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Abstract It has become clear that dispersed repeat sequen-
ces have played multiple roles in eukaryotic genome
evolution including increasing genetic diversity through
mutation, inducing changes in gene expression, and facili-
tating generation of novel genes. Growing recognition of the
importance of dispersed repeats has fueled development of
computational tools designed to expedite discovery and
classification of repeats. Here we review major existing
repeat exploration tools and discuss the algorithms utilized
by these tools. Special attention is devoted to ab initio
programs, i.e., those tools that do not rely upon previously
identified repeats to find new repeat elements. We conclude
by discussing the strengths and weaknesses of current tools
and highlighting additional approaches that may advance
repeat discovery/characterization.
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Abbreviations
BLAST Basic Local Alignment and Search Tool
bp base pair
Mb megabase
Gb gigabase
MITE miniature inverted-repeat transposable element
PALS Pairwise Alignment of Long Sequences
SSR simple sequence repeat

Introduction

The vast majority of DNA research has focused on genes,
those sequences that code for proteins or structural RNAs.
However, eukaryotic genomes are characterized and often
dominated by repetitive, non-genic DNA sequences [14],
and indeed the vast majority of the 10,000-fold variation in
eukaryotic genome sizes is due to differences in repeat
sequence content [63, 82, 48]. The prevalence and
evolutionary persistence of repeats in eukaryotes indicates
that while repeats may have originated as “selfish DNA,”
many now afford selective advantages to the genomes in
which they reside. However, the mechanisms by which
repeats contribute to fitness are complex and poorly
understood [15, 12]. Experimental evidence has shown that
repetitive regions influence expression of nearby genes
[62], and in some instances it appears that insertion of even
relatively short tandem repeats into an uncondensed region
of chromatin can result in condensation and gene repression
[25, 93, 6]. Additionally, it has long been known that
mobile repetitive elements can cause insertions, deletions,
and/or rearrangements that can alter gene structure and
regulation, and it is possible that the tremendous increase in
mobile element activity in some populations under extreme
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environmental stress may be a means of rapidly increasing
genetic diversity through mutation [60, 10, 38]. Recent
molecular evidence also suggests that some repeat elements
may be instrumental in generation of new genes [37, 47,
61]. Regardless, a comprehensive understanding of gene
and genome function in eukaryotes will require knowledge
of repeat sequences because eukaryotic genes evolve and
function within the context of a chromosomal milieu
composed primarily of repetitive DNA.

The term “tandem repeat” refers to any sequence that is
normally found in consecutive or nearly consecutive copies
along a DNA strand. Examples of tandem repeats include
the satellite, minisatellite, and microsatellite DNAs found in
most eukaryotic species [17]. Microsatellites, also known as
simple sequence repeats (SSRs), consist of 1–6 bases found
in relatively short tandem arrays [54]. SSRs have become
useful genetic markers because they are often associated with
genes and because polymorphism in repeat number is
common [77]. Identification of short tandem repeats such
as SSRs is relatively easy and, not surprisingly, algorithms
for finding SSRs are abundant [11, 81, 44]. Recognition of
longer tandem repeat sequences is also fairly straightforward,
although correct assembly of such arrays is difficult when
there is high sequence conservation between repeat copies.

Dispersed repetitive elements are distributed throughout
genomes in a non-tandem, albeit non-random, manner. The
majority of dispersed repeats are transposons, sequences
that can directly or indirectly move from one site to another.
Those transposable elements that possess a complete set of
transposition protein domains are called autonomous.
However, the term autonomous does not imply that an
element is active or functional. Transposons that clearly
lack an intact set of mobility-associated genes are called
non-autonomous. Transposition of a non-autonomous ele-
ment requires participation of one or more proteins encoded
by an autonomous element. Some non-autonomous trans-
posons appear to be deletion/insertion derivatives of
autonomous transposons while other non-autonomous
transposons have not (yet) been linked to autonomous
ancestors [91].

Classification of transposons has proven difficult as new
types of mobile repeats are being discovered at a rapid rate,
and evolutionary relationships between many dispersed
repeat groups are unclear—for a recent treatment of
transposon classification see Wicker et al. [91]. However,
transposons can typically be divided into two classes;
retrotransposons and DNA transposons. Retrotransposons
are replicated and mobilized through an RNA intermediate
via a copy-and-paste mechanism involving the enzyme
reverse transcriptase. In contrast, DNA transposons utilize
cut-and-paste or copy-and-paste methods of transposition
that do not involve an RNA intermediate. An overview of
common transposon groups is presented in Fig. 1.

In computational terms, automated dispersed repeat
identification is complicated by the fact that dispersed
repeats may exhibit considerable inter-copy divergence.
Moreover, the replication, insertion, and excision of
multiple mobile repeat elements over the course of
thousands or millions of years can result in complex
mosaics making identification of repeat boundaries and
definition of repeat families difficult [66]. However, there is
an increasing number of algorithms that have been
developed for studying dispersed repeats. Some of these
tools, e.g., Smit et al. [74], can also be used in detection of
tandem repeats.

Fig. 1 Transposons are traditionally classified into retrotransposons
and DNA transposons [91]. Retrotransposons (A–F) are replicated and
mobilized through an RNA intermediate via a copy-and-paste
mechanism involving the enzyme reverse transcriptase (rt). They
possess 5′ and 3′ untranslated regions (UTRs) containing minus-strand
(PBS) and plus-strand (PPT) priming sites, respectively. They
typically can be divided into long terminal repeat (LTR) retrotranspo-
sons (A–D) [34, 41] and non-LTR retrotransposons (E–F) [64]. (A)
Gypsy elements contain an ORF with gag and pol genes. The gag
gene codes for viral capsid proteins while the pol gene codes for
proteinase (pr), integrase (int), reverse transcriptase (rt), and RNase H
(rh) activities. (B) Copia elements are similar in overall structure to
gypsy elements. However, the two groups possess distinctly different
reverse transcriptase amino acid sequences. In most instances, they
also exhibit variation in the relative position of int. (C) In LARDs
(large retrotransposon derivatives), protein-coding regions have been
replaced by a relatively long, conserved, noncoding region. (D)
TRIMs, terminal repeat retrotransposons in miniature, contain short
LTRs, PBS and PPT sites, and little else. (E) LINEs, long interspersed
nuclear elements, are non-LTR retrotransposons that possess 1 or 2
ORFs. One ORF encodes a pol protein with rt and endonuclease (en)
activities. If there is a second ORF, it encodes a nucleic acid binding
protein (nabp) with chaperone and esterase activities. The 3′ UTR
sometimes contains the canonical polyadenylation sequence (ATAAA)
and a tract of poly-A. LINEs are transcribed by RNA polymerase II.
(F) SINEs, short interspersed nuclear elements, possess a region with
similarity to a tRNA (TR) or other small RNA, a tRNA-unrelated
region (TU), and a region that, in some instances, appears to be LINE-
derived (LD). SINEs are transcribed by RNA polymerase III. DNA
transposons (G–J) can be mobilized through either a cut-and-paste
mechanism (G–H) or through other mechanisms that do not involve
RNA intermediates (I–J). They multiply via their host’s replication
machinery. (G) TIR DNA transposons (cut-and-paste) are character-
ized by terminal inverted repeats (TIRs) and one ORF that encodes a
transposase gene. (H) MITEs, miniature inverted-repeat transposable
elements, are extremely short, TIR-flanked, cut-and-paste transposons
with no coding capacity. (I) Helitrons are DNA sequences that are
propagated through a rolling-circle replication mechanism [42, 30].
Autonomous Helitrons possess a helicase gene that encodes an
enzyme with 5′-3′ helicase and nuclease/ligase activities. Helitrons
may also contain genes for RPA-like (rpal) single-stranded DNA
binding proteins. Helitrons do not create target site duplications and
lack TIRs. Both autonomous Helitrons and most non-autonomous
Helitron-like transposons have conserved 5′-TC and 3′-CTRR
sequences at their termini. (J) Mavericks/Polintons are large elements
that encode integrase (int), DNA polymerase B (dpolB), and up to
8 other proteins [43, 68]. It has been argued that Mavericks/Polintons
contain all of the genes necessary for both self-transposition and self-
replication [43]

�
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Here we review the major algorithmic approaches
currently employed in dispersed repeat identification/clas-
sification and the tools that utilize these algorithms.1 While
we provide overviews of library- and signature-based

methods, the bulk of the present review is focused on
algorithms/tools that identify repeats without utilizing
previously characterized repeat sequences or repeat-specific
motifs. Such ab initio tools are becoming more and more
important due to tremendous increases in the amount and
diversity of sequences being generated in genome projects.
For each ab initio tool we describe the sequence substrate
utilized (shotgun reads, or assembled genomic regions), the
approach used for initial identification of repeats, and the
method used to extract descriptions of repeat families. We
conclude with a discussion of the utility of the various tools
and present some ideas regarding potential means through
which automated repeat identification could be improved.

In the discussion below, repeat identification tools are
introduced based upon the algorithms they use to identify
and classify potential repeats. However, to permit “at a
glance” comparison of tools, we provide Table 1 which lists
the basic features of each of the tools, and information on
how each tool can be obtained.

Library- and Signature-based Identification Techniques

Library-based Techniques

Library-based systems identify repetitive sequences by
comparing input datasets against a set of reference repeat
sequences, i.e., a library [39]. RepeatMasker [74] is the
predominant library-based tool used in repeat identification
and it has become the de facto standard for repeat
identification among all methods. As the name implies,
RepeatMasker was designed to discover repeats and mask
(i.e., remove) them so as to prevent complications in
sequence assembly and gene characterization. The tool
includes a set of statistically optimal scoring matrices
calculated for a range of background GC levels permitting
estimation of the divergence of query sequences compared
to a curated repeat library [39]. A search engine such as
BLAST, WU-BLAST, or Crossmatch is utilized in the
comparison process.2 The use of WU-BLAST for matching
is faster than using Crossmatch with only a slight loss in
detection ability [18]. The degree of similarity required for
a query sequence to be paired with a reference sequence(s)
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2 BLAST is an acronym for the “Basic Local Alignment and Search Tool”
developed by Altschul et al. [3]. There are currently several different
BLAST modules specially designed for comparisons between different
data types (see http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). WU-
BLAST is a powerful alternative implementation of BLAST available
from Washington University (http://blast.wustl.edu/). Crossmatch is a
similarity search tool traditionally packaged with Phrap (www.phrap.org).

1 Haas and Salzberg [33] have recently reviewed a subset of the repeat
finders that we discuss. The focus of much of their review is
mechanisms for handling the complications presented by repeats
during genome assembly. The focus of our review is the use of these
tools for identification of novel dispersed repeats in genomes.
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Table 1 Summary of programs for finding dispersed repeats

Program (reference) source Platforma Approachb Substratec Repeat finding
methodd

Outpute

Adplot [80] via e-mail from authors 1 A G Dp w/ Ks 2D plot of repeats
CENSOR [40] http://www.girinst.org/censor/
download.php

1, 3 L R/G Wb Annotation and masked
seqs.

Dotter [75] ftp://ftp.cgb.ki.se/pub/esr/dotter/ 1, 2 A G Dp w/ Ga 2D plot of compared seqs.
FINDMITE [84] jaketu.biochem.vt.edu/4download/
MITE/

1 S R/G Ss Repeat coordinates and
length

FORRepeats [50] al.jalix.org/FORRepeats/ 1 A G Km and Ex Repeat coordinates and
length

HomologMiner [35] http://www.bx.psu.edu/miller_lab 1 A G Gb Fam. consensus seqs.
Inverted Repeats Finder [87] http://tandem.bu.edu 1,2 S G Ss with Ks Seq. and positions of

inverted repeats
LTR_STRUC [59] http://www.genetics.uga.edu/
retrolab/data/LTR_Struc.html

2 S R Ss Info. about LTR
components

MAK [92] http://wesslercluster.plantbio.uga.edu/
mak06.html

1, 2, 3 L/S R Bn MITE families and anchor
elements

MUMmer [24] http://mummer.sourceforge.net/ 1 A G Km using St Fam. consensus seqs.
OMWSA [26] http://www.hy8.com/~tec/sw01/
omwsa01.zip

1, 2 A G Pe using Mw Fam. consensus seqs.

PatternHunter I and II [56] http://www.
bioinformaticssolutions.com

1 A G Sp Seq. and positions of
repeats

Periodic Pattern Detector [21] via e-mail from authors 1 A G Pe w/ Pa Fam. consensus seqs.
PILER [29] http://www.drive5.com/piler 1 A G La Fam. consensus seqs.
PILER-CR [28] http://www.drive5.com/pilercr 1 A G La Fam. consensus seqs.
PLOTREP [83] http://repeats.abc.hu/cgi-bin/plotrep.pl 1, 3 L G Wb 2D plots for each ref.

element
RAP [16] via e-mail from authors 1 A G Km using Wc High frequency words

with counts
ReAS [52] via e-mail from authors 1 A R Km then Cl Fam. consensus seqs.
Recon [7] http://selab.janelia.org/recon.html 1 A R Wb Fam. members
Repeat Pattern Toolkit [2] via e-mail from authors 1 A G Bn Fam. consensus seqs.
RepeatFinder [85] http://cbcb.umd.edu/software/
RepeatFinder/

1 A G Km then Cl Fam. consensus seq.

RepeatGluer [66] http://nbcr.sdsc.edu/euler/intro_tmp.
htm

1 A G Am using Rp or
Bn

Fam. consensus seqs. and
rpt. graph

RepeatMasker [74] http://www.repeatmasker.org 1, 3 L R/G Wb or Cm Annotation and masked
seqs.

RepeatScout [67] http://repeatscout.bioprojects.org/ 1 A G Km w/ Al and
Pb

Fam. consensus seqs.

REPuter [45] http://www.genomes.de/download.html 1, 3 A G Km using St Repeats with E-values
Spectral Repeat Finder [72] http://www.imtech.res.in/
raghava/srf

3 A G Pe w/ Ps Fam. consensus seqs.

TE-HMM [5] via e-mail from authors 1 S R/G HMM Prob. that seq. is Class I or
II rpt.

Vmatch [1] http://www.vmatch.de/ 1 A G Km using Sa Repeats with E-values and
scores

In a companion paper [71], we present an empirical comparison of the ab initio tools highlighted in gray.
a 1=Linux/Unix;/MacOS X; 2=Windows; 3=available online with a web interface. Most tools are distributed with their source code so an
executable can be complied for a target platform.
b L library, S signature, A ab initio
cR read-length sequences, G assembled genomic region
dAl alignment, Am adjacency matrix, Bn BLASTN, Cl clustering, Cm Crossmatch, Dp dot-plot; Ex extension, Ga global alignment, Gb gapless
BLAST and graph methods, HMM Hidden Markov Model, Km k-mer, Ks k-tuple search, La local alignment, Mw moving window spectral
analysis, Pa phase alignment with gap penalty, Pb penalty-based scoring, Pe periodicity, Ps calculation of power spectrum, Rp REPuter, Sa suffix
arrays, Sp spaced seed, Ss signature searching algorithm, St suffix trees, Wb WU-BLAST, Wc word counting.
eFam family, seqs. sequences, ref. reference, 2D two-dimensional, rpt. repeat
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can be specified by the user. Because identification of
repeats by RepeatMasker is based entirely upon shared
similarity between library repeat sequences and query
sequences, any region of query sequence with significant
similarity to a reference sequence in the repeat library is
marked as a repeat whether or not it is found multiple times
in the query sequence dataset. Both the sequence informa-
tion for repeat regions and the annotation reports produced
by RepeatMasker are presented in a simple, user-friendly
format. RepeatMasker is often used in conjunction with
Repbase [39], a large curated repeat library containing data
from numerous eukaryotes, but it can be used with clade-
specific repeat databases [65, 90, 70] as well. Repeat-
Masker is the only repeat finder among those reviewed that
can fully utilize multi-processor systems as it is delivered.
This feature along with the simple database search
approach makes it one of the fastest (when used with
WU-BLAST) and most effective repeat finders available.
Installation is straightforward and there are very few
parameters to adjust. Despite its wide use and many
advantages, RepeatMasker cannot be used to find repetitive
sequences that do not share significant nucleotide similarity
with previously defined repeat sequences. However, the use
of RepeatMasker with Repbase or some other curated
repeat database is often considered an essential first step in
repeat analysis of a genome.

Several library-based repeat detection tools use visuali-
zation techniques to display data in formats that can
facilitate interpretation. PLOTREP [83], for example,
clusters and visually displays the variants for a reference
sequence or repeat element. Censor [40] uses BLAST to
identify matches between input sequences and a reference
library of known repetitive sequences. The length and
number of gaps in both the query and library sequences are
considered along with the length of the alignment in
generating similarity scores. Regions of query sequences
with similarity scores exceeding a user-defined minimum
threshold are recorded. This tool reports the positions of the
matching regions of the query sequence along with their
classification. It also produces a “masked file” similar to
RepeatMasker containing the original sequence with all
detected repeats visually demarcated.

Signature-based Techniques

Signature-based repeat identification tools search a query
sequence(s) for nucleotide or amino acid motifs and spatial
arrangements characteristic of a particular repeat group.
Unlike library-based tools, all signature-based tools employ
heuristics based on a priori information of particular repeat
types. However, some signature-based tools also may use
reference sequence libraries at some stage in the analysis
process.

Signature-based tools used to identify long terminal
repeat (LTR) retrotransposons (Fig. 1) include LTR_STRUC
and RetroTector©. LTR_STRUC [59] searches a query
sequence for pairs of similar LTRs separated from each
other by a physical distance expected for this retrotranspo-
son group. The authors report that LTR_STRUC can
successfully locate retrotransposons when LTR regions
have > 75% sequence identity. RetroTector© [76] uses a
variety of techniques to identify potential LTR retroele-
ments. The program identifies putative LTR pairs based on
comparison with conserved LTR sequence motifs and
analysis of spatial relationships among closely associated
LTRs. A variety of procedures are then used to search
surrounding areas for conserved retrotransposon protein
motifs and other LTR retroelement features.

Miniature inverted-repeat transposable elements (MITEs)
have also been identified using signature-based tools.
FINDMITE [84] uses a string matching technique adapted
from the Knuth–Morris–Pratt algorithm [20] to search for
potential pairs of terminal inverted repeat (TIR)/target site
duplication sequences separated from each other by a
distance characteristic of MITEs (Fig. 1). MAK [92],
another MITE identification tool, assumes that all members
of a MITE family are homologous. When provided an input
sequence of a MITE element, MAK uses BLAST, imple-
mented as part of sub-pipelines, to (a) identify and retrieve
other members of the family that share similarity along their
complete length or at both the terminal regions, (b) generate
a consensus sequence that serves as the anchor element for
the family [40], and (c) locate the genes, if any, that exist in
close proximity to the MITE family elements. This tool is
particularly useful in comparative genomics studies as a
characterized MITE element from one species can be used
to “seed” searches for similar elements in related species.

Inverted repeats are features of several DNA transposon
groups including TIR transposons, MITEs, and Mavericks/
Polintons (Fig. 1). Inverted Repeats Finder (IRF), a tool
developed by Warburton et al [87] searches for pairs of
non-overlapping short, identical sequences in reverse
complement orientations. For each identified pair, the
halfway point between the two members (i.e., a center
position) is recorded. After this process is complete for the
query sequence, IRF searches for “clusters” of pairs that
roughly share the same center position, and aligns and
extends these to produce candidate inverted repeats. A
“narrowband” technique [11] is used to eliminate those
candidates with alignment scores beneath a user-defined
threshold. According to the authors, searching for short
reverse complement sequence pairs facilitates identification
of short inverted repeats separated by relatively small
“spacers,” while searching for longer reverse complement
pairs aids in identification of long inverted repeats with
larger spacers.
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Andrieu et al. [5] base their signature-based tool for
identifying transposable elements, TE-HMM, on the obser-
vation that transposons have compositional (nucleotide)
biases compared to genes. For a species, TE-HMM builds
three different hidden Markov models using training sets of
retrotransposons, DNA transposons, and gene sequences.
TE-HMM can then be used to place a particular query
sequence or section of a query sequence into one of these
three categories based upon the compositional model it
most closely resembles. Using TE-HMM on several test
species, the authors report high specificity values (with
somewhat lower sensitivity values) in identification of
retrotransposons and DNA transposons. Because composi-
tional bias varies among species, it is usually necessary to
build new hidden Markov models for new species.

Ab initio Repeat Identification

Ab initio algorithms identify repetitive elements without
using reference sequences or known repeat motifs in the
repeat identification process. To facilitate comparison of ab
initio tools, we use the following definitions:

& Assembled genomic region: a relatively long (Mb to
Gb) region of continuous DNA sequence, e.g., a whole
chromosome or an assembled chromosomal region.

& Family: a group of repetitive sequences inferred to have
a common ancestor based upon sequence similarity.
Note that in the context of this paper, family is not
meant to imply a taxonomic level in a formal
hierarchical classification scheme.

& Element: a broad term for an individual member of a
repeat family. If an assembled genomic region is used
as the substrate for repeat identification, then each
identified element will be traceable back to a specific
location on the query sequence. If sequence reads are
used as the starting substrate, then it is likely that the
exact physical locale of an identified element will not
be known without additional research/information.

& Consensus sequence: a “pseudomolecule” composite of
all the members in a repeat family in which each place
in the nucleotide chain is occupied by the base most
commonly found at that position.

We have divided the process of detecting repeats into
two stages. The first stage deals with initial identification of
repetitive sequences. The second stage, repeat family
definition, is focused on identifying the boundaries of the
repeats and extraction of the consensus sequence for each
family. Below we discuss major ab initio repeat finding
algorithms/tools within the framework of these two stages.
Note that some tools perform repeat identification (stage 1)
without generating a family definition (stage 2).

Stage 1: Initial Identification of Repetitive Sequences

All ab initio discovery of repeat families begins with
identification of relatively short sequences that are found
multiple times in a sequence or sequence set. Four basic
(but not entirely exclusive) groups of approaches have been
utilized in initial identification and clustering of repeats.

& Self-comparison: compares the uncharacterized DNA
sequence with itself to identify clusters of similar
sequences.

& k-mer: involves explicit enumeration of all frequently
occurring exact substrings (called k-mers or “words”) in
the query sequence(s). Two substrings of length k are
not matched unless their sequences are identical.

& Spaced seed: similar to k-mer approaches except that
the “seeds” used in the matching process possess a
predefined level of tolerance for mismatch or indels.

& Dot matrix: plots the input sequence against itself.
& Periodicity: transforms sequence data from the se-

quence (time) domain into the frequency domain and
performs analysis on the frequency data.

Self-Comparison Approaches

One of the first attempts to build a system for automated
detection of repetitive elements was the Repeat Pattern Toolkit
[2]. It uses the nucleotide–nucleotide BLAST module, i.e.,
BLASTN (http://www.ncbi.nlm.nih.gov/blast/), with the
overlap option applied to an assembled genomic region.
Local alignments are calculated separately for word sizes of
8 and 12 bp, and the results are merged. The product is a set
of words and their pairwise similarity scores. A graph-based
single link clustering algorithm is then used to group
sequences. Single link clustering regards two sequences as
belonging to the same cluster if they share a similar
nucleotide stretch(es) longer than a certain proportion of
one of the two elements. Each sequence is considered to be a
vertex in a graph, and two vertices are linked if they overlap
beyond some threshold. Connected components form groups
of related repeat elements [7].

RECON [7], currently one of the most widely used ab
initio repeat identification tools, is also based on BLAST
searches. RECON begins with an all-to-all BLAST analysis
of multiple sequence reads using WU-BLASTN. This is
followed by application of single link clustering to alignment
results. An undirected graph G is constructed with each
image (i.e., overlapping regions of assembled reads) as a
vertex, and two images are connected by an edge if they
overlap beyond a threshold. The shortest sequence that
contains all images in a connected component in this graph
is deemed an element. However, since this procedure can
result in elements that are composite, the element and all
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images used to construct it are aligned together. The element
is split up at every point with a significant aggregation of
image ends. Note that this process will collapse all identical
elements for a repeat family located at different sites in the
genome into a single element.

PILER [29] uses a local alignment procedure called
pairwise alignment of long sequences (PALS) that is
tailored for repeat identification in assembled genomic
regions. To improve efficiency, only location coordinates
(end points) of hits are recorded. PALS uses banded
searching (local alignment of sequences that are located
within a certain range of each other) to optimize identifi-
cation of repeat families with profiles characteristic of
known repeat types.

k-mer Approaches

k-mer or “word counting” approaches view a repeat as a
substring w of length k that occurs more than once in a
sequence S of length n. A repetitive subsequence w that
cannot be extended without introducing mismatches is
called a maximal repeat. Since there are 4k possible words
of length k, these approaches usually require that k be at
least log4(n) where n is the length of the genome or
sequence set being studied. For example, the k-mer-based
tools ReAS, RepeatScout, and RAP all recommend a value
of k that is greater than log4(n). The value of k required for
indexing assembled plant genomes is roughly 12 to 19
based on plant genome size estimates [9]. Because direct
indexing of all sequences of this length is impractical, a key
issue that must be addressed by algorithms that use the k-
mer approach for repeat finding is compact and efficient
representation of substrings. Increasing the value of k
decreases the sensitivity of the repeat searching procedure
while decreasing the seed size increases the computational
complexity of the search and the probability of matches
occurring at random.

REPuter [45] was one of the first tools to implement a k-
mer search algorithm for repeat finding. Its search engine
component, REPfind, uses the efficient suffix tree data
structure developed by Weiner [88] for storing all repeated
exact k-mers in a sequence that have lengths greater than or
equal to a user-specified size. Suffix trees can be used to
search for strings in linear space and time with a complexity
of O(n+z) where z is the number of maximal repeats. This
representation allows the algorithm to scale when handling
large sequences from eukaryotic genomes. The REPuter k-
mer approach has also been effectively used by other tools.
For example, RepeatFinder [85] and RepeatGluer [66] both
use the REPuter engine to generate an initial list of maximal
repeats. Alternatively, RepeatFinder can also use the output
from another suffix-tree-based tool, RepeatMatch, which is
based on MUMmer [23].

While REPuter builds initial clusters by finding all
repetitive sequences longer than a threshold value, other k-
mer tools group sequences based upon shared high
frequency k-mers of a pre-defined length. Aligned sequen-
ces identified by a specific k-mer are then extended by a
variety of mechanisms. Using a fixed-length k-mer reduces
the time and space complexity of the search process.

The authors of ReAS [52], an approach based on fixed-
length k-mers, have adapted major components of their
RePS [86] sequence assembly tool for identification of
transposable elements in shotgun sequence reads. ReAS
utilizes sequence reads as a substrate to avoid errors
introduced by incorrect sequence assemblies. The ReAS
algorithm employs a randomly selected, high frequency k-
mer as “bait” to retrieve sequence reads containing that k-
mer. The value of k is determined based on genome size (n)
using the formula k≥ log4(n) as described above. The
“captured” sequence reads for a given k-mer are processed
by ClustalW [18] to generate an initial 100 bp consensus
sequence centered on the k-mer. If another high copy k-mer
exists near either end of the initial consensus sequence, it is
used to capture additional sequences from the input dataset.
The newly retrieved sequences are then utilized to extend
the initial consensus sequence if there is 95% identity in the
region of overlap. Consensus sequence extension is
repeated up to five times.

RepeatScout also builds a library of high frequency fixed
length k-mers and uses these as seeds for a greedy search
during the family definition stage [67]. RepeatScout imple-
ments a modified version of the classical local alignment
algorithm by incorporating a penalty-based scoring system
in screening the k-mers.

Spaced Seed Approaches

An extension of k-mer approaches is the concept of spaced
seeds. Instead of searching for perfectly identical matches
of length k, spaced seed algorithms conduct searches using
“seeds” containing a defined level of tolerance for variation
in sequence identity and/or length. The first spaced seed
tool, PatternHunter [56], allowed mismatches in fixed
positions while requiring perfect matching in others. This
increased the sensitivity (and somewhat surprisingly) the
speed of searches compared to standard k-mer approaches.
Multiple spaced seed techniques [56, 51, 36] take this idea
even further by using several optimal spaced seed patterns
in searches. The multiple/optimal spaced seed concept was
utilized in development of PatternHunter II [51] and also
has been incorporated into some recent versions of BLAST
and other alignment programs [36]. “Indel seeds” proposed
by Mak et al. [57] use a spaced seed strategy except that the
so-called “don′t care” positions in the spaced seeds not only
tolerate single base mismatches but indels (i.e., short
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insertions and deletions) as well. The authors use a
modified version of Inverted Repeat Finder [87] with indel
seeds to increase sensitivity compared to standard spaced
seeds. While indel seeds are arguably not essential when
searching for conserved regions in genes, they are likely to
be of considerable utility when evaluating repeats and non-
coding gene regions where indels are more likely to be
present.

Another spaced seed-like approach, RAP [16], imple-
ments a complex indexing strategy that allows space
efficient counting of words of a specific size in which a
predefined amount of degeneracy is permitted. Word
counters are created for each position in the sequence, and
all potential words of size k beginning from each sequence
position are enumerated using a multi-array data structure.

Dot Matrix Approaches

One of the earliest and simplest repeat finding techniques
was the dot-plot [75] in which a sequence is plotted against
itself. Auto Dot PLOT or Adplot [80] is an adaptation of the
dot-plot principle applied to a single assembled genomic
region. Similar k-mer elements located within a user-
specified range are detected in the first step. This
information is recorded along with the inter-element
distance. A sliding window based filtering method is
applied to repeat families whose sum of element lengths
is below a threshold. The focus of this tool is visualization
of the distribution of repetitive regions over the sequence.
The authors claim that Adplot is more effective than dot-
plot for analyzing repeats families dispersed over the
genome.

Periodicity Approaches

Periodicity-based approaches are fundamentally different
than the aforementioned techniques. The Spectral Repeat
Finder of Sharma et al. [72] uses Fourier transforms to
analyze DNA sequence in the frequency domain rather than
the commonly used time domain (where an alphabetic
sequence is viewed as a time series). The power spectrum
of the sequence generated from the Fourier transforms is
used to identify both short term and long term autocorre-
lations of the sequence with itself. High intensity peaks in
the power spectrum of the sequence represent candidate
repetitive regions or elements. These candidate repeats are
used to seed a local alignment search to detect similar
elements and to determine the consensus sequence for the
family. Since the signal strength deteriorates with the
dispersion of repeats, this method is most effective for
exact tandem repeats, although the authors indicate that it
can also be used to locate some dispersed repeats. The time
complexity of the algorithm is O(n2).

Stage 2: Defining Repeat Families

The methods described in the preceding section are used to
generate sets of similar elements whereas the following
section discusses techniques used to extend and combine
elements into families, where possible, and to extract
descriptions of the consensus (or prototype) sequence for
each repeat family.

Clustering

Some tools implement repeat family identification by
further clustering to derive the final family definition. This
process may be guided by biological heuristics.

RepeatFinder [85] begins with the initial set of exact
repeats identified using one of two suffix tree approaches
and then merges different exact repeats that are close
together (merging using gaps) or that overlap (merging
using overlap) to generate a set of “merged repeats.” The
merged repeats are then grouped into categories; two
merged repeats are placed in the same category if they
contain at least one exact repeat. A final round of clustering
is performed in which BLAST is used to compare each
category against all other categories. After a final round of
merging, an element is selected from each resulting
category as the representative sequence (prototype) for the
repeat family; an objective function is defined for each
clustering protocol (merging using overlaps and merging
using gaps) and a category prototype is derived that
minimizes the appropriate objective function. Clustering
operations are performed using only element location
coordinates affording a more compact data structure and
therefore improved time and memory efficiency. The
running time of RepeatFinder is dominated by the all
versus all comparison in the first step and the memory
requirement is dominated by the REPuter algorithm [85].
The memory requirements for the underlying suffix tree
data structure can grow up to many gigabytes for moderate
to large eukaryotic genomes [46].

PILER [29] adopts a novel heuristic-based approach for
repeat identification and characterization in assembled
genomic regions. The PILER algorithm is designed to
analyze an assembled genomic region(s) and find only
repeat families whose structure is characteristic of known
subclasses of repetitive sequences. PILER works on the
premise that the entire DNA sequence is assembled with a
reasonably low number of errors because the algorithm is
completely dependent on the position of repeats in the
genome for all classification. The output of the clustering
step is recorded in terms of start and end coordinates.
Similar elements are then clustered into “piles.” Piles are
actually sets of overlapping hits similar to the categories in
RepeatFinder. The time required to create the piles
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increases linearly with the length of the sequence. The
characteristics of elements clustered in a pile are matched
against four author-defined profiles (tandem arrays, dis-
persed families, pseudosatellites, and terminal repeats). The
MUSCLE [27] alignment program is used to generate
the consensus sequence for each family detected in the
classification step. These consensus sequences can be used
to create RepeatMasker or BLAST libraries to search for
complete or partial members in the genome [29].

Graph Representation with Heuristics

Repeat Pattern Toolkit [2] builds a repeat graph G=(V,E)
using only ungapped local alignments from the clustering
step. Vertices V represent the repetitive sequences or
elements. Weighted edges E represent the relationship
among similar elements. Connected components from the
graph are converted into minimum spanning trees
using Kruskal ′s algorithm and Binsort [20] in
O Ej j þ Vj jlog Vj jð Þ time. Each minimum spanning tree
represents a repeat family. Each tree is reduced to a single
vertex to deduce the consensus sequence for the family.
This vertex is the weighted midpoint of all the other
vertices in the graph. A limitation of this technique is its
inability to address repeat families that have elements with
indels since only ungapped alignments are analyzed.

Bao and Eddy [7] extended and improved upon the work
of Agarwal and States [2] with RECON. The algorithm
refines the elements derived from the results of local
alignment of multiple sequence reads. The final set of
elements is represented as a repeat graph H where each
element is a vertex and two types of edges represent
relationships among elements. Elements with an overlap
ratio above a specified threshold are connected by edges
designated as primary while those with significant align-
ment but with overlap below the ratio threshold are
connected by edges designated as secondary. Primary edges
are interpreted as denoting elements that belong to the same
family and secondary edges as denoting elements from
similar but distinct families.

RepeatGluer takes a novel approach for extracting the
descriptions of repeat families [66]. The focus is on
deciphering the mosaic of sub-repeats nested within
repetitive regions in the genome using A-Bruijn graphs,
an extension of the de Bruijn graphs [22]. The original de
Bruijn graph represents repeat families as a mosaic of
perfect repeats. The concept has been generalized by
Pevzner et al. [66] to A-Bruijn graphs to enable approxi-
mate matches or imperfect repeats to be represented within
this framework. The algorithm constructs an adjacency
matrix from the supplied assembled genomic region(s).
This matrix is used to construct a weighted A-Bruijn graph
G where the weight of the edge between two vertices is the

number of edges joining them. The graph G can model all
relationships accurately but can become extremely complex
to interpret. A number of biologically derived heuristics are
used to simplify the graph. Finally, each set of connected
components or “tangle” is resolved to a consensus
sequence. The consensus sequence for a repeat family is
constructed using consensus sequences from all similar
elements for each sub-repeat within the repeat family.

String Extension

Algorithms covered in this review that cluster high
frequency k-mers as a first step often employ string
extension techniques for the second step of family
definition. REPuter was one of the first repeat finders to
use the string extension method [45]. The authors employ a
strictly non-heuristic and purely mathematical approach for
detecting repeats. The output of REPfind, REPuter′s search
module, is processed further for finding degenerate repeats
using either a Hamming distance model or an edit distance
model [32]. The edit (or Levenshtein) distance approach
has an overall time efficiency of O(n+zk3) where n is the
size of the sequence and z is the number of k-mers
extended. REPuter extends the maximal repeats in both
directions with the number of mismatches as a threshold.
Each isolated consensus sequence is assigned an E value
[4] based on the expected number of consensus sequences
with similar lengths and number of errors based on the
assumption that random DNA conforms to a uniform
Bernoulli model. REPuter also includes a visualization
module called Repvis to enable manual inspection of the
detected elements in a genome context. Of note, the
REPuter package has been subsumed by Vmatch [1].
Vmatch uses suffix arrays [58] that have a reduced space
requirement instead of a suffix tree for indexing substrings.

RepeatScout [67] generates consensus sequences by first
detecting a set of highly repetitive fixed length k-mers in an
assembled genomic region as described above. The algo-
rithm extracts a copy of each k-mer and its surrounding
region and then greedily extends the boundaries on both
ends yielding a consensus sequence for the repeat family
representing the k-mer. RepeatScout processes each repeat
element using RepeatMasker to find all similar elements for
the repeat family and adjusts frequencies of other k-mers in
case of overlaps. The final set of consensus sequences
found by RepeatScout can be compared against gene
annotation coordinate files for the organism to screen out
the repeat families located in genic regions or areas of
segmental duplication using scripts provided by the authors.

ReAS is focused on reconstruction of ancestral sequen-
ces of transposable elements from multiple sequence reads
[52]. Consensus sequence boundaries are determined from
clustered elements using the “aggregation of end points”
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technique derived from RECON [7]. Li et al. [52], the
creators of ReAS, have used simulations to empirically
determine parameters for different steps and guide their
repeat element discovery process. The ancestral or consen-
sus sequence set constructed by ReAS can be used as a
library for RepeatMasker.

Conclusion

It is becoming increasingly clear that repeats are one of the
principal factors responsible for the evolutionary success of
eukaryotes [13, 89] Specifically, (a) repetitive DNA
influences gene expression and recombination [6, 25, 73],
(b) some repeat sequences have become critical in
maintenance of chromosome structure [49, 55], (c) mobile
repeat sequences increase genetic diversity through muta-
tion [78, 8, 31], and (d) multiple transposition of some
DNA transposons can produce chimeric molecules com-
posed of segments of a variety of cellular genes, an
observation which suggests that mobile element transposi-
tion may represent a means by which novel genes can be
generated [37, 47, 61]. However, the algorithms and
computational tools for identifying and studying repeat
sequences are relatively primitive compared to those being
utilized to explore genes. The complex structure of
repetitive elements, the lack of knowledge concerning their
function, and their limited conservation make the problem
of identifying repeats and extracting meaningful family
descriptions computationally challenging.

Ab initio tools hold the promise of enabling researchers
to identify repeats in newly sequenced genomes and to
discover new repetitive elements in well-studied genomes.
Five approaches that have been used for initial identifica-
tion of repetitive DNA are similarity based searches (e.g.,
BLAST), enumeration of k-mers, spaced seeds, dot-matrix
approaches, and periodicity approaches. A variety of
techniques are then used to extract refined descriptions of
repeat families. Some ab initio tools are designed to be used
with assembled genomic regions while others are targeted
for shotgun reads (Table 1). The effectiveness and accuracy
of six widely used ab initio repeat finders is evaluated and
discussed in a companion paper [71].

There are many ways in which computational identifica-
tion and characterization of repeat sequences could be
improved. In addition to better, faster algorithms for repeat
finding, the use of ensemble approaches that combine results
from several different algorithms via voting mechanisms
holds promise, and such strategies have been successfully
applied to gene expression data [79, 53]. Another approach is
to build pipelines that sequentially apply tools targeting
different types of repeats or tools based on different
algorithms. This is the approach taken by Quesneville et al.

[69] for annotation of transposable elements in Drosophila
and Chouvarine et al. [19] for classification of higher plant
repeats. Although there are a number of tools for ab initio
repeat identification, there has been little work in the
development of computational tools for subsequent charac-
terization of the discovered repeat families.

New types of repetitive elements are being discovered at
a rapid rate as more genome sequences become accessible.
The availability of sequenced genomes as well as the
increasing recognition of the biological importance of
repetitive elements will motivate the development of more
sensitive and selective algorithms for ab initio repeat
discovery and automated methods for classification and
characterization of newly discovered repetitive elements.
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