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Abstract

Dynamic loop scheduling (DLS) algorithms provide
application-level load balancing of loop iterates, with the
goal of maximizing application performance on the un-
derlying system. These methods use run-time information
regarding the performance of the application’s execution
(for which irregularities change over time). Many DLS
methods are based on probabilistic analyses, and there-
fore account for unpredictable variations of application
and system related parameters. Scheduling scientific and
engineering applications in large-scale distributed systems
(possibly shared with other users) makes the problem of DLS
even more challenging. Moreover, the chances of failure,
such as processor or link failure, are high in such large-scale
systems. In this paper, we employ the hierarchical approach
for three DLS methods, and propose metrics for quantifying
their robustness with respect to variations of two parameters
(load and processor failures), for scheduling irregular ap-
plications in large-scale heterogeneous distributed systems.

1. Introduction

Researchers and scientists from various fields are inter-
ested in the accurate modeling and simulation of various
complex phenomena from various scientific areas. These
simulations are often routines that perform repetitive compu-
tations (in the form of DO/FOR loops) over very large data
sets, and the number of repetitive computations (iterations)
in these codes is not always constant. Moreover, their
nature (or computational requirements) may be irregular,
making one iteration likely to take more time than others,
depending on the simulation. The resources in a large-scale
system are widely distributed and highly heterogeneous,
and as such, are usually shared among multiple users, and
their availability cannot always be guaranteed or predicted.
Hence, the quality and quantity of resources available to a
single user changes continuously.

In this work, dynamic loop scheduling (DLS) techniques
are considered to be the key solution for achieving and
preserving the best performance of these applications in such
environments. Herein, it is considered that a ‘loop iteration’
(or a chunk of loop iterations) with variable execution time
refers to a ‘task’ (or a chunk of tasks, among many others

within a loop of tasks) with variable execution time. A
comprehensive description has been given earlier in a survey
by Hurson et al. in [5] and in the relevant literature after that.

DLS methods provide two alternative approaches, non-
adaptive and adaptive, for achieving good load balancing on
variably loaded resources, as well as for executing tasks with
varying execution times. Most of the techniques described
in [5] are based on probabilistic analyses and are non-
adaptive. Other non-adaptive techniques, which were not
mentioned in the survey above, include fractiling [3] and
weighted factoring [4]. Subsequent efforts gave birth to more
elaborate techniques, called adaptive, and a few examples are
given in [6][8][12]. Most of the above adaptive methods are
based on probabilistic analyses, and use a combination of
runtime information about the application and the system,
in order to predict the system capabilities for the next com-
putational assignments, or to estimate the time future tasks
will require to finish execution, in order to achieve the best
allocation possible for optimizing application performance
via load balancing. In this paper, we employ a hierarchical
management approach, and concentrate on two non-adaptive
techniques, factoring [2] (FAC) and weighted factoring [4]
(WF), and one adaptive technique, adaptive weighted factor-
ing [7] (AWF). These techniques use probabilistic analyses
to dynamically compute the size of chunks (a collection of
tasks) at run-time, such that they are executed before their
optimal time with high probability. Due to space limitations,
the interested reader is referred to the appropriate references
for details of the above DLS algorithms.

The performance of DLS methods using hierarchical
management has been shown to be better than that of
the centralized management approach [9][10][11]. Figure 1
illustrates the centralized management approach (left), and
the distributed management approach (right). The coordi-
nation of and interactions between the processors in the
first case are straightforward, whereas for details of the
hierarchical management approach, due to space limitations,
the interested reader if referred to [9].

Motivation Scheduling applications on large-scale plat-
forms, where chances of faults are high, require an approach
based on hierarchical management and mechanisms to en-
sure the robustness of the DLS methods. For this reason we
consider FAC, WF and AWF, which are inherently robust be-
cause their design enables them to address unpredictabilities



Figure 1. Left: centralized management, right: hierarchi-
cal management system

in the application and the system. Previously, the robustness
of resource allocations/task scheduling algorithms was ad-
dressed individually for a single method, or even for a single
application.

Contribution Inspired by the results in [9] we propose to
employ the hierarchical approach in the DLS methods above.
As such, the processors are organized into dynamically
selected groups, such that the physical structure of the
underlying platform is easily and well captured. The main
contribution of our work lies in using the methodology
proposed by Ali et al. [13] to propose two metrics that
quantify the robustness of the hierarchical FAC, WF and
AWF DLS algorithms, used for scheduling a very important
class of applications: irregular tasks, against variations of
two system related parameters: load and processor failures.
The proposed metrics in conjunction with the hierarchical
DLS methods provide quantitative and qualitative informa-
tion such as: level of performance, quality of execution, for
irregular applications in uncertain large-scale heterogeneous
systems. These metrics alone are not more useful or bet-
ter than any other performance measurement metrics (e.g.
makespan, communication cost, resource utilization). There-
fore, their use is mandatory towards achieving robustness
for hierarchical DLS algorithms running on such uncertain
systems.

The paper is organized as follows. Section 2 shows
how to design robustness metrics and describes the two
proposed metrics. Details regarding the implementation of
these metrics and their usefulness are outlined in section
3. The paper is concluded in section 4 with an outline of
directions for future work.

2. Robustness metrics design

Robustness is an emergent multifaceted phenomenon in
advanced computing systems.

Designing specifically for robustness, to its full extent,
is however not yet possible. Robustness benchmarks (or
metrics) can be useful to measure how a scheduling method
reacts to possible erroneous inputs or environmental factors,
and hence, should employ mechanisms for detecting and
identifying any erroneous parameters. In this work, we use
the FePIA (features-perturbation-impact-analysis) procedure
(see [13] and references therein for details), to design metrics
that model and estimate the robustness of hierarchical DLS
algorithms on large-scale realistic platforms against two

perturbation parameters. The FePIA procedure consists of
four general steps:

S.1 Identify the performance features.
S.2 Identify the perturbation parameters.
S.3 Identify & clarify the impact of perturbation param-

eters (S.2) on performance features (S.1).
S.4 Identify the analysis to determine the robustness.
Assuming that the application tasks are assumed to be

independent and irregular, the goal of the hierarchical DLS
algorithms is scheduling these tasks onto the set of P
processors (divided into disjoint groups) of the large-scale
heterogeneous distributed system, while minimizing the total
parallel execution time (or makespan) TPAR. A minimum
TPAR is achieved via dynamic load balancing, using pro-
cessor speeds (which in the case of AWF are periodically
adapted) and hierarchical management. Each processor in
a group executes a set of tasks (called chunk) at a time.
Each task is executed in a non-preemptive fashion, i.e., no
other tasks of higher priority will suspend it. The same
holds for the execution of a chunk, or for all chunks during
a single time-step. Table 1 summarizes the notations we
used in the following sections. The performance features
of interest are: ET j , TPAR, and Nresch, and they should be
limited in variation under certain application, system, or en-
vironment related parameters perturbations. For hierarchical
DLS, perturbation parameters include variations in: irreg-
ularities of application computational requirements, system
availability due to unforeseen loads (processors’ delivered
computational speed when shared among multiple users),
network latency (delays in the communication speed due
to network congestion), and resource reliability (caused by
processor or network failures). Commonly, all perturbation
parameters vary over time and cannot be accurately predicted
before execution. A robust hierarchical DLS algorithm must
adapt to any variations in these perturbation parameters,
and yield performance parameters that vary in a constrained
manner. Designing robustness metrics that incorporate all
these parameters is very challenging [13].

2.1. Robustness against perturbations in
system load

The parallel time given by a DLS method is generally
defined by the processor with the longest individual fin-
ishing time (see Table 1). Assuming unknown system load
variations, the individual finishing time ET j of processor
mj must be robust against them. In other words, TPAR be
robust against such variations, as well. Assuming system
load variations, the actual finishing time ET j of processor
mj must be calculated considering the effects of errors in
the estimation of the processor’s load variation, and must
not exceed τ1(> 1) times its estimated value ET origj , where
τ1 is a tolerance factor reflecting the robustness. The FePIA
procedure for this analysis is outlined below.

S.1 Let Φ = {φ1}, φ1 = ET j , 1 ≤ j ≤ P be the
performance features set. The individual finishing time for
all {tasks i|ai executed on mj}, is:



N total number of tasks
Nresch # of tasks that need to be rescheduled
ai i-th task, 1 ≤ i ≤ N
P total number of processors
mj j-th processor, 1 ≤ j ≤ P
Tj execution time of task ai on mj

TW2F
ij communication time between mj and its

foreman for executing ai

TW2W
ij communication time between mj and any other

workers for executing ai (processor regrouping)
ET j finishing time of all tasks computed by mj

TP AR total parallel execution time, TP AR = max(ET j , 1 ≤ j ≤ P )

λ = [λ1 . . . λP ]T vector of processors load (= system load)
F = [f1 . . .FP ]T vector of processors status (active/failed) vector
Φ = {φ1, . . .} set of performance features
Π = {π1, . . .} set of perturbation parameters
τ1, τ2, τ3 tolerance factors for performance features
rDLS(, ) robustness radius
ρDLS(, ) robustness metric

Table 1. Notation

ET j =
∑N,P

i,j

(
Tj + TW2F

j + TW2W
j

)
(1)

S.2 Let the perturbation parameters set be Π = {π1},
π1 = λj , 1 ≤ j ≤ P . We consider λj to be the individual
load of processor mj , and λ the vector that contains all
processors load values. Initially, the DLS assumes that the
system has λorig load, which can be usually determined by
executing the first batch of chunks, as determined by the
original factoring rules and their subsequent evolution. The
j-th position in the λorig vector is the initial load of mj .

S.3 The impact of λj over ET j , is determined by analyz-
ing individually, for all processors, their finishing time given
their own load. Each actual finishing time is expected to vary
according to λj , denoted as ET j(λj). Mathematically, for
all {tasks i|ai executed on mj under varying load λj}, this
is written as:
ET j(λj) =

∑N,P

i,j

(
Tj(λj) + TW2F

j (λj) + TW2W
j (λj)

)
(2)

S.4 We must define the boundary values of π1 = λj . First,
we must decide whether the perturbation parameter is a con-
tinuous or a discrete variable. There are two ways to measure
the load of a processor in heterogeneous systems: number of
processes in the processor’s run-queue [1] (discrete variable),
or delivered processor speed, measured as percentage of pro-
cessor availability [14] (continuous variable). In this work,
λj is a continuous variable measuring processor availability,
which is highly advantageous since it expresses the delivered
processor speed, which in fact reflects simultaneously the
impact of: applications’ requirements, hardware capabilities,
and network speed in one. The boundary values of λj must
satisfy the following boundary relationships:{

λj ∈
〈
λ′

j , λ
′′
j

〉
|
(
f1(λ′

j) = βmin
1

)
∧
(
f1(λ

′′
j ) = βmax

1

)}
(3)

The tolerable variation interval for ET j (the performance
feature of interest), is given by

〈
βmin

1 , βmax
1

〉
. The tolerable

increase in the actual finishing time ET j of processor
mj , considering the effects of errors in the estimation of
variations of λj , cannot exceed τ1(> 1) times its estimated
value ET origj . The boundary relationships for this analysis
are:{

λj ∈
〈
λ′

j , λ
′′
j

〉
|
(
ET j(λj) = τ1ET orig

j

)
∧ (1 ≤ j ≤ P )

}
(4)

The robustness radius, rDLS(ET j , λj), is expressed as
the largest increase in processor load, for any combination

of processor load values, from the assumed value, that does
not cause any tolerance interval violation for the execution
time of all tasks ai assigned to mj . We must choose the
norm which yield the smallest variation in the system (and
ultimately processor) load, and we believe that a more
intuitive norm to use is the `1-norm, and rDLS(ET j , λj)
can be written as follows:
rDLS(ET j , λj) = max ‖λj − λorig

j
‖1 s.t. ET j(λj) = τ1ET orig

j
(5)

The robustness metric is the minimum of all robustness
radii: ρDLS(Φ, λj) = min (rDLS(φ1, λj)) ∀ φi ∈ Φ (6)

An acceptable value for τ1 was proposed in [13] to
be 1,2. For this analysis, ρDLS(ET j , λj) is the general
robustness metric of the “DLS” algorithm, with respect to
each processor’s individual finishing execution time against
perturbations in the processor load, and ρDLS(TPAR, λ) is
the robustness metric of TPAR against variations in the total
system load:
ρDLS(TP AR, λ) = min(ρDLS(ET j , λj)), 1 ≤ j ≤ P (7).

2.2. Robustness against processor failures

Assuming an un-safe system with expected failures,
Nresch and TPAR, must both be robust against them: Nresch

must not exceed τ2% of the total number of tasks N , and
TPAR must not exceed τ3(> 1) times it’s estimated value
T origPAR (computed under the assumption that the system is
completely safe).

When failures occur, the DLS algorithm must be able
to reschedule the tasks that were assigned to the failed
processors, as well as other tasks if necessary (for instance,
to preserve load balancing on the remaining processors).
To reduce the complexity of the analysis, we make the
following simplifying assumptions: (i) only worker proces-
sors fail, (ii) failures occur simultaneously, and (iii) failures
are permanent. We also assume that the DLS algorithm
has fault-discovery and fault-recovery mechanisms. These
assumptions can be relaxed in order to deliver more optimal
and general robustness metrics. The FePIA procedure for
this analysis is given below.

S.1 In this case the set of performance features has two
elements: Φ = {φ1, φ2}, φ1 = Nresch and φ2 = TPAR.

S.2 To identify the failing processors, we use consider
F = [f1f2 . . . fP ]T as the vector containing the statuses of
all processors, defined as fj = 1 if processor mj failed, and
fj = 0 otherwise, 1 ≤ j ≤ P .

Forig = [0 0 . . . 0]T , indicates that all processors are
initially active. The perturbation parameters set is Π =
{π1 = F}.

S.3 To determine the impact of Π over Φ, we need to
determine separately each of the following:
φ1 = f11(π1) (8a) φ2 = f21(π1) (8b)

which relate φ1, and φ2, respectively, to π1. Nresch is
directly proportional to the number of failing processors.
Thus, (8a) becomes Nresch(F) = Nresch

p (F) +Nresch
lb (F) (9)

where Nresch
p (F) is the total number of tasks assigned to

the failed processors that need to be rescued (or restarted),



and Nresch
lb (F) is the total number of ‘surviving’ tasks, as-

signed to ‘surviving’ processors, which the failure-recovery
mechanism will need to reschedule together with Nresch

p (F)
with the goal of achieving and then maintaining a good load
balancing on the remaining active processors. Additionally,
Nresch
lb (F) also depends on the choice of the DLS algorithm

in use. It follows that the total parallel time TPAR increases
when processors start to fail. Hence, TPAR is expected to
vary with respect to F and relationship (8b) can be written
as TPAR = f21(F). The exact impact of F over TPAR
depends on the choice of DLS algorithm and its fault-
recovery mechanism.

S.4 To define the boundary values of π1 = F for each el-
ement in Φ, we consider F a discrete variable that measures
the number of “living” processors. We need to determine
all the pairs of F, such that for a given pair, the boundary
value is the one that falls in the robustness region. Assume
that F′ is a perturbation parameter value, such that the
machines that fail in the scenario represented by F′ include
the machines that fail in the scenario represented by F and
exactly one other machine. Then, the boundary relationships
are:

{
F|
(
Nresch(F) ≤ τ2N

)
∧
(
∃F′s.t. Nresch(F′) > τ2N

)}
(10){

F|
(
TP AR(F) ≤ τ3T orig

P AR

)
∧
(
∃F′s.t. TP AR(F′) > τ3T

orig
P AR

)}
(11)

where T origPAR is the estimated parallel time assuming that
the system is completely safe. We define the robustness radii
for this case using the `1-norm: rDLS(Nresch,F) = max ‖F −

Forig‖1 s.t. (Nresch(F) ≤ τ2N)

∧(∃F′s.t. Nresch(F′) > τ2N)(12)

rDLS(TP AR,F) = max ‖F− Forig‖1 s.t. (TP AR(F) ≤ τ3T orig
P AR

)

∧(∃F′s.t. TP AR(F′) > τ3T
orig
P AR

)(13)

ρDLS(Φ,F) is the robustness metric of the “DLS” algo-
rithm against processor failures, with respect to Nresch, and
TPAR: ρDLS(Φ,F) = min (rDLS(φj ,F)) ∀ φi ∈ Φ (14)

3. Implementation and usefulness

An analysis of the computational complexity for comput-
ing such metrics based on the FePIA procedure is given
in [13] (and references therein). The choice of τ1, τ2 and τ3
impacts the robustness of DLS algorithms, and the proposed
metrics are useful if these factors reflect reality with high
accuracy. The metrics depend on certain application, system
or algorithm specific parameters, most of which can be
determined apriori. Hence, the metrics can be formulated
offline and injected in the master to guide the dynamic
scheduling process. If certain parameters become available
(or known) only at runtime, the metrics are formulated using
initial values (e.g., every element of vector F is zero, mean-
ing no failed processors), which are updated in the master
when newer values become available (e.g., certain processors
failed, hence vector F contains non-zero elements). These
metrics have no effect when no perturbations occur in the
parameters against which they quantify the robustness of a
DLS algorithm. However, they offer valuable information for
making scheduling decisions when perturbations do occur in
those particular parameters, leading to feasible, qualitative
and efficient schedules.

4. Conclusions and future work

Scheduling today’s applications on the latest computing
platforms is challenging, and among other attributes, it must
be realistic, efficient and robust. The metrics proposed in
this work, in combination with the dynamic hierarchical
management approach, are essential to bringing the most
adaptive and efficient DLS algorithms to the state-of-the-
art level required by today’s computing platforms and ap-
plications. Immediate and future work directions include:
devising similar robustness metrics for the adaptive DLS
methods (adaptive factoring and recent variants of AWF),
that use probabilistic analyses to model uncertainties; us-
ing multiple performance parameters and devise realistic
robustness metrics that give proper weight to their impact
over each performance features of interest; implementing
these metrics and using them as performance metrics for
evaluating the adaptive DLS methods in realistic large-
scale platforms, individually against or in combination to
traditional performance metrics, such as makespan, resource
utilization, etc.
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