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Regression models that estimate daily pan evap-

oration for inland and coastal regions of South-

eastern U.S. were developed using observations

of wind speed, solar radiation, minimum rela-

tive humidity, and maximum temperature. These

weather elements are collected in numerous lo-

cations where measured pan evaporation records

are not available, allowing an estimation of pan

evaporation across large regions with higher

point pattern density than is available using pan

evaporation sites only. Sixteen models were devel-

oped and tested. An innovative model selection

metric was developed, employing R square, Pear-

son’s correlation coefficient, average difference

between estimated and measured evaporation,

root mean-squared error, and mean absolute er-

ror. Models selected included two validated for use

in inland environments and one validated for use

in coastal environments.

key words: climate model, pan evaporation,

water balance, weather

introduction

Daily pan evaporation is an important
factor in landscape-level water budget cal-
culations. It is also an important dynamic
variable that should be considered when
modeling fire potential, making crop man-
agement decisions, and in other projects
focusing on water management and con-
servation. Acquisition of pan evaporation

data suitable for water budget calcula-
tions is a challenge because the data
must be easily accessible, spatially well
distributed, and collected regularly over
extended time periods.

The predominant pan evaporation
measurement method utilizes a ∂∫-inch
diameter pan that sits above ground,
known as the Class-A evaporation pan.
Exclusive adoption of these pans by the
National Weather Service is considered to
be the first attempt to unify evaporation
data collection throughout the U.S. (Jones
∞ΩΩ≤). Evaporation pans and associated
automated measurement devices are rather
expensive and are located at a limited
number of weather stations around the
U.S. and the world. For example, in Mis-
sissippi evaporation pans are maintained
at only nine locations and most of them
are in the northern two-thirds of the state
(Bell ≤≠≠∂).

In addition to the relative scarcity of
collected pan evaporation data, the ac-
curacy of pan evaporation estimates has
been questioned by numerous researchers
(Bruton et al. ≤≠≠≠a; Sumner and Jacobs
≤≠≠∑). For example, precipitation events
interfere with accurate measurement of
pan evaporation (Lindsey and Farnsworth
∞ΩΩπ). Generally, the pan evaporation rec-
ord must be corrected for any additions
of rainfall to the pan. However, errors in
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Figure ∞. Map showing weather stations in Mississippi;

stars indicate stations recording solar radiation.
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rainfall measurement and inconsistency
in rainfall capture add error to recorded
pan evaporation data (Sumner and Ja-
cobs ≤≠≠∑). Finally, pan evaporation rec-
ords are often acquired seasonally, with
more comprehensive data available in the
summer months and during the growing
season.

All these obstacles make good-quality
daily evaporation data difficult to obtain
at many locations across large regions. In
order to fill this void, this study presents
a method for estimating pan evaporation
based on data from existing pan evapora-
tion stations in Mississippi, Alabama, and
Louisiana and other meteorological data
that are readily available at numerous
weather stations.

Many attempts have been made to de-
velop empirical formulas that estimate
potential evaporation and evapotranspi-
ration. Thornthwaite (∞Ω∂≤) stated, ‘‘The
lack of a direct measure of losses by evap-
oration from natural surfaces has led to
the development of many empirical for-
mulas for expressing the effectiveness
of evaporation.’’ Historical formulas com-
monly used in the southeastern U.S. in-
clude Thornthwaite (∞Ω∂∫), Blaney and
Criddle (∞Ω∑≠), Penman (∞Ω∑∏), and Pote
and Wax (∞Ω∫∏). These formulas have
varying degrees of complexity and some
were developed for application at specific
locations. Often, data necessary for for-
mula calculations are simply not available.
For example, the Penman equation, a com-
monly used estimator of evaporation from
the free surface of a body of water (Pen-
man ∞Ω∂∫; Penman ∞Ω∏≥; Shuttleworth
∞ΩΩ≥), requires measurement of net radia-
tion, soil heat flux, air temperature, rela-
tive humidity, wind speed, vapor pressure,
and other environmental variables (Sum-

ner and Jacobs ≤≠≠∑). A complete set of
these input elements at locations that
are spatially well distributed over large
geographic regions is rare. For example,
Figure ∞ shows the spatial distribution
of weather stations in Mississippi with
only ∞π of ∞π∫ stations recording solar
radiation.

With recent increased availability of
hourly and daily meteorological data from
a variety of observing networks, estima-
tors of evaporation have been developed
using ‘‘proxy’’ weather elements as inputs.
Hanson (∞Ω∫Ω) used daily solar radiation,
daily mean temperature, and wind run
(daily average wind speed) to model class-
A daily pan evaporation for southwest
Idaho. Cahoon et al. (∞ΩΩ∞) used mea-
sured pan evaporation data to determine
local coefficients for existing equations
that estimate pan evaporation using data
from ∞≥ stations in the mid-south and
southeastern U.S. Bruton et al. (≤≠≠≠b)
developed artificial neural network (ANN)
models to estimate daily pan evaporation
using multiple measured weather vari-
ables as inputs. The ANN model included
∞∂ different meteorological variables and
resulted in r≤ of ≠.π∞π. ANN models were
also developed by Terzi and Keskin (≤≠≠∑)
to estimate evaporation for the Lake Dis-
trict in western Turkey using air tempera-
ture, water temperature, solar radiation,
air pressure, wind speed, and relative hu-
midity. Another recent method employed
fuzzy logic models to estimate daily pan
evaporation using air and water tempera-
tures, sunshine hours, solar radiation,
air pressures, relative humidity, and wind
speed for Lake Egirdir in Turkey (Keskin et
al. ≤≠≠∂).

While it is certainly possible to estimate
pan evaporation at selected locations us-
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ing any of these methods, the goal of this
study is to estimate pan evaporation re-
gionally, using numerous locations that
meet four basic criteria: ∞) data are readily
available and easy to obtain; ≤) data are
spatially well distributed; ≥) estimates are
sensitive to regional climatic heterogene-
ity; and ∂) data are easily implemented for
interpolation of statistical surfaces within
Geographic Information Systems (GIS).

While the simplest evaporation esti-
mation methods are temperature based
(Thornthwaite and Mather ∞Ω∑∑), and
these data are widely available across
the Southeastern U.S., the dependence of
more sophisticated evaporation estima-
tion methods (Penman ∞Ω∂∫) require net
radiation, which is available at only ap-
proximately ∞≠ percent of stations in Mis-
sissippi. Evaporation estimates derived
from data obtained at the coarse resolu-
tion represented by stations that record net
radiation are less likely to be sensitive to
regional climatic variations. This coarse
point resolution is less likely to capture
environmental variability when data are
interpolated using GIS (Hijmans et al.
≤≠≠∑). Consequently, none of the existing
methods for calculating pan evaporation
met all four criteria.

Pan evaporation estimates derived from
a dense network of sites can play an impor-
tant role in assessment of water budgets
in areas frequently impacted by hurri-
canes. Environmental assessments will
benefit from water budget calculations as
they relate to fire hazard, water resource
management, and rates of oxidation that
affect vegetation decomposition and plant
communities’ recovery. Hurricanes fre-
quently impact Gulf Coast weather station
data streams (Graumann et al. ≤≠≠∑). In
the aftermath of Hurricane Katrina, many

of the existing weather observation sites
were impacted, indicating the need for a
spatially dense network of stations that
measure pan evaporation or record data
necessary for estimating pan evaporation.

materials and methods

Study Area and
Preliminary Analysis
The study focuses on areas of the south-

ern region of the U.S. in the states of Loui-
siana, Mississippi, and Alabama that main-
tain pan evaporation stations (Figure ≤).
As shown in Figure ≤, there are only a few
stations in the region that record pan evap-
oration, and current daily pan evaporation
data at these locations are not consistently
available.

Because of the deficiency of actual
daily pan evaporation data, substituting
calculated daily historic average values for
actual daily pan evaporation is an option
for water budget applications and is cur-
rently used as an input in various mod-
els (Cothren et al. ≤≠≠∞; Ruley and Rusch
≤≠≠∂; Enciso and Wiedenfeld ≤≠≠∑). One
drawback of using historic averages is the
removal of short-term variability in evap-
oration via the averaging process.

In general, measured pan evaporation
in the region was found to have total daily
values ranging from a minimum of ≤.∑∂
mm to maximum of π.∏≤ mm over the pe-
riod of the study (July–October). There-
fore the overall mean values for historic
and actual evaporation should be similar
within this small range most of the time.
Furthermore, evaporation is more spa-
tially homogeneous than precipitation, so
daily variability across the region is likely
to be small (Bell ≤≠≠∂). The daily variation
of precipitation is much more controlling
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Figure ≤. Map showing weather stations recording evaporation and locations

for which evaporation models were created.

in a daily moisture assessment. According
to Bell (≤≠≠∂), the average daily precipi-
tation for July ∞∑th in the southern region
is ∂.∑π mm, and pan evaporation has an
almost identical average of ∂.∫≤ mm on
that same day. However, the standard de-
viation of the precipitation data is Ω.≥Ω
mm, while the pan evaporation data have
a standard deviation of only ∞.∑≤ mm. Pre-
cipitation is therefore over ∏ times as vari-
able on a given day as evaporation in the
region. Nevertheless, the sparse coverage
of pan evaporation stations makes it dif-
ficult to characterize small differences in
evaporation, particularly during summer
months when convective rainfall events
can modify the microclimate and local wa-
ter budgets. In addition, accurate char-

acterization of the evaporation gradient
and decay of coastal influences on evap-
oration is difficult to measure due to the
limited number of pan evaporation sta-
tions that exist in both coastal and inland
environments.

An initial comparison of actual mea-
sured and historic average records indi-
cated numerous drawbacks. Figure ≥ illus-
trates a comparison of the ≤≠≠≥ measured
actual pan evaporation with the long-term
historic average daily pan evaporation for
an inland station (Stoneville, MS) and a
coastal station (Houma, LA). The graph
clearly illustrates that the derived average
daily pan evaporation does not conform
well to actual measured pan evapora-
tion. It is apparent that the average pan
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Figure ≥. Comparison of actual measured (Stoneville ≤≠≠≥; Houma ≤≠≠≥) and historic average

evaporation data (Stoneville ∞Ωππ–≤≠≠≤; Houma ∞Ωππ–≤≠≠≤).

evaporation fluctuates slightly around the
mean value of ∑ mm with a small decline
at the end of the study period, while the
actual measured pan evaporation is much
more variable. Range and variance values
are considerably different for historic aver-
age and actual pan evaporation, signifying
the fact that average pan evaporation de-
picts neither low nor high pan evaporation
values accurately (Table ∞). This indicates
that the average daily pan evaporation rec-

ord poorly expresses the specific variability
of actual daily pan evaporation as dictated
by fluctuating weather conditions.

Estimation error can be significant
when daily differences between historic
averages and actual measured pan evap-
oration are cumulatively summed over a
number of days. The cumulative differ-
ences are important criteria for identifica-
tion of continuous dry periods that are as-
sociated with drought conditions.
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Table ∞. Comparison between actual and historic pan evaporation for coastal and inland

stations (mm).

Stoneville, MS Houma, LA

Actual ≤≠≠≥ Historic Actual ≤≠≠≥ Historic

Mean ∑.≤∑ ∑.∑≤ ∂.≠∏ ∂.∑∂

Minimum ≠.π∏ ≤.πΩ ≠.≤∑ ≤.π∞

Maximum ∞≠.∞∏ π.≥π ∞≠.∞∏ ∏.∫≠

Range Ω.∂≠ ∂.∑π Ω.Ω≠ ∂.≠Ω

Std. Deviation ∞.∫∑ ∞.∞∞ ∞.∫≠ ≠.π≤

Variance ≥.∂∂ ∞.≤∑ ≥.≤≥ ≠.∑≤

Finally, an important aspect of the pan
evaporation estimation technique adopted
in this research is the recognition of differ-
ences in pan evaporation rates between in-
land and coastal environments. In general,
pan evaporation rates are higher inland
than in the coastal zone (Wax and Pote
∞ΩΩ∏). This fact was initially confirmed by
visual comparisons of means for actual and
historic pan evaporation at Houma, Loui-
siana (coastal) and Stoneville, Mississippi
(inland) stations (Table ∞). In addition,
vapor pressure deficits were calculated for
Gulfport (coastal) and Tupelo (inland),
MS, using ≥:≠≠ pm observation each July
∞∑ from ∞ΩΩ∂ to ≤≠≠∏. The average vapor
pressure deficit at the coastal location was
∞∂.∂≤ mb, and at the inland location was
≤∞.∏≠ mb, indicating that evaporation po-
tential at coastal location is only about ∏π
percent of that at the inland location.

Methods
The study was carried out in three

major stages. The first stage focused on
the development of simple, representative
regression models, capable of estimat-
ing daily pan evaporation for inland and
coastal environments in the study region.

The second stage included the selection of
the ‘best inland model’ (BIM) and the ‘best
coastal model’ (BCM). The third stage in-
volved resolving whether modeled pan
evaporation rates are more accurate than
available historic averages. These three
major stages are illustrated in more detail
in the methodology flowchart (Figure ∂).
Finally, each selected ‘‘best’’ model was
validated through an assessment of these
models’ accuracy when compared to ac-
tual measured pan evaporation.

Stage One: Model Development. Weather
data used to develop and validate regres-
sion models were obtained from obser-
vation networks of the National Weather
Service, the Louisiana Agriclimatic Infor-
mation Center (http://www.lsuagcenter
.com/weather/), the Mississippi State
University Extension Service (http://ext
.msstate.edu/anr/drec/), and the Univer-
sity of Utah ‘Meso West’ weather service
(http://www.met.utah.edu/mesowest/).
Data collected included daily observations
of pan evaporation (inches), maximum
temperature (Fahrenheit degrees), mini-
mum relative humidity (percent), solar
radiation (langleys), and wind speed
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(miles per hour) from July ∞ through Oc-
tober ≥∞ for ≤≠≠≤, ≤≠≠≥, and ≤≠≠∂. Data
from these three years provided the most
complete record of combined meteorologi-
cal data and pan evaporation data avail-
able at the most sites in the region. The
relatively short analysis period (July–
October) was selected to represent peri-
ods of highest evaporative demand in the
region. During the months from July
through October irrigation demands, crop
yield, fire hazard, and ground water de-
pletion/replenishment are impacted most
severely and this is the period when esti-
mating pan evaporation is most useful.
While it would have been advantageous to
include data from a longer time period,
thereby increasing the number of observa-
tions used to fit the models, these data
were considered representative of the nor-
mal range of conditions expected in the
southern gulf region. According to the Na-
tional Climatic Data Center Mississippi,
Alabama, and Louisiana experienced a
range of conditions, slightly below or
above normal in terms of temperature and
precipitation between ≤≠≠≤ and ≤≠≠∂.
The limited availability of complete data
also re-emphasizes the problem addressed
by this study; lack of a consistently avail-
able source of evaporation data.

The accuracy of pan evaporation esti-
mation depends greatly on the quality of
measured pan evaporation data as well as
the statistical properties of the other mete-
orological variables used to develop mod-
els. Even though the data acquired for the
modeling period were the most spatially
and serially complete, numerous problems
were still evident. For this reason, the
data obtained were carefully examined be-
fore the modeling was attempted. The ma-
jor data drawback observed was that seri-

ally complete and homogeneous data were
often not available—weather stations in
the study area do not consistently ob-
serve and archive similar elements. Also,
daily pan evaporation records did not corre-
spond with other measured meteorological
variables due to difference in time of obser-
vation. Finally, numerous daily observa-
tions were either missing or incorrect.

Therefore, prior to the analysis, three
data quality and variable properties issues
were addressed. First, daily pan evapora-
tion records were modified to correspond
with other measured meteorological vari-
ables that differ in time of observation. For
example, observations for temperature and
minimum relative humidity usually occur
the day before morning observations, not
at the time of observation. Total solar radi-
ation is summed over the period from mid-
night to midnight on the same day that
maximum temperature, minimum relative
humidity, and maximum wind speed are
recorded. Also, evaporation is recorded at
some sites over a ≤∂-hour period from mid-
night to midnight on the day following the
day of record for the other meteorological
observations. Consequently, prior to mod-
eling, pan evaporation measurements at
these sites were shifted back by one day to
insure consistency of observation period.
Second, missing or obviously incorrect
meteorological values (these not fitting
within the range of normals) were identi-
fied and replaced with an average value
calculated using records for the preceding
and the following day. In general, less than
∂ percent of pan evaporation data required
editing (Wax and Pote ∞ΩΩ∏). Third, four
major assumptions of multiple linear re-
gression were tested. These assumptions
included normal distribution of variables,
assumption of a linear relationship be-
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tween independent and dependent vari-
ables, variable measurement reliability,
and assumption of homoscedasticity.

Using the corrected data sets, multiple
linear regression (MLR) was used to de-
velop evaporation models. Daily pan evap-
oration data for the years ≤≠≠≤ and ≤≠≠∂
were used as the dependent variable;
≤≠≠≥ data were used later for validation.
Maximum air temperature, minimum rel-
ative humidity, and solar radiation for the
corresponding years were used as inde-
pendent variables. An ‘all possible com-
binations’ approach was used to assess
variable relationships and variable inter-
actions’ contribution to pan evaporation
predictions. From this approach, the opti-
mal variable set was chosen on the basis
of evaluation of adjusted R-square (RSQ)
values and tests of assumptions for MLR.
R-square is the coefficient of determina-
tion and is the proportion of variability in
a data set that is accounted for by a statis-
tical model. Adjusted RSQ is a modifica-
tion of RSQ that adjusts for the number of
explanatory terms in a model. Unlike RSQ,
the adjusted RSQ increases only if the
new term improves the model more than
would be expected by chance. For, the op-
timal set of variables, outlier analysis was
performed by assessing the values of the
standardized residuals (e.g. values ] ≤.≠
and values [ –≤.≠) and using Cook’s D
outliers were removed from the data sets
(Fox ∞ΩΩπ).

Models were created for Louisiana sta-
tions (Ben Hur, Houma, Calhoun), Missis-
sippi stations (Stoneville, Newton), and
one Alabama station (Fairhope). These
weather stations measure and archive
daily pan evaporation that could be used
for model fitting and cross-validation (Fig-
ure ≤). These locations were also selected

on the basis of weather data availability for
the years ≤≠≠≤, ≤≠≠≥, and ≤≠≠∂, and to sat-
isfy the spatial requirements for selectively
estimating pan evaporation for both inland
and coastal environments. Inland models
were developed using Stoneville, Newton,
Calhoun, and Ben Hur data, while coastal
models were developed with Houma and
Fairhope data.

Many weather stations only record a
subset of the potential independent vari-
ables (Figure ∞). In order to select the opti-
mal combination of weather elements for
both inland and coastal locations, two dif-
ferent ‘‘modeling approaches’’ were used.
Approach A incorporated the optimal vari-
able set selected on the basis of evaluation
of adjusted RSQ. Approach B integrated
only the two most commonly available ele-
ments as input variables—minimum rela-
tive humidity and maximum air tempera-
ture. Solar radiation was not included in
the approach B models, since it is available
only at a limited number of weather sta-
tions. Approach B requires the fewest num-
ber of variables, and models developed
under this approach were compared with
actual pan evaporation values to assess po-
tential model under-fitting problem. A
slightly under-fit model can be imple-
mented at many locations that would not
be used due an incomplete suite of explan-
atory variables.

Stage Two: Model Selection. Ultimately, the
best inland and coastal models were se-
lected to estimate pan evaporation for
these two distinctively different environ-
ments. Modeled and historic evaporation
rates were then tested against the actual
≤≠≠≥ measured pan evaporation in order
to determine the most accurate method of
estimating evaporation.
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Table ≤. Model performance measures, description, ranking, weights, and standardized values.

Performance

measure Description Rank Weight

Ideal

value

Standardized

value

RSQ Explains the variance in the data.

The higher the RSQ value the more

versatile the model is.

∞ ≠.∑ ∞ RSQ

CC Indicates trend agreement (model

conformity) between actual and

modeled evaporation.

The higher the CC value the better

model conforms with actual.

Can have trend agreement, but

different value range.

≤ ≠.∞≤∑ ∞ CC

AVG Overcomes CC limitations of range

value.

≤ ≠.∞≤∑ ≠ ∞-|AVG*∞≠|

RMSE Accepted standard model accuracy

evaluation measure.

≤ ≠.∞≤∑ ≠ ∞-RMSE*∞≠

MAE Accepted standard model accuracy

evaluation measure.

≤ ≠.∞≤∑ ≠ ∞-MAE*∞≠

The second stage of the research in-
volved the selection of the best inland
model (BIM) and the best coastal model
(BCM). Inland and coastal models were
evaluated separately. Each potential model
was evaluated by comparing the predic-
tion results against actual pan evaporation
measured in ≤≠≠≥. Inland models were
evaluated against Stoneville ≤≠≠≥ pan
evaporation data and coastal models were
evaluated against Houma ≤≠≠≥ pan evap-
oration data. Both of these datasets were
the most complete in the analyzed period.

The following performance measures
were used to compare the predicted and
measured pan evaporation. RSQ was used
to measure how well each linear model un-
der consideration fit the weather data to
the measured pan evaporation data. Pear-

son’s correlation coefficient (CC), average
difference (AVG), root mean-squared error
(RMSE), and mean absolute error (MAE)
were used to measure how modeled pre-
dictions departed from the actual pan
evaporation measurements. These per-
formance measures were employed for all
models in the initial inland and coastal
screening groups and were used to com-
pare each model to a hypothetical ‘‘per-
fect’’ model described with the following
attributes: RSQ value = ∞, RMSE and MAE
values = ≠, CC value = ∞, and AVG value =
≠. The performance measures were ordi-
nated and weighted according to their per-
ceived significance, and actual values were
standardized (scaled between ≠–∞) to rep-
resent uniform value ranges as shown in
Table ≤. The perfect model for stage two



160 william h. cooke, katarzyna gr ala and charles l. wax

(PM≤) can therefore be expressed with the
following formula:

PM≤=≠.∑ (RSQ) + ≠.∞≤∑ (CC) +
≠.∞≤∑ (∞-∞≠|AVG|) + ≠.∞≤∑ (∞-∞≠
RMSE) + ≠.∞≤∑ (∞-∞≠ MAE) = ∞ (∞)

The model RSQ that describes how
well the predicted ‘line’ fits the data was
considered the most important measure
and assigned a weight of ≠.∑. The other
measures (CC, |AVG|, RMSE, and MAE)
measure the departure of the predicted
pan evaporation values from the actual
pan evaporation values. Individually, each
‘departure’ measure is assigned a weight
of ≠.∞≤∑ and collectively are weighted
equally (sum = ≠.∑) to RSQ. The total
score for the perfect model is equal to ∞,
and scores for other models were calcu-
lated according to the same formula as
shown above using the standardized mea-
surement values (Table ≤). The calcu-
lated scores were then compared, and
models with highest scores were selected
from inland and coastal screening groups
respectively.

Stage Three: Model Comparison with His-
toric Average. The third stage evaluated
whether modeled pan evaporation rates
more accurately track actual pan evap-
oration than available historic averages.
While it is expected that modeled daily pan
evaporation rates should track actual daily
pan evaporation rates better than historic
averages, historic pan evaporation is cur-
rently used as an input in various models
(Cothren et al. ≤≠≠∞; Ruley and Rusch
≤≠≠∂; Enciso and Wiedenfeld ≤≠≠∑).

Values for the performance measures
from the best-selected models and per-
formance measures calculated for the his-
toric averages were used to validate the

premise that modeled pan evaporation
values are better estimates of daily evap-
oration than historic average values for
pan evaporation. Determination of the hy-
pothetical ‘‘perfect’’ model for stage three
(PM≥) did not include RSQ since historic
data are actual pan evaporation measure-
ments and not estimated by fitting a model
to the data. All performance measures
were weighted equally in stage three, and
the following formula was used:

PM≥ = ≠.≤∑ (CC) + ≠.≤∑ (∞-∞≠|AVG|)
+ ≠.≤∑ (∞-∞≠ RMSE) + ≠.≤∑ (∞-∞≠
MAE) = ∞ (≤)

The estimation method (modeled or
average historic values) that yielded the
highest overall score and therefore the
most accurate substitute for measured pan
evaporation was selected.

Model Validation
The final phase of the study examined

how closely model-estimated pan evap-
oration from the ‘best’ coastal and inland
models approximated actual measured
pan evaporation. To accomplish this, ac-
tual ≤≠≠≥ measured pan evaporation was
compared with estimated pan evaporation
derived from the ‘best’ models for valida-
tion. Modeling output units are inches and
were later converted to millimeters for the
purpose of this study.

results and discussion

Stage One: Model Development
Multiple linear regression is a paramet-

ric analysis technique that was used to pre-
dict pan evaporation. While several as-
sumptions that should be considered when
using MLR were evaluated, it should be
noted that moderate violations of para-
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metric assumptions have little or no effect
on substantive conclusions in most in-
stances (Cohen ∞Ω∏Ω).

The Kolmogorov-Smirnov test (K-S)
enables comparison of each independent
variables’ distribution with the theoreti-
cal normal distribution. The test statistic
(Smirnov Z) is computed from the largest
difference (in absolute value) between the
independent variables distribution and
the normal distribution. This test assesses
whether the observations of the indepen-
dent variable could reasonably have come
from the normal distribution. Solar radi-
ation showed evidence of a negatively
skewed distribution and the K-S test re-
sulted in confirmation of a non-normal
distribution. Transforming solar radiation
using a standard variable normalization
technique (Equation ≥) for the Ben Hur
≤≠≠≤ and ≤≠≠∂ data sets resulted in in-
creases of approximately ≠.≠∞ in adjusted
RSQ value and consequently, the decision
was made not to transform solar radiation.
K-S variable normality tests for maximum
temperature and minimum relative hu-
midity revealed that both variables were
normally distributed with one exception;
the Newton ≤≠≠∂ dataset where all three
variables (maximum temperature, mini-
mum relative humidity, and solar radia-
tion) were determined to be non-normal.

newvalue = �((max value + ∞) – SRi)
(≥)

An Analysis of Variance (ANOVA) test
of linearity was performed for all pairwise
combinations of pan evaporation and each
independent variable. The hypothesis that
the relationship between each variable
and pan evaporation was linear was not
rejected for all datasets at all locations
for solar radiation, maximum tempera-

ture, and minimum relative humidity. The
hypothesis was rejected for wind speed for
all datasets at all locations. The lack of a
linear relationship between wind speed
and pan evaporation is further evidenced
by examination of the simple scatter plots.
The scatterplot for the Newton ≤≠≠∂ data
set (Figure ∑) is typical of the relationship
between wind speed and pan evaporation
for all datasets at all locations.

A useful coefficient for assessing inter-
nal consistency of a variable’s measure-
ment scale is Cronbach’s alpha (Cronbach
∞Ω∑∞). Cronbach’s alpha was estimated
for standardized variable scales. Nunnally
(∞Ωπ∫) has indicated values of ≠.π and
above are an acceptable level of reliability.
Measurement scale reliability was gener-
ally high (near or above the ≠.π threshold)
for solar radiation, maximum tempera-
ture, and minimum relative humidity for
all datasets at all locations with a few ex-
ceptions. Cronbach’s alpha values were
below ≠.π for maximum temperature at
Ben Hur ≤≠≠∂ (≠.∑∂), and Calhoun ≤≠≠∂
(≠.∏∞). Cronbach’s alpha values were be-
low ≠.π for minimum relative humidity at
Fairhope ≤≠≠∂ (≠.∂Ω) and Houma ≤≠≠∂
(≠.∏∂).

Homoscedasticity assumes that the
variance of errors is the same across all
levels of the Independent Variable (IV). Ex-
amination of plots of the standardized re-
siduals (y-axis) by the regression standard-
ized predicted value (x-axis) indicated
that, in general, residuals were randomly
scattered around ≠ providing a relatively
even distribution and no evidence of het-
eroscedasticity. Plots for solar radiation de-
viated slightly from a random scattering,
probably due in part to the negative skew
of the variable.

Multicollinearity in regression models
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Table ≥. Simple Linear Regression (SLR) R square (RSQ) values and all possible regression combinations for

Multiple Linear Regression (MLR) with adjusted R square (ARSQ) listed.

Ben Hur Stoneville FairhopeModel name/

model

combinations ≤≠≠≤ ≤≠≠∂

Calhoun

≤≠≠∂

Newton

≤≠≠∂ ≤≠≠≤ ≤≠≠∂ ≤≠≠≤ ≤≠≠∂

Houma

≤≠≠∂

Temp RSQ ≠.∂≥≤ ≠.∞≥∑ ≠.∞Ω∞ ≠.∞∫π ≠.∑∫≤ ≠.≤≤∑ ≠.∂≥∫ ≠.∑≠Ω ≠.≤∑π

RH RSQ ≠.∂∫∏ ≠.∂π∞ ≠.∞∏∏ ≠.∂∞∫ ≠.∂ΩΩ ≠.≤∏∞ ≠.∂≠≥ ≠.∞∑∫ ≠.≤∏∑

SRad RSQ ≠.∏Ω∂ ≠.∏≤π ≠.∑∫∫ ≠.π∂π ≠.∏∑∑ ≠.∑∂∂ No data No data ≠.≥≠∞

Wind RSQ ≠.≠≠≥ ≠.≠≤∑ ≠.≠≠∑ ≠.≠≠≠ ≠.≠≠≠ ≠.≠≠∂ No data No data ≠.≠≥∂

Temp/RH ARSQ ≠.∏∞∏ ≠.∂∫∏ ≠.≥π≤ ≠.∑∞∑ ≠.∏π∑ ≠.∂≤∞ ≠.∑∏∞ ≠.∑∫Ω ≠.≥π∏

Temp/Srad ARSQ ≠.∏Ωπ ≠.∏≤π ≠.∏∞∫ ≠.π∑≤ ≠.∏Ω∫ ≠.∑∂≠ No data No data ≠.∂≠≤

RH/SRad ARSQ ≠.∏∫∏ ≠.∏≤∑ ≠.∑∫π ≠.π∂∂ ≠.∏∫∑ ≠.∑∫∫ No data No data ≠.≥∞≠

Temp/RH/SRad ARSQ ≠.∏Ω∑ ≠.∏≤π ≠.∏∞∑ ≠.π∑≠ ≠.π≤≥ ≠.∑Ω∑ No data No data ≠.∂≠∫

is evidenced by a high level of intercorre-
lation among independent variables. The
Variance Inflation Factor (VIF) is often
used as a measure of the degree multi-
collinearity of a particular independent
variable. As a rule of thumb, a VIF greater
than ∂.≠ indicates when multicollinearity
of a particular independent variable be-
comes problematic (Belsley ∞ΩΩ∞). For
this study, VIF values for all full models
(maximum temperature, minimum rela-
tive humidity, and solar radiation) were
calculated and evaluated. All VIF values
for independent variables were less than
∂.≠ with one exception, Ben Hur ≤≠≠≤. For
this dataset the VIF for solar radiation was
∑.∏Ω. On the basis of these results, multi-
collinearity was not determined to be a
noteworthy problem.

Four independent variables were ini-
tially considered as independent variables
for modeling pan evaporation. The hy-
pothesis that the relationship between
wind speed and pan evaporation was lin-
ear was rejected for every location and
every year. These results indicate that, for
these stations and these data, wind speed

has a random effect on pan evaporation.
This finding coupled with low RSQ for
wind speed (e.g. ≠.≠≥∂) led to the conclu-
sion that wind speed should be eliminated
as a potential independent variable.

Using the three remaining indepen-
dent variables, the ‘‘all possible combi-
nations’’ analyses enabled assessment of
relationships between each variable and
variable combinations with pan evapora-
tion (Table ≥). Solar radiation and maxi-
mum air temperature showed strong posi-
tive relationships with evaporation. The
analyses also confirmed an inverse rela-
tionship between minimum relative hu-
midity and measured pan evaporation.

Solar radiation had the highest RSQ
among all variables and this result is con-
sistent with previous studies (Sumner and
Jacobs ≤≠≠∑). Marginal improvements
were noted when maximum temperature
or minimum relative humidity were com-
bined with solar radiation. In general,
highest adjusted RSQ values were ob-
tained when all three variables were in-
cluded. On the basis of these analyses, it
was determined that when all three vari-
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Table ∂. MLR results of inland and coastal models (the highlighted models were further evaluated).

Station App. Year Rsq B Temp. Rel. hum. Solar rad.

Stoneville A ≤≠≠≤ ≠.π≥≠ –≠.≠∂∞≤πΩ∫ ≠.≠≠≤π∑∂ –≠.≠≠∞∂≠∫ ≠.≠≠≠≤π≥

Stoneville B ≤≠≠≤ ≠.∏∫∞ –≠.≠∑∫≠∂π ≠.≠≠∂∏≥π –≠.≠≠≤≥≥∂ not used

Stoneville A ≤≠≠∂ ≠.∏≠∏ ≠.≥≤∏ ≠.≠≠∞∂π∑∞∏ –≠.≠≠∞∂∂∞∫ ≠.≠≠≠≤∫

Stoneville B ≤≠≠∂ ≠.∂π∑ –≠.∞≥Ω ≠.≠≠∏ –≠.≠≠≥ not used

Newton A ≤≠≠∂ ≠.π∑∏ –≠.≠πΩ∞≤ ≠.≠≠∞∞≠∂ ≠.≠≠≠≠π ≠.≠≠≠≥∏Ω

Newton B ≤≠≠∂ ≠.∑≤≥ ≠.≠≤π∫∫ ≠.≠≠≥∑∫∏ –≠.≠≠≥≤≥∏ not used

Calhoun A ≤≠≠∂ ≠.∏≤∑ –≠.∞∏≥ ≠.≠≠≤ ≠.≠≠≠≠∏Ω ≠.≠≠≠≥∫

Calhoun B ≤≠≠∂ ≠.≥∫≥ –≠.∞∏π ≠.≠≠∑ –≠.≠≠≥ not used

Ben Hur A ≤≠≠≤ ≠.π≠π –≠.∞∞≥∞πΩ ≠.≠≠∞Ω∏∑ –≠.≠≠≠∂≥∏ ≠.≠≠≠≥≤∂

Ben Hur B ≤≠≠≤ ≠.∏≤∏ –≠.∞∞π∑≤∫ ≠.≠≠∑∞∂π –≠.≠≠≤π≤≥ not used

Ben Hur A ≤≠≠∂ ≠.∏≥π –≠.≠∞π∑∂≥π ≠.≠≠∞≤∞Ω –≠.≠≠∏∑∫∑ ≠.≠≠≠≥∂∫

Ben Hur B ≤≠≠∂ ≠.∂Ω∑ ≠.∞∫∞ ≠.≠≠≤∂≥∑≥ –≠.≠≠≥∫ not used

Fairhope B ≤≠≠≤ ≠.∑∏Ω –≠.∞≤∫ ≠.≠≠∑ –≠.≠≠≤ not used

Fairhope B ≤≠≠∂ ≠.∑∫π –≠.∑∞ ≠.≠≠Ω –≠.≠≠≤ not used

Houma A ≤≠≠∂ ≠.∂≤π –≠.∂≠≤ ≠.≠≠π –≠.≠≠∞ ≠.≠≠≠≤≥

Houma B ≤≠≠∂ ≠.≥∫Ω –≠.≤∫∂ ≠.≠≠π –≠.≠≠≥ no data

ables are available, they should be used
for modeling pan evaporation. However,
when solar radiation is not available, com-
bining temperature and relative humidity
resulted in adjusted RSQ values that in-
dicate both variables should be included
in the model. These results led to the de-
velopment of tests of model efficacy for
two different modeling approaches, with
solar radiation (Approach A) and with-
out solar radiation (Approach B). Once
variable combinations were determined,
model comparisons were made using RSQ
rather than adjusted RSQ, since adjusted
RSQ was only used to account for artificial
inflation of potential variable combina-
tions during the variable selection process.

Stage Two: Model Selection
Inland and coastal models were initially

screened by RSQ values to reduce the total
number of models for evaluation (Table ∂).
From all inland models, the following
six were selected for further evaluation:
Stoneville approach A ≤≠≠≤, Stoneville ap-
proach B ≤≠≠≤, Newton approach A ≤≠≠∂,
Newton approach B ≤≠≠∂, Ben Hur ap-
proach A, and Ben Hur approach B ≤≠≠≤.
From this group the best inland model
(BIM) was selected using equation ∞. Per-
formance measures calculated for these
models are shown in Table ∑. The initial
screening process for coastal models re-
sulted in the selection of three models:
Fairhope approach B ≤≠≠≤, Fairhope ap-
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Table ∑. Decision-making calculations carried out to select best inland model (BIM);

weights (wght.) and standardized values (st.val.) are multiplied and then summed together (formula ∞);

values of performance measures are highlighted.

Performance measures

RSQ value CC AVG RMSE MAE
Inland

Models wght. st.val. wght. st.val. wght. st.val. wght. st.val. wght. st.val.

Total

score

w

Stoneville

app. A ≤≠≠≤

≠.π≥ ≠.∏≤ –≠.≠∑π ≠.≠∫≤ ≠.≠π≠

≠.∑ ≠.π≥ ≠.∞≤∑ ≠.∏≤ ≠.∞≤∑ ≠.∂∂ ≠.∞≤∑ ≠.∞∫ ≠.∞≤∑ ≠.≥≠ ≠.∑∑∫

Stoneville

app. B ≤≠≠≤

≠.∏∫ ≠.∂∑ –≠.≠≥∏ ≠.≠π∏ ≠.≠∏≥

≠.∑ ≠.∏∫ ≠.∞≤∑ ≠.∂∑ ≠.∞≤∑ ≠.∏∑ ≠.∞≤∑ ≠.≤∂ ≠.∞≤∑ ≠.≥π ≠.∑∑∂

Newton app.

A ≤≠≠∂

≠.π∏ ≠.∏∏ ≠.≠∞∂ ≠.≠∑∏ ≠.≠∂∞

≠∑ ≠.π∏ ≠.∞≤∑ ≠.∏∏ ≠.∞≤∑ ≠.∫∏ ≠.∞≤∑ ≠.∂∂ ≠.∞≤∑ ≠.∑Ω ≠.∏ΩΩ

Newton app.

B ≤≠≠∂

≠.∑≤ ≠.∂≤ ≠.≠∞∞ ≠.≠π∞ ≠.≠∑∑

≠.∑ ≠.∑≤ ≠.∞≤∑ ≠.∂≤ ≠.∞≤∑ ≠.∫Ω ≠.∞≤∑ ≠.≤Ω ≠.∞≤∑ ≠.∂∑ ≠.∑∞∏

Ben Hur

app. A ≤≠≠≤

≠.π∞ ≠.∏∑ –≠.≠∞π ≠.≠∑∫ ≠.≠∂≥

≠.∑ ≠.π∞ ≠.∞≤∑ ≠.∏∑ ≠.∞≤∑ ≠.∫≥ ≠.∞≤∑ ≠.∂≤ ≠.∞≤∑ ≠.∑π ≠.∏∏∂

Ben Hur

app. B ≤≠≠≤

≠.∏≥ ≠.∂∑ –≠.≠≠≥ ≠.≠∏Ω ≠.≠∑∏

≠.∑ ≠.∏≥ ≠.∞≤∑ ≠.∂∑ ≠.∞≤∑ ≠.Ωπ ≠.∞≤∑ ≠.≥∞ ≠.∞≤∑ ≠.∂∂ ≠.∑∫∏

proach B ≤≠≠∂, and Houma approach A
≤≠≠∂ model. Performance measures deter-
mined for these models are shown in Table
∏. These measures, highlighted in Tables ∑
and ∏, were used directly in the process of
selecting the best inland models (BIM)
and best coastal (BCM) models.

The best inland and coastal models
were selected based on performance mea-
sure metrics using formula ∞. In gen-
eral, the best model was specified by
a combination of the following char-
acteristics: high RSQ and correlation
coefficient values, low values of error
measures, and a low value of average dif-
ference. Tables ∑ and ∏ show the decision-
making calculations and total scores
computed for selected inland and coastal
models.

The highest total score among inland
models was achieved by Newton approach
A ≤≠≠∂ model (≠.∏ΩΩ). The optional model

(Ben Hur approach B ≤≠≠≤, ≠.∑∫∏ score)
was selected for use at locations where so-
lar radiation data are not available. There-
fore, the following models are recom-
mended for use at inland sites:
With solar radiation: BIM=–≠.≠πΩ∞≤
+≠.≠≠∞∞(maxT)+≠.≠≠≠≠π(minRH)
+≠.≠≠≠≥π(SR)
Without solar radiation:
OBIM=–≠.∞∞π∑≤∫+≠.≠≠∑∞∑(maxT)
–≠.≠≠≤π≤(minRH)

The highest total score among evalu-
ated coastal models was achieved by Fair-
hope approach B ≤≠≠∂ model (≠.∑πΩ). An
optional coastal model was not selected
since solar radiation was not available at
any sites with pan evaporation records.
For use in all coastal sites (no solar radia-
tion data required), the following model is
recommended:
BCM=–≠.∑∞+≠.≠≠Ω(maxT)
–≠.≠≠≤(minRH)
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Table ∏. Decision-making calculations carried out to select best coastal model (BCM); weights (wght.) and

standardized values (st.val.) are multiplied and then summed together (formula ∞);

values of performance measures are highlighted.

Performance measures

RSQ value CC AVG RMSE MAE
Coastal

Models wght. st.val. wght. st.val. wght. st.val. wght. st.val. wght. st.val.

Total

w

Fairhope ≠.∑π ≠.∑∂ –≠.≠∂≤ ≠.≠π∂ ≠.≠∏≥

app. B ≤≠≠≤ ≠.∑ ≠.∑π ≠.∞≤∑ ≠.∑∂ ≠.∞≤∑ ≠.∑∫∑ ≠.∞≤∑ ≠.≤∏ ≠.∞≤∑ ≠.≥π ≠.∑≠∂

Fairhope ≠.∑Ω ≠.∑≠ –≠.≠≠Ω ≠.≠∏π ≠.≠∑∑

app. B ≤≠≠∂ ≠.∑ ≠.∑Ω ≠.∞≤∑ ≠.∑≠ ≠.∞≤∑ ≠.ΩΩ∞ ≠.∞≤∑ ≠.≥≥ ≠.∞≤∑ ≠.∂∑ ≠.∑πΩ

Houma app. ≠.∂≥ ≠.∑Ω –≠.≠π∞ ≠.≠Ω∂ ≠.≠∫≤

A ≤≠≠∂ ≠.∑ ≠.∂≥ ≠.∞≤∑ ≠.∑Ω ≠.∞≤∑ ≠.≤Ω∑ ≠.∞≤∑ ≠.≠∏ ≠.∞≤∑ ≠.∞∫ ≠.≥∑∏

Stage Three: Model Comparison
with Historic Average
The two best inland models and one

best coastal model were evaluated to de-
termine whether modeled pan evapora-
tion rates more accurately track actual pan
evaporation than available historic aver-
ages. Table π shows performance measures
for best-selected models versus historic
average records as well as final scores cal-
culated using formula ≤. The results indi-
cate that for the best inland and coastal
models, modeled estimates represent ac-
tual pan evaporation better than historic
averages. These calculations indicated that
for all ‘‘best’’ models, predicted pan evap-
oration is superior to historic averages.

Model Validation
Each ‘‘best’’ model was compared to ac-

tual ≤≠≠≥-measured pan evaporation for
validation purposes. Figure ∏A illustrates
validation results of the best inland model
(created based on Newton ≤≠≠∂ data us-
ing approach A) by plotting model re-
sults against pan evaporation measured at
Stoneville in ≤≠≠≥. This inland model uti-

lizes three variables: maximum air tem-
perature, minimum relative humidity, and
solar radiation. If solar radiation data
are unavailable, the Ben Hur ≤≠≠∂ ap-
proach B model, which utilizes only maxi-
mum air temperature and minimum rela-
tive humidity, should be used. Figure ∏B
shows the validation results of this op-
tional inland model. The best coastal
model was created based on Fairhope
≤≠≠∂ data using approach B. This model
uses maximum air temperature and mini-
mum relative humidity data only. Figure
∏C illustrates validation results of the
model results plotted against pan evapora-
tion measured at Houma in ≤≠≠≥. Overall,
mean pan evaporation decreases during
the fall months when daily temperature
begins to decline. Since these models were
developed for periods when temperature
is high and precipitation is low, it is pos-
sible (when temperature is low and mini-
mum relative humidity is high) to estimate
a negative value for pan evaporation. This
situation occurred twice in the selected
coastal model (Figure ∏C). To prevent this
occurrence, negative model estimation
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Table π. Evaluation calculations carried out to compare results of the best-selected models and historic averages;

weights (wght.) and standardized values (st.val.) are multiplied and then summed together (formula ≤);

values of performance measures are highlighted.

Performance measures

CC AVG RMSE MAE
Selected

models/

Historic wght. st.val. wght. st.val. wght. st.val. wght. st.val.

Total

w

Newton ≠.∏∏ ≠.≠∞∂ ≠.≠∑∏ ≠.≠∂∞

app. B ≤≠≠∂ ≠.≤∑ ≠.∏∏ ≠.≤∑ ≠.∫∏ ≠.≤∑ ≠.∂∂ ≠.≤∑ ≠.∑Ω ≠.∏≥∫

Ben Hur ≠.∂∑ –≠.≠≠≥ ≠.≠∏Ω ≠.≠∑∏

app. C ≤≠≠≤ ≠.≤∑ ≠.∂∑ ≠.≤∑ ≠.Ωπ ≠.≤∑ ≠.≥∞ ≠.≤∑ ≠.∂∂ ≠.∑∂≤

Historic ≠.∂≤ –≠.≠∞≠∑ ≠.≠∏∫ ≠.≠∑∂

inland ≠.≤∑ ≠.∂≤ ≠.≤∑ ≠.∫Ω∑ ≠.≤∑ ≠.≥≤ ≠.≤∑ ≠.∂∏ ≠.∑≤∂

Fairhope ≠.∑≠ –≠.≠≠Ω ≠.≠∏π ≠.≠∑∑

app. C ≤≠≠∂ ≠.≤∑ ≠.∑≠ ≠.≤∑ ≠.ΩΩ∞ ≠.≤∑ ≠.≥≥ ≠.≤∑ ≠.∂∑ ≠.∑∏π

Historic ≠.≤≠ –≠.≠∞∫π ≠.≠π∂ ≠.≠∏≤

coastal ≠.≤∑ ≠.≤ ≠.≤∑ ≠.∫∞≥ ≠.≤∑ ≠.≤∏ ≠.≤∑ ≠.≥∫ ≠.∂∞∂

was constrained to equal zero, since nega-
tive evaporation is not possible.

Validation of model results confirmed
initial expectations that pan evaporation
rates predicted using selected models are
superior to historic pan evaporation esti-
mates. Modeled pan evaporation for both
inland and coastal models reflected actual
changes in daily weather conditions, while
historic averages did not (compare Figure
≥ to Figures ∏A, B, and C).

conclusions

The goal of this research was to esti-
mate daily pan evaporation using readily
available data at numerous locations for
the southeastern region of the U.S. where
such data are not routinely and consis-
tently available. Although there is a large
body of literature that indicates wind is
correlated to pan evaporation, these re-
sults indicate a poor relationship for these
datasets. This unexpected result might be

explained by the fact that in these south-
ern regions, wind is often accompanied by
high humidity and rainfall.

The multiple regression models devel-
oped for this study combined actual mea-
sured solar radiation, maximum tem-
perature, and minimum relative humidity
to estimate pan evaporation. Pan evap-
oration estimations based on the best-
selected models proved superior to avail-
able historic average pan evaporation
data. As the number of input variables was
reduced, the accuracy of the models was
also reduced. However, inclusion of all
variables as inputs significantly lowered
the number of stations that have the po-
tential for such estimation due to data
availability. It was concluded that mini-
mum relative humidity and maximum air
temperature are the minimum required
variables necessary to create satisfactory
models. Even though reducing the number
of input variables decreased model accu-
racy, it increased the number of stations
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Figure ∏. A. Comparison of actual measured (Stoneville ≤≠≠≥) evaporation and evaporation estimated

for Stoneville ≤≠≠≥ using best inland model (Newton approach B ≤≠≠∂); B. Comparison chart of

actual measured evaporation (Stoneville ≤≠≠≥) and evaporation estimated for Stoneville ≤≠≠≥ using

optional best inland model (Ben Hur approach C ≤≠≠∂); C. Comparison chart of actual measured

evaporation (Houma ≤≠≠≥) and evaporation estimated for Houma ≤≠≠≥ using best coastal model

(Fairhope approach C ≤≠≠∂).
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with weather data available for modeling
pan evaporation. Maintaining a greater
number of stations is considered of critical
importance to the overall project goal, as
it assures a large number of points are
available for interpolation of evaporation
across the entire region—important for
the creation of dynamic water budget
layers useful in GIS-based water budget
applications. Regional climatic heteroge-
neity associated with coastal and inland
processes are better characterized with
these ‘best’ models. It is likely that with
the increased number of stations available
for interpolation, climatic heterogeneity
due to landscape characteristics will be
better measured.

The best pan evaporation prediction
models were selected using a combination
of different performance characteristics,
as neither RSQ values nor error measures
alone were determined to be satisfactory
indicators of the best model. The decision-
making process, as validated by compari-
son of predicted and actual pan evapora-
tion rates, produced three easily-applied
models—two inland and one coastal—that
appear to provide reliable and useable
daily pan evaporation estimates. Model
choice depends on whether or not solar
radiation data are available for use at an
inland site. These selected best models are
simple to use since they require minimal
inputs and they are easy to update on a
daily basis. Thus the models offer the
opportunity to effectively estimate daily
pan evaporation at multiple locations over
a broad region using the best available in-
put data.

The number of metrics employed in cre-
ating, testing, and validating selected
models yields results that provide rigorous
and credible estimates of pan evaporation.

Use of these models results in pan evapo-
ration estimates comparable to measured
pan evaporation. In fact, it is possible that
the predicted pan evaporation rates may
produce a more useful regional assessment
of evaporation because they are relatively
free from recording errors or missing val-
ues, issues commonly found in measured
and recorded pan evaporation data.

There are several model limitations
and potential improvements that should
be considered. The performance of coastal
models could be improved by expand-
ing the analysis region to include more
weather stations that record solar radia-
tion and develop more Approach A models
for coastal environments. Also, it is not
known how well the models will perform
over time. The models should be continu-
ously validated over time with actual pan
evaporation data where available. Avail-
able records of actual pan evaporation
that extend beyond the July–October time
period should be compared with model-
based estimates of pan evaporation to as-
sess the precision of pan evaporation es-
timates that are extrapolated beyond the
model development time period.

Evaporation derived from the Penman
method could be used for further evalua-
tion of the selected models’ performance.
The basic relationships between these vari-
ables and pan evaporation are not ex-
pected to undergo significant change over
time; however, the coefficients could
change in response to changing climatic
conditions. Consequently, models should
be recalibrated as more quality pan evap-
oration and weather station data becomes
available. Additional analyses are planned
that examine vapor pressure deficit as a
possible substitute for minimum relative
humidity in the models and for determin-



170 william h. cooke, katarzyna gr ala and charles l. wax

ing the extent of coastal influences over
the inland environment. Analyses are also
planned to compare predicted values at
higher spatial densities with interpolated
values from pan evaporation stations only.

Results of this study indicate that evap-
oration can be predicted at numerous loca-
tions with a few easy-to-obtain variables.
This method of estimating missing or spa-
tially deficient daily pan evaporation data
should prove useful in regional GIS-based
applications where a well-distributed pat-
tern of stations used to estimate evapo-
ration helps characterize the influence of
convective precipitation events and coastal
processes on evaporation.
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