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a b s t r a c t

Cot analysis (DNA reassociation kinetics) has long been used to explore genome structure in individual
species, estimate genome similarity among organisms, and evaluate diversity in ecological samples,
yet the algorithms and computational tools designed for analyzing Cot data are outdated, difficult to
use, and prone to error. We report a new nonlinear regression procedure for analysis of Cot data and
describe our algorithms in detail. Our procedure is implemented as CotQuest, a suite of scripts designed
for use with the statistics package SAS. Unlike previous programs, CotQuest does not require users to
input guesses as to the final values of parameters; rather, it employs a novel algorithm to step through
a sequence of progressively more complex models, with the results from a given analysis being used
to generate starting values for the next model. Moreover, CotQuest returns a statistical comparison of
potential models and provides a variety of model assessment and selection diagnostics to help users in
model selection. In situations where two models possess similar goodness-of-fit assessments, visual anal-
ysis of the Cot curves and comparison of CotQuest-generated graphs and statistics reflecting the normal-
ity and homoscedasticity of residuals can be employed to make educated choices between models.

� 2009 Elsevier Inc. All rights reserved.

The ability of DNA to denature and reassociate in a base-specific
manner is central to cellular processes such as DNA replication and
transcription. It also underlies many analytical molecular biology
techniques, including the polymerase chain reaction, blot-based
hybridization, microarray/gene chip technologies, and most DNA
sequencing and resequencing methods.

Some of the earliest DNA reassociation research was conducted
more than 40 years ago by Britten and his coworkers at the Carne-
gie Institution of Washington. Specifically, Roy Britten’s group
developed Cot analysis, a technique in which DNA reassociation
kinetics is used to explore sequence composition/diversity [1,2].
Cot analysis has been used to characterize the genomes of individ-
ual species [1], estimate relatedness between species [3,4], and
study diversity in complex environmental samples [5,6]. The work
of Britten and coworkers paved the way for development of subse-
quent reassociation-based molecular techniques [7] and led to one
of the most important discoveries in genome biology—specifically,
the finding that eukaryotic genomes, on the whole, are dominated
by repetitive nongenic sequences [1]. With the development of
molecular cloning and DNA sequencing during the 1970s, Cot anal-
ysis was performed less frequently [8]. However, Cot research has

experienced a resurgence in popularity due, in part, to the use of its
underlying principles in complementary DNA (cDNA)1 library ‘‘nor-
malization” [9] and the development of Cot-based sequencing strat-
egies that permit preferential isolation and sequencing of low- and/
or high-copy sequences from a genome [8,10–13].

In Cot analysis, the product of DNA concentration (C0), reassoci-
ation time (t), and a ‘‘buffer factor” accounting for cation concen-
tration (d) has a predictable effect on the amount of reassociation
occurring in a denatured DNA sample [2]. The major unknown fac-
tor influencing reassociation is the underlying sequence composi-
tion of the DNA. Sequence composition is studied by exploring
how changes in C0td (known by the colloquialism ‘‘Cot”) influence
reassociation. Typically, a graph is created where the fraction of
reassociated DNA is plotted against the logarithm of Cot (from
Cot � 0 to Cot values at which reassociation is complete2) for
DNA from a particular source. The resulting scatter plot is analyzed
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1 Abbreviations used: cDNA, complementary DNA; HAP, hydroxyapatite; dsDNA,
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mation criterion; AIC, Akaike’s information criterion; FDR, false discovery rate; GUI,
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2 Cot curves will rarely, if ever, start at complete denaturation (100% ssDNA) or end
at complete reassociation (0% ssDNA). Intramolecular ‘‘foldback” will create some
duplex regions at Cot values too small to allow actual intermolecular pairing.
Moreover, a fraction of the DNA (usually < 5%) will never reassociate, possibly due to
damage caused during DNA shearing [2].
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using nonlinear regression analysis, and a least squares curve is fit
through the data. This graph, known as a Cot curve, provides a visual
representation of the genome.

There are two methods commonly used in generating Cot data.
The older and more widely practiced of these approaches is the
hydroxyapatite (HAP) chromatography method, which is based
on the novel DNA binding properties of the calcium compound
HAP. In short, HAP chromatography can be used to fractionate a
partially reassociated sample (i.e., a sample reassociated to a spe-
cific Cot value) into double-stranded DNA (dsDNA) and single-
stranded DNA (ssDNA). Quantification of the amount of DNA
remaining single-stranded can be performed by comparing the
product of the volume and spectrophotometric absorbance at
260 nm (A260) of the ssDNA eluant with the corresponding product
(volume � A260) of the dsDNA eluant [14]. Alternatively, a small ran-
dom portion of the DNA sample can be labeled with a radioisotope
and reassociation can be accessed by measuring the radioactivity
and volumes of the ssDNA and dsDNA fractions collected after
HAP fractionation [15]. The general steps in a Cot analysis per-
formed using HAP chromatography are shown in section A of the
supplementary material.

Britten and his colleagues discovered that HAP-based Cot anal-
yses of prokaryotic, viral, and organellar genomes (i.e., largely non-
repetitive genomes) produced curves with shapes approximating
ideal second-order kinetic reactions [1]. As shown in Fig. 1, the
point along the x axis at which reassociation is 50% complete is
the curve’s Cot½. The reassociation rate, k, for the curve is the in-
verse of its Cot½ and is proportional to the slope of the linear re-
gion. Roughly 80% of reassociation occurs in the ‘‘two Cot decade
region” flanking the Cot½ (i.e., the region between 0.1�Cot½ and
10�Cot½). When Britten and Kohne compared Cot curves of differ-
ent nonrepetitive genome species, they discovered that genome
size is directly correlated with Cot½ [1]. The functional form of a
second-order kinetic reaction for a nonrepetitive genome is f(1 +
k Cot)�1 [16], where f is a constant between 0 and 1 (see below).

In HAP-based exploration of the genomes of eukaryotic organ-
isms, Britten’s group discovered that reassociation for eukaryotes
occurs over a much wider range in Cot than for prokaryotes/
viruses/organelles. Careful study of HAP-based Cot curves prepared
for complete eukaryotic genomes led Britten and coworkers to con-
clude that eukaryotic Cot curves are amalgams of two or more sec-
ond-order subcurves known as ‘‘components.” The resulting
function is a mixture model, that is, a convex combination of the
component subcurves (Fig. 1). Each component of a eukaryotic

Cot curve can be described by its Cot½, its k, the fraction (f) of
the genome for which it accounts, and its kinetic complexity
(KnCx). KnCx is a Cot curve-based estimate of sequence complex-
ity, that is, the total amount of novel sequence information in a
component [8,10]. Despite the fact that eukaryotic genomes are
typically hundreds to thousands of times larger than prokaryotic
genomes, the fastest reassociating components of eukaryotes typ-
ically possess Cot½ values smaller than those of nonrepetitive gen-
omes, a finding that led Britten and Kohne to conclude that
eukaryotic genomes contain significant quantities of repetitive
DNAs [1]. In eukaryotic Cot curves, the slowest reassociating com-
ponent often represents reassociation of single-copy sequences,
and the k of this component can be used to estimate genome size
by comparison with the k and genome size of Escherichia coli [17].
The functional form of a second-order kinetic reaction for the ith
component in a multicomponent Cot curve is fi(1 + kiCot)�1 [16].

The second technique used to generate Cot data is the S1 nucle-
ase digestion method, which is centered on the ability of S1 nucle-
ase to preferentially digest ssDNA in mixtures of dsDNA and ssDNA
[18]. A DNA sample reassociated to a given Cot can be treated with
S1 nuclease to eliminate ssDNA, and a comparison of the amount of
DNA in the sample prior to denaturation and after S1 nuclease
digestion can be used to determine the fraction of ssDNA at a given
Cot (see section A of the supplementary material). Cot curves
generated from S1 nuclease-derived Cot points deviate from sec-
ond-order kinetics but can be roughly described by the form
fi(1 + kiCot)�0.44 [16].

To facilitate analysis of Cot data, several computer programs
have been developed to partially automate nonlinear least
squares regression analysis and calculate values that can be used
in biological comparisons. The first reassociation kinetics pro-
gram was FINGER [2], which was subsumed by NNNBAT [16]
and COTFIT [19]. These FORTRAN programs, all of which are
rooted in the algorithm for least squares estimation of nonlinear
parameters of Marquardt [20], originally were designed to run
on mainframe computers or minicomputers. Later, Green and
coworkers [21] developed a program that employed the deriva-
tive-free unconstrained optimization ‘‘pattern search” algorithm
[22], specifically for use on an Apple II microcomputer. This pro-
gram was not actually developed for DNA reassociation research
but could ostensibly be adapted for HAP- or S1 nuclease-based
Cot analysis. Of the aforementioned programs, NNNBAT has been
used in the vast majority of Cot studies performed since 1980,
including our research [10,14].
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Fig. 1. Second-order reassociation kinetics. (A) An ideal second-order kinetics DNA reassociation reaction. Note that the central two-thirds of the curve is nearly linear (dotted
line). The Cot½ is marked by a blue diamond, while the ‘‘two Cot decade region” is demarcated by brackets flanking the Cot½. Whereas the ideal curve starts at complete
ssDNA and ends with complete reassociation, actual Cot curves generated from experimental data will rarely, if ever, start or end at these values due to DNA foldback or
damaged DNA, respectively. (B) Multicomponent Cot curve for the eukaryote Nicotiana tabacum. Data were extracted from Zimmerman and Goldberg [25]. The CotQuest best
fit curve for these HAP-generated data has three components indicated by the colors green, red, and blue.
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NNNBAT and other existing Cot analysis tools require users to
input guesses as to the final values of various parameters. These
programs take these initial values and use them to converge on a
solution that minimizes the least squares deviation of the function.
Note that the output of a particular run is not the actual best fit for
the dataset; rather, it is simply the best fit given the particular
starting parameter guesses. Consequently, users must test a variety
of different input value sets in attempting to find the neighborhood
of the best fit solution. Once this neighborhood is reached (as is
evidenced by relatively low goodness-of-fit and mean-squared-er-
ror values), minor changes in the input (guess) parameters should
have little effect on the output. This process is time-consuming and
can occasionally lead to suboptimal results. Most notably, all
‘‘parameter guessing” approaches are susceptible to local minima
or maxima (over the parameter space) that can result in erroneous
fits. Moreover, in our experience, we have found highly divergent
fits to have nearly identical goodness-of-fit and mean-squared-er-
ror values, making model selection more arbitrary than convincing.

Although modern statistical software packages allow users an
alternate means of conducting nonlinear least squares regression
analysis of Cot data, these programs do not return the key biolog-
ical data derived from curve fitting. Such values can be calculated,
but they require a firm understanding of the mathematics and sta-
tistics of DNA reassociation kinetics, something that is rare even
among those who have performed Cot analyses in the past. More-
over, these programs still require users to input parameter guesses.

Here we report a new nonlinear regression procedure for anal-
ysis of HAP- and S1 nuclease-derived Cot data. This procedure,
which is implemented by using our freely downloadable program
suite CotQuest in association with the statistical software ‘‘gold
standard” SAS, eliminates the need for user-supplied starting val-
ues and, thus, circumvents problems associated with parameter
guessing. A novel algorithm steps through a sequence of progres-
sively more complex models, using the results from one model
as the starting values for the next model. The program returns bio-
logically relevant values for each model—most notably, each com-
ponent’s genome fraction (f), Cot½, k, and KnCx—as well as a
graphical display of its Cot curve. For each model, the program
yields a corrected Akaike’s information criterion (AICc) value,
which serves as the principal model selection statistic. In addition,
CotQuest generates a variety of qualitative and quantitative model
assessment and selection diagnostics, including residual analyses
(in graphical format) and mean squared errors to assist investiga-
tors in making an educated choice between models with highly
similar AICc values.

Materials and methods

NLIN options

Curve fitting was performed using a novel algorithm (see
below) and the NLIN (nonlinear regression) module in SAS. We
note that NLIN provides an option to specify the numerical search
algorithm; the choices are Gauss (Gauss–Newton), Marquardt,
Newton, and gradient. SAS documentation identifies gradient as
the least robust method, and the Newton algorithm consistently
produced poorer goodness-of-fit scores with our datasets (data
not shown), so only the Gauss and Marquardt algorithms were
included in development of our algorithm.

Algorithm

The general functions for Cot curves produced by HAP chroma-
tography and S1 nuclease digestion are shown in Eqs. (1) and (2),
respectively:

y ¼ f0 þ
X

1�i�m

fið1þ kixÞ�1 ð1Þ

y ¼ f0 þ
X

1�i�m

fið1þ kixÞ�0:44; ð2Þ

where x denotes the ‘‘Cot value” and y denotes the proportion of
ssDNA in the sample. For the derivation of these functions, see Brit-
ten and Kohne [1], Pearson and coworkers [16], or (more generally)
Érdi and Tóth [23]. Here f0 represents the ‘‘final unreassociated frac-
tion” because y declines to f0 as x?1. In regression parlance, f0 is
the intercept because if f1 = . . . = fm = 0, then y = f0. The terms f1, . . .,
fm are the fractions associated with each of them components of the
mixture, and k1, . . ., km are the corresponding reassociation rates.
Note that the fractions need not sum to 1 even including f0. Given
data (xi,yi), i = 1, . . ., n, we need to fit Eq. (1) or (2) to the data via
nonlinear regression for any given order m. Our algorithm for
accomplishing this goal is based on some simple ideas:

� Empirical experience shows that f0 is often less than 0.10 (10%),
and almost certainly less than 0.25 (25%), so the search for f0
need not cover the entire interval (0,1).

� All fi (i = 0, . . ., m) are bounded between 0 and 1, so an equally
spaced grid in some subinterval of (0,1) represents a reasonable
search pattern.

� As with all mixture models, the function is nonidentifiable with
respect to permutation of the parameter indexes. For example,
Function (1) with m = 2, f0 = 0.1, f1 = 0.2, k1 = 3, f2 = 0.6, and
k2 = 10 is the same as Function (1) with m = 2, f0 = 0.1, f1 = 0.6,
k1 = 10, f2 = 0.2, and k2 = 3; both are equivalent to
y = 0.1 + 0.2(1 + 3x)�1 + 0.6(1 + 10x)�1. We can exploit this fact
to restrict our search (see below). We have essentially no a priori
knowledge about the ki except that they are positive. Therefore,
it is plausible to use a logarithmic search grid in, say, powers of
10: . . ., 10�6, 10�5, 10�4, 10�3, 10�2, 10�1, 100, 101, 102, and so
forth. Empirical experience shows that possible values may
extend fairly far down into the negative powers; we return to
this below. The nonidentifiability mentioned above can also be
used to narrow the search for the ki.

� It is easier to fit a lower order model (smaller m) than a higher
order model. Furthermore, it is reasonable to suppose that cer-
tain (approximate) relationships will hold between the parame-
ter values for lower and higher order models.

� In its current implementation, the algorithm fits only m = 1
through m = 4, although higher orders could in principle be
computed.

The model-fitting algorithm begins withm = 1 (Model 1). In this
case, we search for f0 across a grid from 0.01 to 0.25 in steps of
0.05, and we search for f1 in a grid from 0.01 to 0.96 in steps of
0.05; the logarithmic grid for k1 ranges from 10–7 to 102. Next, we
move from Model 1 to Model 2 (i.e., m = 2). We now search for f0
within the95%confidence interval for f0 givenbyModel1using stan-
dard error increments. These are t distribution-based intervals, so
they consist of the parameter estimate ± approximately 2�SE, and it
is reasonable to take five steps: (approximately) est � 2 � SE,
est � 1 � SE, est, est + 1 � SE, and est + 2 � SE (thereby keeping the
combinatorial explosion of the grid under control). We do the same
for f1 and k1. The parameters for the second componentmust nowbe
estimated. For f2, note that0 6 f0 + f1 + f2 6 1;hence, f2 6 1 � (f0 + f1).
Therefore, we search for f2 along a grid ranging from one order of
magnitude less than (the apparent values of) f0 and f1 up to 1minus
the sum of the lower 95% confidence bounds for f0 and f1. For k2, we
again have no a priori knowledge, sowe use the full logarithmic grid.
Fits for Model 3 (m = 3) and Model 4 (m = 4) are extensions of the
same logic used in fitting Model 2. Note that the lower bound for
fm + 1 is decreased by one order ofmagnitudewith each pass because

324 Improved nonlinear regression analysis of Cot data / J. Bunge et al. / Anal. Biochem. 388 (2009) 322–330



the highest indexed component may be assumed to be the smallest
(under the nonidentifiability mentioned above).

Fixing the lowest k

If the genome size (1C DNA content) of a particular organism
has been determined independently (e.g., via flow cytometry),
the genome size value can be used to fix the k of the slowest reas-
sociating component. The rationale behind fixing this parameter is
discussed in the Results and Discussion below. With regard to the
algorithm, the lowest k for each of the aforementioned models
(Models 1–4) is set equal to G � (Gcoli � kcoli), where G is the genome
size of the organism for which the Cot curve has been prepared,
Gcoli is the genome size of Escherichia coli (i.e., 4,639,221 bp [24]),
and kcoli is the empirically determined reassociation rate for
E. coli (0.22 M–1 s–1 [25]). Each model is then refit using the fixed
value while letting all other parameters float within their ranges
as described above. We refer to the modelm = 1 with a fixed lowest
k as Model 1F, the model m = 2 with a fixed lowest k as Model 2F,
and so forth. All models with the fixed parameter still require their
preceding (lower order) models to run without fixed parameters so
as to facilitate bounds selection.

AIC and AICc

Akaike’s information criterion (AIC) is a widely used model
selection statistic, and in our research AIC with a second-order cor-
rection for small sample sizes (AICc) is used as the primary model
selection criterion. AIC is defined as 2p + n ln(RSS/n), where p is the
number of parameters, n is the number of observations, and RSS is
the sum of squares of residuals. AICc is defined as AIC + [2p(p + 1)/
(n � p � 1)] [26]. If genome size is provided by users, our algorithm
calculates AIC and AICc for each of the eight models (Models 1, 1F,
2, 2F, 3, 3F, 4, and 4F) generated for a particular dataset. If genome
size is unknown or not provided by users, AIC and AICc values are
calculated for the four ‘‘nonfixed” models (Models 1, 2, 3, and 4). In
general, the model with the lowest AICc is considered the most
accurate fit of the data.

Residual analysis

In instances where two or more models produce identical (or
nearly identical) AICc values, residual graphs and statistics can be
used as a secondary measure of model appropriateness. In classical
linear and nonlinear regression analysis, the standard assumption
is that the ‘‘errors” (vertical deviations of the observed data points
from the true regression function) are independent, identically dis-
tributed (hence homoscedastic or equal-variance) random vari-
ables following the normal (Gaussian) distribution. To assess
these assumptions, standard practice is to examine several graph-
ical displays based on the residuals [27]. Our program includes four
graphs for residual analysis of each fitted model (i.e., for each order
m and each m with a fixed lowest k). To assess normality, we pro-
vide a normal probability plot (which should appear to be linear if
the errors are normally distributed) and a histogram of the residu-
als with a fitted kernel density estimate and normal curve. The lat-
ter display also includes the A2 (Anderson–Darling) and W2

(Cramér–von Mises) tests for normality [28]. Both of these tests
are based on the squared difference between the normal and actual
distributions; hence, the lower their values, the closer the residuals
follow the normal distribution. These criteria can be useful when
visual inspection of graphs does not reveal the superiority of one
model over another. The P values of the A2 and W2 criteria are also
generated; higher P values indicate failure to reject (agreement
with) the null hypothesis of normality. We also provide plots of
the residuals versus the fitted values and of residuals versus the

order of the data; these plots should look like random noise with
no evident pattern. The aforementioned displays permit assess-
ment of the assumptions of normality, homoscedasticity, and (to
some degree) independence.

Because the abscissa of the Cot data plot is a multiple of time, it
might appear to be reasonable to regard a Cot dataset as a time ser-
ies and, hence, to test formally for autocorrelation (a specific form
of dependence) using the Durbin–Watson test [27]. We have not
included this test in our program for a variety of reasons, with
the chief reason being that Cot data are typically not obtained as
a time series (the separate points are obtained from independent
experiments) and, hence, a positive finding of autocorrelation from
the Durbin–Watson test is likely to be a false positive. Our empir-
ical experience bears this out; Durbin–Watson tests for autocorre-
lation in Cot data usually are negative, inconclusive, or weakly
positive (data not shown).

Outlier detection using the ROUT algorithm

Our program provides a separate routine for outlier detection or
‘‘nomination.” A number of methods have been proposed for out-
lier nomination, but we use a recent innovation of Motulsky and
Brown [29] called ROUT for ‘‘robust regression and outlier
removal.” We have implemented their method exactly as given
in their original article, so we refer the reader to that publication
for details. Essentially, we fit the desired functional model (Cot
curve) to the data, but under the assumption that the error terms
follow a Cauchy (Lorentz) distribution rather than the normal
(Gaussian) distribution. This fit is robust (insensitive) to outliers.
We then compute the residuals from the resulting fitted curve, nor-
malize them, and convert each to a P value that measures its dis-
tance from the center of a suitable t distribution. These P values
are then adjusted using the false discovery rate (FDR) adjustment
(see Ref. [29]), and observations with FDR-adjusted P values less
than 0.01 (a heuristic but reasonable cutoff) are flagged as outliers.

It is important to integrate the ROUT algorithm with the correct
model (bestm) because underfitted models produce too many false
positives and overfitted models produce too many false negatives.
However, choosing the correct model with which to examine a
dataset is complicated by the fact that inclusion or exclusion of
outliers may influence which m is deemed to be optimal. Conse-
quently, we used the following strategy, with the caveat that all
outlier nomination techniques have their shortcomings. In brief,
a dataset was evaluated in toto using our Cot analysis algorithm
(with the Marquardt numerical fitting option). The m producing
the best fit (lowest AICc) was then used in ROUT-based detection
of outliers in that dataset. Outliers flagged by ROUT were deleted,
and the ROUT algorithm appropriate for the m was rerun on the
amended dataset. It is possible that such a process could iterate
repeatedly, deleting more and more points; however, in our expe-
rience, no further outliers are found after one or two iterations. The
dataset from which outliers were removed was then analyzed
using our nonlinear regression algorithm.

Program descriptions

The algorithms described above were coded as SAS scripts. The
scripts produce a series of graphs, statistics, and HTML data pages.
We refer to the suite of SAS scripts and associated files as CotQuest.
CotQuest is available in two downloadable variations: CotQuestU
and CotQuestG. CotQuestU (the U stands for universal) includes
the SAS scripts, HTML report viewer files, sample datasets, sample
output report files, and a detailed user’s guide. CotQuestG (the G
stands for graphical user interface or GUI) contains everything
found in CotQuestU as well as a Windows GUI application that
leads users through the analysis process. CotQuestG’s GUI
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(CotQuestG.exe) asks users a series of questions about their data
and their analysis goals. These data are fed into the SAS scripts
so that users do not need to manually edit any SAS code. The GUI
program for CotQuestG requires .NET Framework 2.0 (or higher),
which is included in Windows XP with current updates and
Windows Vista (otherwise it can be downloaded from Microsoft’s
website). We recommend that those users who are unfamiliar or
uncomfortable with SAS scripting use CotQuestG if possible. How-
ever, the user’s guides included with CotQuestU and CotQuestG
should, in association with this article, permit users to conduct
their Cot analyses even if they have never used SAS or CotQuest
before.

For each analysis, the CotQuest programs produce an HTML file
(Report.htm) from which users can view a summary of the results
and, through hyperlinks, access a variety of data, statistics, and
analysis files (Fig. 2). The AICc for each model is displayed in the
second column of the report page table (Fig. 2A). If a model
produces a converged fit but exhibits more than 50% component
overlap, the percentage of overlap will be displayed in red text. If
a model fails to converge, in part or whole, the words ‘‘Partially
Converged” or ‘‘Failed to Converge” are shown in red. Models that
cannot produce fits without producing an illogical parameter value
(e.g., fi > 1) are indicated by the text ‘‘This model is invalid” (e.g.,
Model 4F in Fig. 2A).

Datasets and analysis criteria

We tested our program on Cot data from eight species (Table 1).
Each dataset was evaluated using both Gauss and Marquardt
numerical search algorithms. As described above, datasets were
tested for outliers using the appropriate ROUT script. Datasets for
two of the species possessed outliers; thus, these datasets were
evaluated with the outliers included and the outliers removed.
All datasets are included in the Sample Data folder in the down-
loadable CotQuestU and CotQuestG packages. Those datasets that
have been published or are extracted from published works are
also found in section B of the supplementary material.

To permit comparisons between CotQuest and NNNBAT, each
dataset was also analyzed using the latter program [16]. NNNBAT,
which is available at http://faculty.virginia.edu/wrpearson/fasta/
other, starts with initial parameter guesses provided by users.
Because the number of different sets of parameter guesses is
unlimited, we used the same approach to generate initial parame-
ter guesses for each dataset (see section C of the supplementary
material for details). NNNBAT results for a given dataset and model
were used as starting parameter guesses in a second NNNBAT anal-
ysis. If the goodness-of-fit value obtained for the second iteration
decreased by at least 5% compared with that of the first analysis,
a third analysis was conducted using the values generated in the
second fit as starting parameters. This general procedure was con-
tinued until goodness-of-fit values did not change by more than 5%
between successive iterations.

Results and discussion

Format of results

Both the CotQuestG and CotQuestU programs generate a report
page (Report.htm) from which all data associated with an analysis
can be accessed. An example report page generated in analysis of
the sorghum dataset is shown in Fig. 2A. In the figure, Model 3F
provides the lowest AICc (�438.65). Although Models 3 and 4 are
tied for the next lowest AICc (�436.04), the 100% overlap between
the highly repetitive and moderately repetitive components in
Model 4 indicate that this model is not valid (hence the ‘‘Partially

Converged” warning message). From the Reports.htm page, each
Cot curve (e.g., Fig. 2B) can be viewed by clicking on the link below
its corresponding model name (Fig. 2A), whereas residual analysis
graphs (e.g., Fig. 2C and D) and associated data can be accessed
through the hyperlinks in the far right column of the table. Stan-
dard SAS output pages, additional graphs, and statistical details
can be accessed through the links found beneath the output table
(Fig. 2A).

Effect of fixing the lowest k

As mentioned previously, a Cot curve often can be used to make
an estimate of genome size. This is typically done using the for-
mula G = (Gcoli � kcoli) � k, where k is the reassociation rate of the
sole component in prokaryotes/viruses/organelles or the slowest
reassociating component in eukaryotes [1,25]. However, Cot anal-
ysis is arguably not the best means of obtaining genome size val-
ues; indeed, a Cot-based estimate of genome size may vary
considerably from published values obtained via more direct
means (e.g., flow cytometry). Consequently, it is common to fix
the lowest k based on a published genome size value to both com-
pensate for potential error in a Cot analysis and possibly attain a
better curve fit. The reasons for the inaccuracy in estimating gen-
ome size based on slowest reassociating k value are likely rooted
in the relatively large number of experimental steps in a Cot anal-
ysis (vs. a procedure aimed directly at determining genome size)
and the cumulative effects of minor lab/person/organism-specific
variations on final results. Ideally, each laboratory conducting a
Cot analysis for a particular organism should also prepare a Cot
curve for E. coli and, in calculating genome size, use the kcoli value
as determined in that laboratory rather than a published kcoli value
[25]. However, this best-practice procedure is not practiced very
often. Moreover, determining the k of the single-copy component
of large genomes (>1 Gb) may be complicated by uncertainty
regarding an organism’s ploidy level [25]. When possible, addi-
tional sources of data should be employed in making interpreta-
tions based on the k value of the slowest reassociating component.

For each of the sample datasets (Table 1), we analyzed the data
using both nonfixed and fixed lowest k values for eachm; indeed, if
a CotQuest user provides the program with a genome size value, it
will automatically generate both standard and fixed model fits
(Fig. 2A). Fixing the lowest k usually leads to a slight deviation
from the optimal statistical fitting and RSS increases slightly (data
not shown). On the other hand, it follows from the definitions of
AIC and AICc that decreasing p by 1 lowers their values slightly.
Therefore, fixing the lowest k may or may not improve AICc
depending on which of these two effects is greater. As shown in
Fig. 3, in some instances the best fit model for a species’ Cot curve
is standard, whereas in others it is fixed.

Numerical search algorithm selection

To examine the effect of the underlying numerical search algo-
rithm on model selection, we analyzed each of the eight data sets
using both Gauss (Gauss–Newton) and Marquardt fitting algo-
rithms. For seven of the eight species, the Gauss and Marquardt
algorithms resulted in selection of the same ‘‘optimal” model
(i.e., the model with the lowest AICc), and in most instances the
results produced using the two algorithms were identical across
most models. However, for pine and tobacco datasets, one algo-
rithm was able to reach convergence for a suboptimal model,
whereas its counterpart could not (see section D of the supplemen-
tary material).

The onion dataset was the only one in which Gauss and
Marquardt algorithms generated different optimal model selec-
tions. We attribute this to two interacting features that appeared
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only in the onion dataset. First, there are five points with essen-
tially identical y axis values at the left end of the curve, indicating

no detectable reassociation at the first five Cot values. Second,
there is a complex system of nonmonotonic residuals at the right

Fig. 2. Results screen shots. (A) Report.htm page autogenerated by CotQuest in an analysis of sorghum Cot data. The Report.htm page possesses summary data and links to
graphs, statistics, and data pages. (B) Best fit Cot curve. (C) Histogram of residuals compared with normal distribution and kernel density distribution estimate. (D) Residuals
versus the order of the data.
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end of the curve. This combination may present challenges to the
model fitting procedure. The onion optimal Gauss fit, Model 3F,
has a slightly lower AICc (�366.788) than the optimal Marquardt
fit, Model 2 (�365.668). With regard to A2 and W2 values, there
is a split between the two numerical search algorithms, with one
having the better A2 and the other having the better W2 (see sec-
tion D of the supplementary material). In addition, the Cot curves
and the residual plots are not noticeably different between the
two numerical search algorithms. Thus, based on its lower AICc,
the Gauss Model 3F would probably be the best choice. Our obser-
vations suggest value in evaluating data using both the Gauss and
Marquardt options.

Effect of outlier removal

All of the sample datasets were tested for significant outliers
using the strategy described in Materials and Methods. One outlier
was detected in the pine dataset, whereas five outliers were
detected in the bald cypress data. Removal of the putative outlier
from the pine data and a second round of ROUT analysis revealed

no additional outliers, and no additional outliers were detected
in the second ROUT analysis of the bald cypress data. CotQuest
analysis of the original and amended datasets did not result in a
change in the best fit model for pine or bald cypress. Although
the output values in the pine analyses were essentially identical
for the datasets with and without the outlier removed, there were
slight differences in the output values for the bald cypress datasets
(see section E of the supplementary material). In general, we rec-
ommend that users conduct outlier removal only if (i) those points
that are signaled as outliers can be identified as anomalous on sci-
entific grounds or (ii) a reasonable model fit cannot be obtained
using the complete dataset.

Comparison of CotQuest with NNNBAT

To test the efficacy of the CotQuest programs in comparison
with the current Cot analysis standard, NNNBAT, we analyzed each
of our test datasets (Table 1) using the NNNBAT program. NNNBAT
does not actually provide users with the best fit of their data;
rather, it provides them with the best fit for a given model based
on the parameter guesses entered. Because the potential parameter
combinations are endless, we used a heuristic approach to select
reasonable parameter guesses for each model (see section C of
the supplementary material). Each model (1, 1F, 2, 2F, 3, 3F, 4,
and 4F) needed to be tested independently, and results for a model
needed to be used as starting values for at least one additional test
(to see whether goodness of fit changed by > 5%).3 In general, it took
approximately, 1.5 h to complete the NNNBAT analysis for one data-
set using the approach given in section C of the supplementary
material.

As shown in Fig. 3, for only three of the eight datasets, NNNBAT
analysis resulted in selection of the same best fit model (using the
strategy in section C of the supplementary material) as CotQuest.
In tobacco, the NNNBAT best fit model was Model 4F, although Cot-
Quest indicated that Model 3 was best. In cow and pine, NNNBAT
favored Model 4F, although this model does not reach convergence
using CotQuest, indicating that NNNBAT’s error checking mecha-
nisms are insufficient. For bald cypress and cow, the NNNBAT best
fit models differed from those selected by CotQuest, but use of the
CotQuest best fit values as starting values for NNNBAT analysis
substantially improved the NNNBAT fits and changed the NNNBAT
best fit models to the same ones as selected by CotQuest. For the
onion dataset, where a difference was noted between best fit

Table 1
Sources of data used in evaluating CotQuest.

Dataset Scientific name Source of Cot data Genome size (1C) (Mb) Genome size reference

E. colia Escherichia coli [1] 4.64 [24]
Sorghum Sorghum bicolor [10] 735 Bennett and Leitch (2004)c

Tomato Solanum lycopersicum [14] 950 [30]
Cowa Bos taurus [31] 3100 [32]
Tobaccoa Nicotiana tabacum [25] 5730 Bennett and Leitch (2004)c

Bald cypress Taxodium distichum MGELb 9750 Murray et al. (2004)d

Oniona Allium cepa [33] 16400 Bennett and Leitch (2004)c

Pine Pinus taeda MGELb 21658 Murray et al. (2004)d

a The Cot curve for this organism was digitized and saved in a PDF file. We then used the measurement tool in Adobe Acrobat 8.0 to determine the relative x and y
coordinates of each Cot point, which were subsequently converted into fraction ssDNA and log Cot values, respectively.

b Mississippi Genome Exploration Laboratory (D. G. Peterson et al., unpublished results).
c M. D. Bennett, I. J. Leitch, Angiosperm DNA C-values database (release 5.0, December 2004), http://www.kew.org/cvalues/homepage.html.
d B. G. Murray, I. J. Leitch, M. D. Bennett, Gymnosperm DNA C-values database (release 3.0, December 2004), http://www.rbgkew.org.uk/cval/homepage.html.
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Fig. 3. Model selection by CotQuest (CQ) using Gauss and Marquardt algorithms
versus NNNBAT analysis. For each dataset, the CQ best fit model (i.e., the model
with the lowest AICc) is indicated by black shading. For all datasets except onion,
both the Gauss and Marquardt algorithms resulted in selection of the same best fit
model. Likewise, the model yielding the lowest AICc after NNNBAT analysis (as
performed according to section C of the supplementary material) is shaded in gray.
When the model identified through NNNBAT analysis differed from that selected by
CQ, the CQ–Marquardt best fit parameters were used as starting values for an
additional NNNBAT analysis. In two instances, the CQ–Marquardt values resulted in
a new lowest AICc with a concomitant change in best model (diagonal striping) to
the one selected by at least one of the CQ analyses. Two datasets (�) were shown to
contain significant outliers. Removal of the outliers followed by reanalysis did not
change model selection.

3 NNNBAT can theoretically fit data with one, two, three, four, and five components
(m 6 5), whereas CotQuest is designed to perform fits for m 6 4. However, in our
experience, even the largest eukaryotic genomes cannot be resolved into more than
two or three components without conducting additional reassociation kinetics
experiments (e.g., ‘‘mini-Cot” analyses) [2,25]. CotQuest could be adapted for
mP 5, but this would substantially and unnecessarily increase run time.
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models selected using CotQuest Gauss and Marquardt numerical
search algorithms, the NNNBAT best fit model was the same as
the CotQuest Gauss best fit model. This observation is interesting
because NNNBAT uses the Marquardt algorithm to conduct numer-
ical searches; thus, one might predict that NNNBAT would select
the same best fit model as CotQuest using the Marquardt search
algorithm.

The advantages of CotQuest over NNNBAT are fairly clear.4 In a
single run, CotQuest produces a best fit curve for each model (if pos-
sible) and provides a model selection statistic (AICc) to help users
choose an optimal model. In contrast, NNNBAT produces a fit for a
given model based on starting parameter guesses; the quality of
the fit depends on the proximity of the parameter guesses to a true
best fit solution. For each model, multiple rounds of guess testing are
required to try to avoid fits biased by local minima or maxima over
the parameter space. Typically, results from NNNBAT analyses of dif-
ferent models must be consolidated (e.g., in a spreadsheet) for com-
parison. Moreover, NNNBAT does not provide a model selection
statistic, although AICc can be calculated from NNNBAT results. As
shown in Fig. 3, these differences between CotQuest and NNNBAT
can result in selection of suboptimal models based on NNNBAT out-
put even when relatively logical starting guesses are used (see sec-
tion C of the supplementary material). In addition, the residual/
statistical analyses and graphing capabilities of CotQuest distinguish
it from NNNBAT, whereas the GUI associated with CotQuestG and
the Report.htm pages generated by both CotQuestG and CotQuestU
provide user-friendliness not found in NNNBAT.

SAS versus R

There is an increasing tendency for programmers in the biosci-
ences to use freeware in development of their applications, a trend
we strongly endorse. In statistics, the freeware program R is often
used. However, in developing CotQuest, we chose to use SAS
because it is far better supported, documented, benchmarked,
and disseminated than is R. Moreover, SAS costs only a small
amount (typically �$80 U.S.) to academic site license users. R
may be suitable for test applications or small-scale implementa-
tions, but SAS-based CotQuest, especially in its GUI version, is
immediately usable (with no programming) by biologists with
minimal statistical expertise, and it provides reliable results and
detailed analytical and graphical reports in a user-friendly format
while exploiting the full power of the numerical and statistical rou-
tines already implemented in SAS. However, to facilitate use of the
CotQuest algorithm with other platforms, we have added a com-
prehensive listing of pseudo-code for all of our algorithms to the
freely downloadable materials available on our website
(www.mgel.msstate.edu/tools.htm).

Conclusions

We have presented CotQuest, a freely available program that
can be used in association with SAS to perform nonlinear regres-
sion analysis of DNA reassociation kinetics data. CotQuest repre-
sents a major improvement in Cot analysis methods by
implementing a novel algorithm that eliminates the need for input
of parameter guesses. CotQuest greatly surpasses the automation,
statistical robustness, and user-friendliness of existing Cot analysis
programs, and it should be of use to anyone conducting Cot

analyses or conducting any other line of research involving nonlin-
ear regression. The CotQuest scripts and detailed documentation
are available at www.mgel.msstate.edu/tools.htm.
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