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Abstract Revealing the genetic underpinnings of cotton
productivity will require understanding both the prehistoric
evolution of spinnable fibers, and the results of independent
domestication processes in both the Old and New Worlds.
Progress toward a reference sequence for the smallest
Gossypium genome is a logical stepping-stone toward
revealing diversity in the remaining seven genomes (A, B,
C, E, F, G, K) that permitted Gossypium species to adapt to
a wide range of ecosystems in warmer arid regions of the
world, and toward identifying the emergent properties that
account for the superior productivity and quality of tetraploid

cottons. The greatest challenge facing the cotton community is
not genome sequencing per se but the conversion of
sequence to knowledge.
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During the recently ended International Year of Natural
Fibers (http://www.naturalfibres2009.org/), it is fitting that
progress in sequencing of genomes in the cotton genus
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(Gossypium) accelerated rapidly, toward the realization of
many novel opportunities to advance knowledge of organic
evolution. Of singular importance is dissecting the evolu-
tion of the ‘lint fiber’ that sustains the textile industry, with
an aggregate influence estimated at ∼$120 billion/yr on US
gross domestic product and ∼$500 billion/yr worldwide.
“There are only a few cells in the plant kingdom that are as
exaggerated in their size or composition as cotton fibers”,
and some of these single-celled seed epidermal trichomes
“... reach lengths of over 6 cm, or one-third the height of an
Arabidopsis plant (Kim and Triplett 2001).”

Cotton is unusual among major crops in having been
domesticated independently four times at two different ploidy
levels. Spinnable fibers evolved in the Old World A genome
lineage in the past 5–7 million years (Senchina et al. 2003;
Udall et al. 2006). Domestication of A genome cottons
G. herbaceum and/or G. arboreum may have started before
6000 B.C. in Pakistan (Moulherat et al. 2002). In parallel, by
3500–2300 BC (Stephens and Moseley 1974) New World
aboriginals were utilizing two tetraploid species that arose
from natural hybridization between an A genome species and
a New World D genome species. A and D genome taxa
diverged ∼5–10 million years ago (Senchina et al. 2003;
Udall et al. 2006), reuniting by polyploidization ∼1–2 million
years ago following trans-oceanic dispersal of an A genome
propagule to the New World (Wendel 1989). The ancestral

allopolyploid spawned two species that were independently
domesticated (G. hirsutum, or ‘Upland’ cotton; and
G. barbadense, including forms referred to as ‘Sea Island’,
Egyptian, and Pima cotton), and three species known only
in the wild, native to the Galapagos (G. darwinii), Hawaii
(G. tomentosum), and Brazil (G. mustelinum).

Revealing the genetic underpinnings of cotton productivity
will require understanding both the prehistoric evolution of
spinnable fibers, and the results of independent domestication
processes in both the Old and New Worlds. In particular, the
NewWorld D genome (similar to extant G. raimondii) played
a surprising role in cotton improvement. Although no D
genome species produce spinnable fiber, more than half of
genetic differences in fiber traits between the two domesti-
cated tetraploid species map to D-genome chromosomes
(Jiang et al. 1998; Rong et al. 2007). Moreover, gene
expression in tetraploid cotton fiber shows a like bias in
favor of D-genome alleles (Hovav et al. 2008). These data
support the hypothesis that the superior fiber yield and
quality of tetraploids may be an emergent property of
combining two genomes (Jiang et al. 1998). Indeed, cotton
has gone ‘full circle’—evolution of spinnable fibers may
have unwittingly provided the Old World A genome a
dispersal mechanism by which to transiently colonize the
New World and permit the tetraploid to form. In turn, in the
post-Columbian era, more productive and finer-quality New
World tetraploids have largely supplanted cultivated diploids
in the Old World.

Cotton enjoys many opportunities to participate in a bio-
based products revolution that may reduce dependence on
petrochemicals (Council 2000). Cotton fiber with increased
uniformity, durability, and strength might replace synthetic
fibers that require ∼230 million barrels of petroleum per
year to produce in the USA alone. Cotton seed oil, and
byproducts of fiber processing, are raw materials for biofuel
production (Holt et al. 2003).

Discovery and utilization of new Gossypium diversity
may be especially important for sustainable cotton produc-
tion because of its narrow gene pool (Chee et al. 2004;
Lubbers et al. 2004). The natural ‘genetic bottleneck’
imposed by polyploid formation has been exacerbated by
repeatedly crossing relatively few closely-related genotypes
to one another to breed new cultivars (May et al. 1995) and
using only a few cultivars to deploy transgenes (Helms
2000). For example, a looming worldwide water crisis
(UNESCO 2002) makes it important to identify adaptations
that permitted wild cottons to endure periodic drought and
temperature extremes (Kohel et al. 1974), restoring such
valuable alleles that may have been “left behind” during
domestication (Gur and Zamir 2004) to create cultivars that
produce more with less (water).

DNA sequencing promises to reveal the spectrum of
diversity in the Gossypium genus. A high degree of
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conservation of gene order and sequence suggests that the
vast majority of data from diploids will extrapolate to
tetraploids (Rong et al. 2004). Accordingly, obtaining a
reference sequence of the smallest Gossypium genome (D,
∼900 Mb) is a logical stepping-stone toward characterizing
the larger A diploid (∼1700 Mb) and AD tetraploid
genomes (∼2500 Mb) (Paterson 2007; Chen et al. 2007).
Rapid low cost re-sequencing might then be sufficient to
reveal diversity in the remaining six genomes (B, C, E, F,
G, K) that permitted Gossypium species to adapt to a wide
range of ecosystems in warmer, arid regions of the world.
The US Department of Energy Joint Genome Institutehas
completed a 0.4x genome-equivalent ‘pilot study’ of G.
raimondii that strongly supports the feasibility of assem-
bling a whole-genome shotgun (WGS) sequence (A.H.P.
and X.Wang, unpubl. data), and has begun further sequencing
(www.jgi.doe.gov/sequencing/cspseqplans2009.html). Early
explorations of the A and AD genomes are also in progress.

As a leading crop in the implementation of transgenes in
agriculture, a reference genome sequence may expedite
ongoing development and stewardship of genetically-
modified (GM) cotton. It will become easy to determine
whether each transgene insertion site is in euchromatin or
heterochromatin, and identify any genes inadvertently
disrupted. Identification of genomic characteristics associ-
ated with favorable expression of transgenic traits might
reduce the need for costly empirical testing of numerous
transgenic insertions to commercialize one. Unifying
principles of useful transgene insertions might be found
by comparison to the only transgenic plant sequenced to
date, papaya, in which five of six insertions were in
nuclear-encoded DNA fragments of chloroplast origin, with
four matching topoisomerase I recognition sites (Ming et al.
2008). Using the sequence to identify DNA markers closely
linked to transgenes may reduce the undesirable chromatin
(and traits) transmitted to elite genotypes from the otherwise-
obsolete cottons that are most efficiently transformed.

The greatest challenge facing the cotton community is
not genome sequencing per se but the conversion of
sequence to knowledge. Completion of the Arabidopsis
thaliana sequence was quickly followed by inception of the
NSF 2010 project, which has greatly increased knowledge
about the functions of Arabidopsis genes at a cost
approaching $200 million. While the functions of perhaps
half of the cotton genes might be deduced by analogy to
those of Arabidopsis (Rong et al. 2005), de novo functional
analysis of the remaining cotton genes faces the disadvan-
tages of ∼20 times as much DNA, the necessity of
completing its longer life cycle to see effects on the
primary organ of commerce (seedborne lint fiber), and a
larger body that cannot complete its life cycle in a test tube.

To realize the potential economic benefits of sequencing the
cotton genomes will require investments of at least the same

order-of-magnitude made in Arabidopsis. Had Arabidopsis
not gone first the cost of cotton functional genomics would
be much higher. Much of the required investment will need to
come from the private sector, but few single enterprises have
the critical mass of knowledge, skills, and resources needed to
accomplish such innovation alone. Cotton is an attractive target
for public-private partnership to develop enabling tools that
will nurture rapid accumulation of fundamental information
necessary to empower development and commercialization of
products and applications across the value chain.
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