As sug-
gested in Fig. 3A, short query sequence lengths decrease
the specificity of classification. Generation of single-read
query sequence lengths beyond 600–700 bp is not currently
feasible due to limitations of high-throughput capillary
electrophoresis, but it is likely that increasing query
sequence length much beyond this size would augment
the chances that a repeat and a unique sequence occur on
the same query sequence.

To further explore the effect of query sequence length on
classification, we prepared sequence subsets with different
query sequence lengths (Supplementary Table 2) and ana-
lyzed the subsets using the SRCP. The results of this anal-
ysis are summarized in Fig. 3B. In support of the
observations made in analysis of the full-length and
short-length query sequences, shorter query sequence
lengths limit placement of sequences into gene and repeat
classes. The L600 (600-bp sequence length) data set pro-
duces the highest levels of bases in the Gene (EMC and
Gene Index) and Repeat (Transposon, Annotated Repeat,
Probable Repeat, Possible Repeat, Centromere, and
rDNA) categories. Compared with the results of the L600
analysis, the L500 set shows similar percentages of bases
classified as EMC and Gene Index, but noticeable differ-
ences in how sequences are divided among repeat classes.
Interestingly, the L600 set (Fig. 3B) shows fewer bases in
repeat and low-copy classes compared with the full-length
query sequences, which have a mean length of 599 bp
(Fig. 3A). The full-length query sequence analysis involved
roughly six times as much sequence data as the L600 anal-
ysis, and indeed, this may account for the observed differ-
ences. Although it is not clear what size query sequence
will produce the most accurate description of a genome
(and it is likely that optimal query sequence size may differ
from genome to genome), our results suggest that 500- to
600-bp fragments provide an adequate compromise
between length and classification specificity, while shorter
sequences result in disruption of features that permit
classification.

Centromere rDNA Transposon Annot. Rep. Prob. Rep.

Poss. Rep. EMC Gene Index GSUC Chlorop. Mitochond.

0 10 20 30 40 50 60 70 80 90 100

L100

L200

L400

L500

L600

L300

Percentage of nucleotides

Percentage of nucleotides
0 10 20 30 40 50 60 70 80 90 100

full

short

A

B

Fig. 3. SRCP-based classification of random sorghum genomic shotgun
query sequences. (A) Classification of full-length query sequences
(mean = 599 bp) versus short-length query sequences (mean = 105 bp).
(B) Effect of query sequence length on classification. Six different query
sequence lengths ranging from 100 to 600 bp were tested (see Supplemen-
tary Table 2).
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Analysis of Cot-filtered DNA

Reduced-representation sequencing techniques are
methods that can be used to preferentially isolate and
sequence a desired subset of DNA sequences from a larger
population of sequences [8,9]. For example, some reduced-
representation sequencing techniques are used to isolate
and sequence gene-rich regions found within genomic
DNA. Others may enrich for repeats or molecular markers.
Examples of reduced-representation sequencing techniques
include EST sequencing, methylation filtration [14], and
Cot filtration [10].

If one is interested in evaluating reduced-representation
sequencing-based enrichment using the SRCP, it is best if
the SRCP is first used to analyze random genomic DNA
from the same organism. This allows establishment of a
‘‘background’’ genome composition and results in genera-
tion of a Probable Repeat local database, which can be
used to help identify repeats in the reduced-representation
sequencing data.

To test the quality of SRCP classification versus manual
classification, we first ran sorghum genomic query
sequences through the pipeline to generate a Probable
Repeat local database for sorghum. Then we used the
SRCP to evaluate a set of Cot-filtered highly repetitive,
moderately repetitive, and single-/low-copy sequences
manually classified and described by Peterson and col-
leagues [10]. Peterson and colleagues made no attempt
was to identify repeats and/or genes in the categories com-
parable to our ‘‘No Hit’’ group, preventing direct compar-
isons of repeat and low-copy contents. Consequently, we
analyzed the ‘‘No Hit’’ sequences of Peterson et al. [10]
with the algorithms depicted in steps J–L in Fig. 2 and
made the assumption that 50% of bases given a final clas-
sification of Genome Sequence of Unknown Character
were low-copy DNA. As with the random genomic

DNA, the Cot-filtered sequences were analyzed as ‘‘full-
length’’ query sequences (mean ± SE length = 177.5
± 2.8 bp) and ‘‘short-length’’ query sequences (80–
179 bp). The results of the full-length SRCP, short-length
SRCP, and manual classification are summarized in
Fig. 4. Of note, there is very little difference in the percent-
ages of single-/low-copy and repetitive sequences detected
using the three schemes.

Conclusions

The SRCP is an automated means through which gen-
omes can be characterized based on sample shotgun
sequencing. To our knowledge, it is the first pipeline
designed for this purpose. Moreover, as demonstrated
above, it can be used to determine the efficiency of
reduced-representation sequencing in a manner that is as
accurate as, and certainly much faster than, manual classi-
fication. Of note, careful adaptation of the SRCP may
advance comparative genomics by affording a rapid means
of evaluating divergence that has occurred in ostensibly
related species. Although we developed our implementa-
tion for the study of higher plant genomes, the SRCP
can be easily adapted for study of any group of organisms;
the principal adjustment required for use of the SRCP for
other subjects is modification of the boolean text strings
used in building the local databases (Supplementary Table
1). Alternatively, one can use existing sequence databases,
including those developed for model organisms. The imple-
mentation of the SRCP described in this article is based on
the scale and demands of our current workloads. However,
the design is such that it can readily be adapted for larger-
scale projects. In such cases, sequence alignment might best
be performed on a cluster running a parallelized version of
BLAST (at least for alignments performed against the
Gene Index and EMC local databases). Techniques such
as Extensible Stylesheet Language Transformations
(XSLT) may further speed up processing of large XML
output files. Once the pipeline is established and performs
all steps correctly, it can be further automated via script
scheduling and bottleneck elimination in program flow.
Additionally, the SRCP is designed to be easily coupled
with other scripts that allow further utilization of the
sequence data. Indeed, we have begun building a pipeline
that will generate consensus sequences for transposons
and classify these elements into families based on their
sequence structures.
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Fig. 4. Low-copy and repeat sequence contents of highly repetitive (HR),
moderately repetitive (MR), and single/low-copy sorghum DNA libraries
as determined by the SRCP and by manual classification. (A) The increase
in low-copy DNA from HR to SL libraries as seen with the manually
classified sequences is paralleled by the SRCP classification. (B) The
decrease in repetitive DNA from HR to SL libraries as seen with the
manually classified sequences is paralleled by the SRCP classification.
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Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.ab.2007.
08.008.
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