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Introduction

It is well known that plasticity in
magnesium alloys is governed by
twinning as well as dislocation motion.
However, the nanoscale phenomena that
govern twin nucleation are not as well
understood.
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Introduction

Multiscale models that capture twinning in
polycrystalline Mg can benefit from
nanoscale information. Understanding

both homogeneous and heterogeneous

twin nucleation is relevant for these
models.

Heterogeneous
Nucleation in Mg
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Introduction

In this work, molecular dynamics
simulations are used to investigate how
tensile loading axis orientation (and the

corresponding stress state) affect
homogeneous twin and dislocation
nucleation in Mg.
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Simulation Methodology

*Molecular Dynamics Simulations

* LAMMPS was used w/ VMD to visualize
simulations

*Boundary conditions

* 3D periodic simulation cell with a minimum
20 nm length at boundaries

» Temperature of 100 K

 Uniaxial tensile loading with zero stress
condition at lateral boundaries

*Sun et al. (2006) Mg EAM potential

* Yasi et al. (2009) found that this potential best
captured (i) the splitting distance of dissociated
screw and edge dislocations and (ii) the Peierls
stresses for basal and prismatic slip in
agreement with ab initio calculations and
experiments.

Plimpton, S, J. Comp. Physics (1995).
D.Y. Sun et al. Phys Rev B (2006).
J.A. Yasi et al. MSMSE (2009).

13 Loading Axis Orientations

[30-31] [10-10]

[10-11]

. [4-3-10]
.[5-3-26]
[4-3-16]

(5.4 -16)
|[2-1-10]

0001] [2-1-16] [2-1-14] [2-1-12]

Uniap.(ial =0
Loading

10° st strain rate

[IMIS201] o rswens - e caors



Simulation Results

Stress-Strain Response: Twin Nucleation
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Analysis of the relation of twinning to the stress-strain curve showed twin
nucleation occurs at the yield stress and propagates quickly through the
simulation.
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Simulation Results
Stress-Strain Response: Dislocation Nucleation

Basal Slip under [1 0 -1 1] tensile strain

Observed from the prismatic plane
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Analysis of the relation of slip to the stress-strain curve showed that
dislocation nucleation occurs at the maximum stress and propagates
quickly through the simulation.
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Simulation Results

Stress-Strain Response for Twin and Dislocation Nucleation

Stress-Strain curves for all orientations

8 T T T <0001>
13 Loading Axis Orientations B No Twin/Dislocation
BO31 | o0 7" m Twin Nucleation
- l] 2l M Dislocation Nucleation
[10-1 2] . \ 630
L5328 |

[4-3-186] i 5
ore el i2-1-10] %\

[ooo1] [2-1-18) [2-1-14] [2-1-12] p_‘ 4
) °
z

Uniaxial =0 @3
Loading A n 5

AR . 2 .
AR 10°s!
\ 1 -
100 K
109 s! strain rate
0 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12
Strain

In general, twins required higher stresses to nucleate. Note that
this is the applied stress and not the resolved stress component.
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Simulation Results

|dentification of twin mode or slip system
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Figure 10: A Plane Undergoing Slip

An Arbitrary Plane After Twinning

Figure 9

Figure 8: The Plane Orthogonal to the Twinning Direction

Figure 7: The Twin Plane Front and Side
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Simulation Results

Classification of Homogeneous Twin/Dislocation Nucleation

— Twins

— Dislocations

. . . . . Schmid Nucleation
Orientation Mechanism System Direction
Factor Stress (GPa)
<30-31> Compression Twin {10-11} <10-12> 0.1791 4.35 —
<10-12> Compression Twin {10-11} <10-12> 0.4644 3.23
<2-1-14> Other Twin {11-21} <11-26> 0.4967 3.35
<2-1-16> Other Twin {11-21} <11-26> 0.4639 520 |
<2-1-10> Prismatic Slip {1-100} <11-20> 0.433 1.52 )
<4-1-36> Basal Slip {0001} <11-20>  0.4355 1.94
<5-4-16> Basal Slip {0001} <11-20>  0.4622 2.11
<5-2-36> Basal Slip {0001} <11-20>  0.4803 2.23
<4-1-30> Prismatic Slip {1-100} <11-20> 0.4996 2.73
<2-1-12> Basal Slip {0001} <11-20>  0.4982 2.91
<10-11> Basal Slip {0001} <11-20>  0.4323 3.37
<0001> Vacancy Nucleation N/A N/A N/A 8.99
<10-10> Unknown N/A N/A N/A 3.54

} Other

Each loading orientation was analyzed to find the system and

direction of the nucleated twin or dislocation. In general,
basal/prismatic dislocations and compression twins were

nucleated for most orientations. (No tension twins nucleated?)
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Nucleation of
pyramidal
dislocations
may require
higher CRSS.

Resolved Shear Stress (GPa)

Simulation Results

Resolved Shear Stresses
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The maximum resolved shear stress for each twin/slip system was
plotted and the observed mechanism was compared. For most, the
maximum shear stress correlated with the observed mechanism.
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Simulation Results

Resolved Shear Stresses
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Why the difference in resolved shear stresses required for twin and
dislocation nucleation? Future work will explore the potential role of
non-Schmid stresses in nucleation phenomena in HCP metals.
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Simulation Results

Strain Rate and Temperature Dependence
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The stress required for twin The stress required for twin
nucleation decreases as

nucleation decreases with
decreasing strain rate. However, temperature is increased.
Again, the nucleated defect

the strain rate of 10° s1 shows
similar mechanism to that at 108 s1. Is of the same type, though.

[IMIS201] o rswens - e caors



Simulation Results

Interatomic Potential Differences

Generalized stacking fault

energy curves for Mg

Peierls Stress Calculations

Basal Edge Dislocation Motion
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The interatomic potential for Mg deformation should capture the slip
behavior correctly as well as the twinning behavior. A MEAM
potential for Mg has been developed taking into account both

stacking fault energy curves from ab initio calculations.

S Groh, M| Baskes, MF Horstemeyer, in preparation

TMS2011

February 27-March 3, 2011 — San Diego, California



Simulation Results

Interatomic Potential Differences
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Additional work analyzes the differences between interatomic
potentials for twin nucleation. For instance, a new MEAM

interatomic potential for Mg (Groh et al.) has been formulated to

agree with the stacking fault energy curves from ab initio results.

D.Y.Sunetal. PhysRev B (

S Groh, MI Baskes, MF Horstemeyer, in preparation

2006).
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Simulation Results

Heterogeneous Nucleation from Voids

. Homogeneaous Crystal

M crystal with void
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Adding a void to the simulation cell and then loading produces a
prismatic dislocation loop and the characteristic tension twin. Further
work investigating other loading orientations is underway (voids,
boundary conditions, strain rate, cell size, free surfaces, etc).
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Future Work

Grain Boundary Twin Nucleation
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Thank you!

The presenters would like to acknowledge the support from
Department of Energy, Southern Regional Center for Innovative
Design (SRCLID) program, Contract No.: DE-FC26-06NT42755.

Questions?

Feel free to contact Mark Tschopp about questions/comments at:
mtschopp@cavs.msstate.edu
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