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ABSTRACT

In this study, we use a physically-motivated internal state
variable model containing a mathematical length scale to repre-
sent the material behavior in finite element (FE) simulations of
hazmat tank car shell impacts. Two goals motivated the current
study: (1) to reproduce with high fidelity finite deformationand
temperature histories, damage, and high rate phenomena which
arise during the impact, as well as (2) to investigate numerical
aspects associated with post-bifurcation mesh-dependency of the
finite element solution. We add the mathematical length scale
to the model by adopting a nonlocal evolution equation for the
damage, as suggested by Pijaudier-Cabot and Bazant (1987) in
a slightly different context. The FE simulations consist ofa mov-
ing striker colliding against a stationary hazmat tank car and are
carried out with the aid of ABAQUS/Explicit. The results of these
simulations show that accounting for temperature histories and
nonlocal damage effects in the material model satisfactorily pre-
dicts, independently of the mesh size, the failure process of the
tank car impact accident.

∗Address all correspondence to this author.

1 INTRODUCTION

The design of accident-resistant hazmat tank cars requires
material models which describe the physical mechanisms that
occur during an accident. In the case of high-velocity impact
accidents, finite deformation and temperature histories, damage
and high rate phenomena are generated in the vicinity of the im-
pact damage zone. Unfortunately, the majority of material mod-
els used in the finite element simulation of hazmat tank car im-
pact scenarios do not account for such physical features. Fur-
thermore, in the few models that do, a mathematical length scale
aimed at solving the post-bifurcation problem is absent. Asa
consequence, when one material point fails, the boundary value
problem for such material models changes, from a hyperbolic
to an elliptical system of differential equations in dynamic prob-
lems, and the reverse in statics. In both cases, the boundaryvalue
problem becomes ill-posed ( Muhlhaus (1986), Tvergaard and
Needleman (1997), de Borst (1993), Ramaswamy and Aravas
(1998)), as the boundary and initial conditions for one system
of differential equations are not suitable for the other. Asa re-
sult, bifurcations with an infinite number of bifurcated branches
appear, which raises the problem of selecting the relevant one,
especially in numerical computations where this drawback man-
ifests itself as a pathological sensitivity of the results to the finite
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element discretization.
Alternatively to the shortcomings encountered in hazmat

tank car impacts’ numerical simulations, we propose to use a
nonlocal version of the BCJ1 model ( Bammann and Aifantis
(1987) and Bammann et al. (1993)), a physically-motivated in-
ternal state variable plasticity and damage model containing a
mathematical length scale. The use of internal state variables
will enable the prediction of strain rate and temperature histories
effects. These effects can be quite substantial and therefore diffi-
cult to incorporate into material models, which assumes that the
stress is (1) a unique function of the current strain, strainrate and
temperature and (2) is independent of the loading path. The ef-
fects of damage are included in the BCJ model, however, through
a scalar internal state variable which tends to degrade the elastic
moduli of the material as well as to concentrate the stress. The
mathematical length scale is introduced in the model via thenon-
local damage approach of Pijaudier-Cabot and Bazant (1987). In
the context of concrete damage, these authors suggested a for-
mulation in which only the damage variable is nonlocal, while
the strain, the stress and other variables retain their local def-
inition. Their formulation has been applied to creep problems
by Saanouni et al. (1989) and extended to plasticity by, among
others, Leblond et al. (1994) and Tvergaard and Needleman
(1995). Following Pijaudier-Cabot and Bazant (1987)’s sugges-
tion, a nonlocal evolution equation for the damage within anoth-
erwise unmodified BCJ model is adopted in the current study.
The time-derivative of the damage is expressed as the spatial
convolution of a “local damage rate” and bell-shaped weighting
function. The width of this function introduces a mathematical
length scale.

In this study, a dynamic nonlinear finite element analysis,
carried out with ABAQUS/Explicit finite element code, is used
to simulate a moving striker colliding against a stationaryhazmat
tank car. The structure part of this finite element model is rep-
resented by Lagrangian elements obeying the nonlocal version
of the BCJ model, while the fluid part is represented by Eule-
rian elements. The objective of this study is two-fold: (1) use a
high fidelity material model to idealize the physics occurring dur-
ing the impact accident and (2) rectify the computational draw-
back (post-bifurcation mesh dependence issues) for this model
on a large-scale boundary value problem. The resulting numer-
ical simulations of hazmat tank car impact scenarios, whichac-
count for nonlocal damage and temperature history effects pre-
dict satisfactorily the tank car failure process independently of
the element size. The originality of this work lies in that, prior to
this study2, never have the post-bifurcation mesh dependence is-
sues been investigated on large-scale computations problems for
steels. The paper is organized as follows:

Section 1 describes the physics associated with the failure

1BCJ: Bammann-Chiesa-Johnson
2To the best of the authors’ knowledge.

process of a hazmat tank car impact accident.
Section 2 provides a summary of the equations of the BCJ
model and its nonlocal extension.
Section 3 discusses several methods to numerically im-
plement the integral-type nonlocal damage into existing
ABAQUS finite element BCJ model subroutines. The main
difficulty encountered in this implementation relates to the
double loop over the integration points required by the cal-
culation of several convolution integrals, which might other-
wise dismantle the architecture of the entire code.
Finally Section 4 is devoted to numerical applications of the
local and nonlocal BCJ model on hazmat tank car shell im-
pact accident simulations.

2 PHYSICS OF THE DAMAGE FROM HAZMAT TANK
CAR IMPACT
The physical mechanisms responsible for the damage to haz-

mat tank cars during high-velocity impact initiates at the time of
the contact, wherein strong pressure waves arise and propagate
along both the striker and the hazmat tank car. During this propa-
gation, hydrostatic compression and tension shock waves evolve
and can lead to so-called spalling fracture. Spalling fracture oc-
curs when the shock waves produced by the impact bounce off
the back surface of the tank car, reverse direction, and return as
reflected tensile waves (see Zukas (1990)). When these tensile
waves exceed the local spall strength, nucleation, growth,and
coalescence of voids and/or cracks may occur. These defects
then lead to the tank car’s failure: usually, a chunk of material
breaks away from the surface opposite to impacted surface.

The propagation of the shock waves is also accompanied by
a quick local heating due to the intense plastic shear deforma-
tions and the passage of shock waves. Heat is generated rapidly
such that little conduction occurs and hence the process is adia-
batic. As a result, material softening occurs in the impact region,
while the surrounding material continues to harden; also, the de-
formation in the local damaged zone is nonuniformly distributed
in narrow adiabatic shear bands ( Glema et al. (2000)). While
these bands do not deteriorate the hazmat tank car structural in-
tegrity as cracks do, they are typically precursors to fracture. The
BCJ model is capable of representing with high fidelity the strain
rate, temperature history, load path, and damage effects which
arise during the impact accident. This model is presented inthe
next section.

3 THE BCJ MODEL CONTAINING A MATHEMATICAL
LENGTH SCALE

3.1 THE BCJ MODEL
The BCJ model is a physically-based plasticity model cou-

pled with the Cocks and Ashby (1980)’s void growth failure
model. The BCJ model incorporates load path, strain rate, and

2 Copyright c© 2011 by ASME



temperature history effects, as well as damage through the use
of scalar and tensor internal state variables for which the evolu-
tion equations are motivated by dislocation mechanics and cast
in a hardening minus-recovery format. The BCJ model also ac-
counts for deviatoric deformation resulting from the presence of
dislocations and dilatational deformation.

The deformation gradient is multiplicatively decomposed
into terms that account for the elastic, deviatoric inelastic, di-
latational inelastic, and thermal inelastic parts of the motion. For
linearized elasticity, the multiplicative decompositionof the de-
formation gradient results in an additive decomposition ofthe
Eulerian strain rate into elastic, deviatoric inelastic, dilatational
inelastic, and thermal inelastic parts. The constitutive equations
of the model are written with respect to the intermediate (stress
free) configuration defined by the inelastic deformation such that
the current configuration variables are co-rotated with theelastic
spin. The pertinent equations of the BCJ model are expressedas
the rate of change of the observable and internal state variables
and consist of the following elements.

• A hypoelasticity law connecting the elastic strain rate to an
objective time-derivative Cauchy stress tensor is given by:

σ̃ = λ(1−φ)tr(De)I+2µ(1−φ)De−
φ̇

1−φ
σ, (1)

3 whereλ is the Laméconstant,µ is the shear modulus, and
φ denotes the damage variable. The Cauchy stressσ is con-
vected with the elastic spinWe as

σ̃ = σ̇−Weσ+ σWe (2)

where, in general, for any arbitrary tensor variableX, X̃
represents the convective derivative. Note that the rigid
body rotation is included in the elastic spin; therefore,
the constitutive model is expressed with respect to a set
of directors whose direction are defined by the plastic
deformation.

• The decomposition of both the skew symmetric and sym-
metric parts of the velocity gradient into elastic and inelastic
parts for the elastic stretching rateDe and the elastic spin
We in the absence of elastic-plastic couplings yields

{

De = D−Dp−Dd−Dth

We = W−Wp.
(3)

3Strictly speaking, additional terms containing the temperature θ and its
derivatives should be added to Eqn.1. The influence of the additional terms, how-
ever, is significative only for problems involving very hightemperatures, such as
welding problems; therefore we can safely ignore them here.

Note that for problems in the shock regime, only the devi-
atoric elastic strain part is linearized enabling prediction of
large elastic volume changes.

• Next, the equation for the plastic spinWp is introduced, in
addition to the flow rules forDp andDd, and the stretching
rate due to the unconstrained thermal expansionDth. From
the kinematics, the dilatational inelasticDd flow rule is given
as:

Dd =
φ̇

1−φ
I. (4)

Assuming isotropic thermal expansion, the unconstrained
thermal stretching rateDth can be expressed by

Dth = Aθ̇I, (5)

whereA is a linearized expansion coefficient.
For the plastic flow rule, a deviatoric flow rule ( Bammann
(1988)) is assumed and defined by

Dp = f(θ)sinh

[

||σ′−α||− [κ−Y(θ)](1−φ)

V(θ)(1−φ)

]

σ′−α
||σ′−α||

,

(6)
whereθ is the temperature,κ the scalar hardening variable,
α̃ the objective rate of change ofα, the tensor hardening
variable, andσ′ the deviatoric Cauchy stress.

There are several choices for the form ofWp. The as-
sumptionWp = 0 allows recovery of the Jaumann stress
rate. Alternatively, this function can be described by the
Green-Naghdy rate of Cauchy stress. We used the Jaumann
rate for the numerical applications in this paper.

• The evolution equations for the kinematic and isotropic
hardening internal state variables are given in a hardening
minus recovery format by















α̃ = h(θ)Dp−

[

√

2
3rd(θ)||Dp||+ rs(θ)

]

||α||α

κ̇ = H(θ)||Dp||−

[

√

2
3Rd(θ)||Dp||+Rs(θ)

]

κ2,
(7)

where h and H are the hardening moduli, rs and Rs are scalar
functions of θ describing the diffusion-controlled “static”
or “thermal” recovery, and rd and Rd are the functions ofθ
describing dynamic recovery.
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• To describe the inelastic response, the BCJ model in-
troduces nine functions which can be separated into three
groups. The first three are the initial yield, the hardening,
and the recovery functions, defined as







V(θ) = C1exp(−C2/θ)
Y(θ) = C3exp(−C4/θ)
f(θ) = C5exp(−C6/θ).

(8)

The second group is related to the kinematic hardening pro-
cess and consists of the following functions:







rd(θ) = C7exp(−C8/θ)
h(θ) = C9exp(−C10/θ)
rs(θ) = C11exp(−C12/θ).

(9)

The last group is related to the isotropic hardening process
and is composed of







Rd(θ) = C13exp(−C14/θ)
H(θ) = C15exp(−C16/θ)
Rs(θ) = C17exp(−C18/θ).

(10)

In Eqns. (8, 9, 10),Ci is some parameter of the model which
need to be determined.

• The evolution equation for damage, credited to Cocks and
Ashby (1980), is given by

φ̇ =

[

1
(1−φ)n − (1−φ)

]

sinh

[

(1−n)

(1+n)

P

σ̄

]

‖ Dp ‖ . (11)

Note that this void growth model displays a “sinh”-
dependence on the triaxiality factorP /σ̄, as well as an
additional parameter n along with the initial value of the
damageφ0 required to calculate damage growth.

• The last equation to complete the description of the model
is one that computes the temperature change during high
strain rate deformations, such as those encountered in high
rate impact loadings. For these problems, a non-conducting
(adiabatic) temperature change following the assumption
that 90% of the plastic work is dissipated as heat is as-
sumed. Taylor and Quinney (1934) were the first to measure
the energy dissipation from mechanical work as being be-
tween 5− 50% of the total work for various materials and
strain levels. Therefore, the rate of the change of the tem-
perature is assumed to follow

θ̇ =
0.9
ρCv

(σDp), (12)

whereρ and Cv represent the material density and a specific
heat, respectively.

The empirical assumption in Eqn.(12) has permitted non-
isothermal solution by finite element that is not fully coupled
with the energy balance equation (see Bammann et al. (1993)).
Note that the temperature rise will induce a profound effecton
the constitutive behavior of the material. Specifically, the tem-
perature increase will lead to thermal softening (adiabatic shear
bands), and as a result shear instabilities may arise. The model
is also suitable to predict mechanical softening through a grad-
ual increase of the damage. It is well known that practical finite
element applications of constitutive models involving softening,
like the BCJ model, are strongly mesh-dependent. According
to Rousselier (1981), this problem can be obviated by putting a
lower limit on the element size. However, this practice is not
optimal theoretically. Another, more elaborated, solution con-
sists of including a mathematical length scale in these constitu-
tive models. The following section presents a technique to embed
the BCJ model with just such a mathematical length scale.

3.2 EMBEDDING A LENGTH SCALE IN THE BCJ
MODEL

Following Pijaudier-Cabot and Bazant (1987)’s suggestion
in the context of concrete damage, we propose to delocalize the
variable(s) responsible for softening. In the BCJ model, soft-
ening may arise from two mechanisms: a gradual increase of
the damage (under isothermal conditions) or a temperature rise
(in adiabatic conditions) followed by an increase of the damage.
While temperature and damage parameters seem to govern soft-
ening in adiabatic conditions, review of the model’s constitutive
equations provided in the previous section reveals that these two
variables are related. We choose to introduce the length scale
on the damage evolution equation. This choice appears quite
appealing from the physical point of view. Indeed, in the case
of heterogeneous materials, for example, the damage can only
be defined by considering “elementary” volumes of size greater
than the voids spacing4 and is therefore a nonlocal quantity.

The evolution equation of this variable is given by a convo-
lution integral including a bell-weighting function the width of
which introduces a mathematical length scale:

φ̇(x) =
1

B(x)

Z

Ω
φ̇loc(y)A(x−y)dΩy. (13)

In this equation,Ω denotes the volume studied, and A the Bell
weight function defined as

A(x) = exp(− ‖ x ‖2 /l2), (14)

4The Cocks and Ashby (1980) void growth model is based on a cylinder con-
taining a spherical void.
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where l is the mathematical length scale. The factor B(x) and the
“local damage ratėφloc” are given by

B(x) =

Z

Ω
A(x−y)dΩy (15)

and Eqn.(11), respectively. The function A is indefinitely dif-
ferentiable and does not introduce any Dirac’sδ-distribution at
the point 0. This means that the functionφ̇ is not partially lo-
cal but entirely nonlocal. The function A is also isotropic and
normalized. The point here is thatφ̇ must be equal tȯφloc if the
latter variable is spatially uniform. This would not be the case
near the boundary ofΩ in the absence of the normalization fac-
tor 1/B. The presence of this term allows for the coincidence
everywhere.

The new evolution equation for the damage, Eqn.(13), along
with the equation for the temperature rise, Eqn.(12), should
predict satisfactorily the failure process of the tank car im-
pact independently of the mesh size. Indeed, the local damage
rate Eqn.(13) implicitly depends on the temperature through the
strain rate sensitivity parameter (see Eqn.(6) and Yamaguchi et
al. (1992)). When the temperature gradually rises, which isthe
case in high-velocity impact loadings, the damage rate in this
zone quickly climbs to a high value; as a result, the damage
growths rapidly to reach the critical failure damage. The convo-
lution integral in Eqn.(13) enhances the rapid damage increase,
since it involves the sum of several positive terms each of which
contains a local damage velocity. The mathematical length scale
in the convolution integral eliminates the mesh sensitivity effects.

Nonetheless, the numerical implementation of the new evo-
lution equation for the damage rate into an existing finite element
code is not an easy task because of the double loop over inte-
gration points required by the calculation of several convolution
integrals, which may potentially compromise the entire architec-
ture of the existing code. The following section is devoted to
explaining this implementation.

4 NUMERICAL TREATMENT OF THE NONLOCAL
DAMAGE RATE
The numerical implementation of the original BCJ model

into a finite element code such as ABAQUS has been extensively
addressed in Bammann et al. (1993); consequently, it will not
be repeated here. Recall, however, that this implementation is
based on Krieg and Krieg (1977)’s radial return method to solve
numerically the equations presented in Section 3.1 for the de-
viatoric stresses, equivalent plastic strain, pressure, temperature,
and damage at each new time-step. The algorithm is availablein
both the implicit and explicit versions of ABAQUS.

To implement the nonlocal damage rate in the implicit ver-
sion of the code, we have computed the nonlocal damage incre-
ment at convergence by means of the subroutine URDFIL, which

stores all the variables necessary for the convolution operation,
performs this operation, and stores the nonlocal damage incre-
ment for all the integration points involved in the finite element
model. The nonlocal damage increment is used to calculate the
damage at timet + ∆t for the next time-step following the for-
mula:

φ(t+ ∆t)≈ φ(t)+ φ̇(t)∆t. (16)

This updated value is an explicit estimation of the damage at
t + ∆t and is not used to repeat the whole process of solution
between times t and t+ ∆t. Thus, the algorithm is not fully im-
plicit, but mixed implicit/explicit. Enakoutsa et al. (2007) used
the same technique to implement a nonlocal version of Gurson
(1977)’s model following a slightly modified Aravas (1987)’s al-
gorithm, the so-called “projection into the yield surface”algo-
rithm. The explicit nature of Enakoutsa et al. (2007)’s algo-
rithm with respect to the damage allowed these authors to prove
that theprojection problemassociated with Gurson’s nonlocal
model has a unique solution. The latter property is a direct con-
sequence of the fact that the constitutive equations of Gurson’s
nonlocal model belong to the class of Generalized Standard Ma-
terials of Halphen and Nguyen (1975). Applications of the nu-
merical treatment of nonlocal damage rate on a double-notched
edge specimen in tension problem (see Fig.1) illustrate theva-
lidity of the method to avoid ill-posed issues in this laboratory-
oriented boundary value problem. Indeed, while the local BCJ
model concentrates the damage within a layer of meshes between
the specimen notches, the nonlocal BCJ model spreads the dam-
age region to a zone beyond this layer.

To assess the validity of the method to regularize hazmat
tank car impact boundary value problems requires implementa-
tion of the nonlocal damage rate in the explicit version of the BCJ
model VUMAT subroutine. One option of doing so consists of
branching outside the “NBLOCK loop” in the VUMAT, which
allows the computation of the nonlocal damage rate at each inte-
gration point using the coordinates, the local damage velocities,
and the weights of “NBLOCK” integration points. This method
also successfully avoids the localization problems arising in the
numerical simulations of double-notched edge specimen tensile
tests and therefore is excepted to reduce, if not completelyre-
move, the mesh-sensitivity issues arising in the hazmat tank car
impacts numerical simulations.

5 HAZMAT TANK CAR SHELL IMPACT FE SIMULA-
TIONS
The goal of the hazmat tank car shell impact FE simulations

is to virtually predict the tank car structural’s failure process in-
dependently of the element size. To that end, we describe the
impact accident physical problem, the associated FE model in
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Figure 1. Comparison of the damage distribution of a double-notched

edge specimen tensile tests for local and nonlocal BCJ models. Note the

localization of the damage in a row of meshes between the two notches for

the local BCJ model (top) and the similarity between the damage pattern

of two different meshes for the nonlocal BCJ model (middle and bottom).

ABAQUS, and we present different numerical predictions of the
damage created by the impact.

5.1 PROBLEM DEFINITION
The previous work of Tang et al. (2008a) and Tang et al.

(2008b) inform the current problem. In our study, a ram car
weighing 286,000 pounds and with a protruding beam to which
an impactor was attached, is moving horizontally at 10 m/s into
an immobile hazmat tank car. Fifty percent of the tank car is
filled with water mixed with clay slurry, which together has the
approximate density of liquid chlorine. Air occupied the remain-
ing volume in the tank car and is pressurized 100 psi. The im-
pactor used in the problem is conical sharp-nose shaped (see
Fig.2); it is introduced in the FE model to generate a ductile
failure mode during the impact. The stationary part of the prob-
lem consists of a tank car surrounded by a jacket. The tank is a
0.777-inch-thick cylinder, and closed at its two ends with ellip-
tical caps of aspect ratio 2. The tank body material consistsof
304L stainless steel; the jacket is a 0.119-inch-thick madeof the
same steel. A 4-inches-thick layer separates the jacket from the
tank car. This layer is introduced to account for insulationand

Figure 2. Geometry of the conical impactor used in the simulations. The

sharp nose is used to generate a ductile failure mode of the tank car

during the impact.

thermal protection between the tank car and the jacket. The en-
tire assembly (Tank/Layer/Jacket) is supported by two rigid legs
and this assembly is placed with one side against a rigid walland
the other side exposed to impact from the impactor.

5.2 FE MODEL OF THE PROBLEM IN ABAQUS
The FE model of the problem consists of an Eulerian mesh

representing the fluid in the tank car and a Lagrangian mesh ide-
alizing the tank, the jacket, and the impactor. The impactorcon-
sists of R3D4 rigid elements, while the tank and the jacket are
meshed using solid C3D8R elements. For the sake of simplicity,
the space between the tank and the jacket is assumed to be empty.
The two legs are rigid and are idealized with squared analytical
surfaces on which reference points located below the jacketare
assigned. Each reference point is kinematically coupled with a
definite set of nodes on the jacket and the tank car. The con-
tact algorithm available in the 6.10 version of ABAQUS/Explicit
finite element code is used to account for all possible contacts
between different parts in the model.

The Eulerian mesh is based on the volume-of-fluid (VOF)
method. The VOF method (widely used in Computational Fluid
Dynamics) tracks and locates the fluid free surface; it belongs to
the class of Eulerian methods that are characterized by either a
stationary or moving mesh. The VOF method suitably captures
the change of the fluid interface topology. In this method, the
material in each element is tracked as it flows through the mesh
using the Eulerian volume fraction (EVF), a unique parameter
for each element and each material.

The material parameters are determined from tension, com-
pression and torsion tests under different constant strainrate
and temperatures. We used the material parameters provided
in Horstemeyer et al. (2000).

5.3 SIMULATIONS RESULTS
This section presents evidence of the integral-nonlocal dam-

age method’s to eliminate mesh-dependence issues which arise
in the FE solution of hazmat tank car impact accident problems.
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Figure 3. Meshes of the tank car. Top: coarse mesh, bottom-left:

medium mesh, bottom-right: fine mesh. The meshes are made of solid

C3D8R elements.

To that end, the calculations were performed on three different
meshes, a coarse, medium, and fine mesh (see Fig.3), for the
local and nonlocal versions of the BCJ model in adiabatic con-
ditions. In isothermal conditions, the BCJ model difficultly pre-
dicts failure (see Bammann et al. (1993)); therefore, isothermal
conditions are not considered here.

Figure 4 illustrates the repartition of damage on the inner
surface of the tank for all three meshes at the same time, in the
case of the local BCJ model. The choice to show only the repar-
tition of the damage on the inner surface of the tank but not on
the outer surface is noteworthy. The damage mechanism during
the impact accident suggested in Section 2 supposes that theside
opposite from the impact surface may fail first. This observation
agrees well with Bammann et al. (1993)’s simulations of a thin
circular plate impact in which damage initiation and propagation
indeed occurs on the opposite side of the impact surface. Thus, it
is expected that the effect of nonlocal damage will be significant
at that place.

The results of the simulations using the local BCJ model
are mesh-dependent: the pattern of the damage is determinedby
the size of the elements. Therefore, decreasing of FE size will
modify the global response of the structure (which depends ex-
plicitly on the number of elements). Furthermore, the energy
generated during the impact tends to zero when the size of the
FE approaches zero. This leads to the meaningless conclusion
that the tank car fails during the accident with zero energy dissi-
pated. In fact, the FE solutions depend not only on the size ofthe
elements, but on their nature, orientation, degree of interpolation
function-in short, on the finite elements approximation space, as
presented in Darve et al. (1995).

Figure 4. An illustration of the mesh size effects in the FE simulations

of hazmat tank car using the local BCJ model. The figure shows the

damage pattern on the inner surface of the tank located behind the impact

region for a coarse (top), medium (middle), and fine (bottom) mesh at the

same time. Note the reduction of the damage pattern size with decreasing

element size.

Figure.5 is the analogous of Fig.4. Here, the pattern of the
damage for the three meshes is relatively similar; this observation
holds for a latter time, as displayed in Fig.6. The similarity would
be more significant if a very refined mesh were used because, as
in the case of local BCJ model, the element size determines the
damage pattern. Thus, the nonlocal damage rate, anda fortiori
the damage itself, has a significant influence on the responseof
the hazmat tank car to the impact loading.

Also remarkable from Figs.(5, 6) are the bands, which do
appear in the local simulations, seem to have almost completely
disappeared. In fact, the nonlocal damage has delayed theirap-
parition to latter times where these bands are extended oversev-
eral elements. This postponement arises because the damagein
the bands is much larger at latter stages of the impact loading,
due to the progressive development of considerable stress in this
zone.

6 SUMMARY AND RECOMMENDATION
With the aid of ABAQUS/Explicit FE code, we have pre-

sented a dynamic nonlinear FE simulations of a hazmat tank car
shell impact. In these simulations, the tank car body material
was idealized with a physically-motivated internal state variable
model containing a mathematical length scale, the nonlocalBCJ
model. This model consists of all the constitutive equations of
the original BCJ model, except the evolution equation for the
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Figure 5. An illustration of the introduction of the mathematical length

scale in the BCJ model to reduce the mesh size effects in the FE simu-

lations of hazmat tank car. The contour plots of the damage on the inner

face of the tank are shown for three different meshes at the same time

as in Fig.4: coarse (top), medium (middle), and fine (bottom). Note the

similarity of the damage pattern size for the three meshes.

damage, which is modified into a nonlocal one. Numerical meth-
ods to implement this equation in existing BCJ model subrou-
tines were also presented.

The results of the simulations show the ability of the
mathematical length scale to eliminate the pathological mesh-
dependency issues while predicting satisfactory hazmat tank car
impact failure, provided that nonlocal damage effects are cou-
pled with temperature history effects (adiabatic effects). Thus,
the nonlocal BCJ model is a powerful tool that we recommend
hazmat tank car fabrication industries incorporate in their virtual
design tools.
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