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Eurasian watermilfoil (Myriophyllum spicatum) habitat was predicted at multiple 

scales, including a lake, regional, and national level.  This dissertation illustrates how 

habitat can be predicted for M. spicatum using publically-available data for both 

presence and environmental variables.  Models were generated using statistical 

procedures and quantative methods to determine where the greatest likelihood of 

presence was located.  For the single lake, presence and absence data were available, 

but the larger-scale models used presence-only methods of prediction.  These models 

were paired with a Geographic Information System so that data could be visualized on a 

map.  For the selected lake, Pend Oreille (Idaho), spatial analysis using general linear 

mixed models was used to show that depth and fetch could be used to predict habitat, 

although differences were seen in their importance between the littoral and pelagic 

zones.  For the states of Minnesota and Wisconsin, Mahalanobis distance and maximum 

entropy methods were used to demonstrate that available habitat will not always mean 

presence of M. spicatum.  The differing approaches to management in these states 

illustrated how an aggressive public education campaign can limit spread of M. 

spicatum, even when habitat is available.  Bass habitat appeared to be the largest 



predictor of M. spicatum in Minnesota, although this was due to the similar 

environmental preferences by these species.  Using maximum entropy, on a national 

level, presence of M. spicatum appeared to be best predicted by annual precipitation.  

Again, results showed that habitat is colonized as time permits, and not necessarily as 

conditions permit.   

  



 
 

ii 
 

DEDICATION 

 

I would like to dedicate this dissertation to my parents, Mack and Donna Prince.  

God has blessed me beyond what I deserve, especially with my parents.  I would not 

have wanted them to be any different and they could not have been better.  While I am 

sure they would not call it a “sacrifice,” I know they have given much so that I could have 

the opportunities I have had.  It can not be easy to tell people that your thirty-something 

daughter is “still in school”.  I only hope that I have made my parents proud and that they 

will look at what we have done and say it was worth the cost. 

  

  



 
 

iii 
 

ACKNOWLEDGEMENTS 

 

I have been extremely fortunate to have been extended the opportunities in my 

life.  God has been generous in his blessings.  Among these was the offer to come to 

Mississippi State University and study under such esteemed scholars.  Dr. David Shaw 

has been patient with me as I have floundered with my research and questioned where 

my life was going.  He has been a trusted advisor and someone I have always admired 

and felt fortunate to have been associated with.  I am sure Dr. Shaw was relieved to 

have Dr. John Madsen join him in his efforts to get me through school.  Dr. Madsen is 

“kind of a big deal”, and I am so grateful he puts out the crumbs for me to follow as I try 

to understand what my research is showing.  Dr. Jane Harvill has been missed dearly, 

but she has been available to help me conquer all the statistics that I never learned in 

school.  Moreover, she has been a great friend and strong influence in my life.   The 

three of you have helped me grow up, even when I thought I was already grown. 

I would also like to thank my other committee members, Dr. Justin Shows, Dr. 

Gary Ervin, Dr. James Martin, and Dr. Scott Samson.  I have been fortunate to also have 

help from other faculty including Dr. Jeff Willers and Dr. Chris Brooks.  Their expertise 

has sometimes been the difference between success and failure.  I would also mention 

the support I have received from Dr. Ryan Wersal and Mr. John Cartwright.  I feel the 

most sympathy for John as he has endured me yelling at my computer and smacking my 

desk in frustration.  Finally, no one does this alone.  I am so thankful for friends and 



 
 

iv 
 

family for being a shoulder to cry on, a voice of reason, and stick when I needed 

prodding.  

  



 
 

v 
 

TABLE OF CONTENTS 

 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ................................................................................................. iii 

LIST OF TABLES ............................................................................................................. vii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 

1. INTRODUCTION ................................................................................................... 1 

  Theoretical Background ......................................................................................... 2 
  Technical Aspects of Model Function .................................................................... 4 
  Background for Conceptual Model ......................................................................... 5 
  Spatial Aspects of the Research Problem ............................................................. 7 
  Model Uncertainty .................................................................................................. 8 
  Project Objectives .................................................................................................. 9 
  Project Contribution ............................................................................................. 10 
  Literature Cited .................................................................................................... 11 

2. LOCAL-SCALE MODEL: PEND OREILLE (IDAHO) ........................................... 16 

  Methods and Materials ........................................................................................ 17 
    Site Description........................................................................................ 17 
    Conceptual Model .................................................................................... 18 
    Model Data Preparation ........................................................................... 19 

  Data Analysis ...................................................................................................... 22 
  GIS Analysis ........................................................................................................ 23 
  Results ................................................................................................................ 23 

 Littoral ...................................................................................................... 24 
 Logistic Regression ...................................................................... 25 
 Binomial Regression with Overdispersion ................................... 26 
 Conditional Spatial GLMM ........................................................... 27 
 Marginal Spatial GLM .................................................................. 28 
 GIS Analysis ................................................................................ 29 

 Pelagic ..................................................................................................... 29 
 Logistic Regression ...................................................................... 29 
 Binomial Regression with Overdispersion ................................... 30 
 Random Effects ........................................................................... 30



 
 

vi 
 

 Marginal Spatial GLM .................................................................. 31 
 GIS Analysis ................................................................................ 31 

  Discussion ........................................................................................................... 31 
  Conclusions ......................................................................................................... 33 
  Literature Cited .................................................................................................... 34 

3. REGIONAL-SCALE MODEL: MINNESOTA ........................................................ 57 

  Methods and Materials ........................................................................................ 59 
 Mahalanobis ............................................................................................ 60 
 Maxent ..................................................................................................... 61 

  Results ................................................................................................................ 62 
 Mahalanobis ............................................................................................ 62 
 Maxent ..................................................................................................... 62 

  Discussion ........................................................................................................... 64 
  Conclusion ........................................................................................................... 66 
  Literature Cited .................................................................................................... 68 

4. NATIONAL-SCALE MODEL ................................................................................ 76 

  Materials and Methods ........................................................................................ 78 
  Results and Discussion ....................................................................................... 81 
  Conclusion ........................................................................................................... 85 
  Literature Cited .................................................................................................... 87 

5. SUMMARY AND FUTURE RESEARCH ............................................................. 93 

  Positive Outcomes .............................................................................................. 95 
  Future Research .................................................................................................. 96 
  Literature Cited .................................................................................................... 98 

APPENDIX 

A. DATA DEFINITIONS FOR ALL CHAPTERS ....................................................... 99 

 



 
 

vii 
 

LIST OF TABLES 

 

1.1 Factors influencing growth and morphology of Eurasian watermilfoil (Smith 
and Barko 1990). ........................................................................................ 15 

 
2.1 Factors influencing growth and morphology of Eurasian watermilfoil (Smith 

and Barko 1990). ........................................................................................ 44 
 
2.2 Frequency table of presence of M. spicatum on Pend Oreille littoral zone. ........... 45 

 
2.3 Results of logistic regression model for M. spicatum on Pend Oreille littoral 

zone ............................................................................................................ 46 
  

2.4 Measures of correlation from logistic regression model for M. spicatum on 
Pend Oreille littoral zone ............................................................................ 47 

 
2.5 Results of binomial regression model with overdispersion for M. spicatum 

on Pend Oreille littoral zone. ...................................................................... 48 
 
2.6 Results of conditional spatial GLMM for M. spicatum on Pend Oreille littoral  

  zone. ........................................................................................................... 49 
 
2.7 Results of marginal spatial GLM for M. spicatum on Pend Oreille littoral 

zone. ........................................................................................................... 50 
 
2.8 Frequency table of presence of M. spicatum on Pend Oreille pelagic zone. ......... 51 

 

2.9 Results of logistic regression model for M. spicatum on Pend Oreille 
pelagic zone ............................................................................................... 52 

 
2.10 Measures of correlation from logistic regression model for M. spicatum on 

Pend Oreille pelagic zone. .......................................................................... 53 
 
2.11 Results of binomial regression model with overdispersion for M. spicatum 

on Pend Oreille pelagic zone. ..................................................................... 54 
 
2.12 Results of random effects model for M. spicatum on Pend Oreille pelagic 

zone. ........................................................................................................... 55 
 
2.13 Results of marginal spatial GLM model for M. spicatum on Pend Oreille 

pelagic  zone. ............................................................................................. 56 



 
 

viii 
 

3.1 Validation results comparing presence (P) and absence (A) for field 
(observed) and predicted from Mahalanobis model for prediction of 
M. spicatum in Minnesota. .......................................................................... 74 

 
3.2 Validation results comparing presence (P) and absence (A) for field 

(observed) and predicted from Mahalanobis model for prediction of 
M. spicatum in Minnesota and Wisconsin. ................................................. 75 

 



 
 

ix 
 

LIST OF FIGURES 

 

1.1 Example of a map algebra operation using addition (after Chrisman 2002). ......... 13 
 
1.2 Conceptual model of proposed interactions between environmental 

variables affecting Myriophyllum spicatum.  ............................................... 14 
 
2.1 Conceptual model of proposed interactions between environmental 

variables affecting Myriophyllum spicatum.  ............................................... 36 
 
2.2 Separate analyses were conducted for the littoral and pelagic zones of 

Pend Oreille Lake (Idaho) and outflowing river. ......................................... 37 
 
2.3 Summary of probabilities for marginal spatial GLMM on the littoral zone for 

two- and three-class ordinal categories (X-axis).  Bar ranges run 
from the minimum to the maximum value for each ordinal category; 
values on the Y-axis reflect probability ....................................................... 38 

 
2.4 Map of paired ordinal categories for two-class marginal spatial GLM for 

Pend Oreille littoral zone. ..........................................................................  39 
 
2.5 Predicted probabilities from marginal spatial GLM for Pend Oreille littoral 

zone. ........................................................................................................... 40 
 
2.6 Map of paired ordinal categories for two-class binomial regression with 

overdispersion for Pend Oreille pelagic zone. ............................................ 41 
 
2.7 Predicted probabilities from binomial regression with overdispersion for 

Pend Oreille pelagic zone. .......................................................................... 42 
 
2.8 True littoral zone for Pend Oreille lake with points predicted at greater than 

or equal to 50% probability of being suitable M. spicatum habitat. ............. 43 
 
3.1 Results of Mahalanobis analysis using 0.5 as the threshold for 

presence/absence of M. spicatum in Minnesota. ....................................... 70 
 
3.2 Results of Mahalanobis analysis using 0.5 as the threshold for 

presence/absence of M. spicatum in Minnesota and Wisconsin. ............... 71 
 
3.3 Receiver operating characteristic curve for maxent analysis of M. spicatum 

in Minnesota. .............................................................................................. 72
 



 
 

x 
 

3.4 Results of maxent analysis for prediction of M. spicatum in Minnesota................. 73 
 
4.1 Receiver operating characteristic curve for maxent analysis of M. spicatum 

in the United States. ................................................................................... 90 
 
4.2 Maxent predictions for M. spicatum in the United States.  Warmer colors 

show areas with better predicted conditions. White dots show the 
presence locations. ....................................................................................  91 

 
4.3 Distribution of M. spicatum records collected by Couch and Nelson (1985) 

for 1980 ...................................................................................................... 92 
 
 



1 
 

CHAPTER 1 

INTRODUCTION 

 

The abiotic components of the environment necessary for survival constitute the 

habitat requirements for a species (Gillenwater et al. 2006).  Species habitat 

requirements are described by habitat factors, which cover the most essential 

characteristics of preferred habitats (Store and Jokimäki 2003).  Geographic Information 

Systems (GIS) are well suited for studies involving habitat modeling and delineation, 

sometimes referred to as habitat suitability indexing (Gillenwater et al. 2006; Wang 

1994).  Geographic Information Systems also offer the advantage of being able to 

overlay layers representing the spatial distribution of different environmental variables 

related to habitat suitability and perform spatial operations on these layers (Gillenwater 

et al. 2006).   

The majority of previous work in habitat modeling, with and without the use of 

GIS, focused on identifying and delineating potentially suitable habitats for desirable 

species.  Less focus has been given to using predictive modeling for species control or 

proactive, preventative practices for nuisance species.  Modeling such as this is 

necessary to provide natural resource managers and policy makers with predictions of 

the effects of a particular management practice (Valley et al. 2005).  Morisette et al. 

(2006) developed a nationwide habitat map for tamarisk (Tamarix spp.).  The habitat 

distribution map provided not only location information, but also helped guide 

containment boundaries, identify priority areas for early detection and rapid response, 
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and monitor control strategies and cost-effectiveness in different states.  Ecological 

models can also be used as a forecasting tool to examine potential ecological impacts 

and prioritize needs (Rotenberry et al. 2006), and to evaluate the expected effects of a 

variety of landuse changes on a species or an ecological system (Romero-Calcerrada 

and Luque 2006).   

 

Theoretical Background 

Development of ecological models provides a simple, direct method by which to 

predict presence, absence, and spread of species in given environments.  Levin (1992) 

calls the understanding of patterns and process the “essence of science” while 

acknowledging that complexity in nature forces modelers to make a trade-off between 

detail and generalization.  Romero-Calcerrada and Luque (2006) urged a “need to 

develop indicators that simplify complexity in natural systems.”  Simpler models are often 

preferred to complex models because it is believed they have wider applicability and 

represent better overall prediction of species presence.  Levin (1992) noted that models 

should contain “just enough” detail with the idea that the objective of the model build 

should ultimately be to ask how much detail can be ignored.  This approach is useful 

because it limits the influence of peculiarities specific to a particular sample of species 

data (Elith et al. 2002).   

Store and Jokimäki (2003) identified four steps to habitat suitability modeling: 1) 

constructing conceptual habitat suitability models; 2) producing the data needed for the 

models; 3) evaluating a target area based on habitat factors; and 4) combining the 

separate suitability indices.  Empirical models in Store and Jokimäki (2003) were 

constructed based on investigated relationships between abundance of species and 
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appropriate background variables.  For species lacking objective, data-driven models, 

habitat suitability models were based on expert knowledge of which factors determine 

the habitat for a species and the relative importance of these variables.  Suitability was 

then determined by overlay analysis and cartographic modeling in a GIS using 

standardized and weighted layers for those factors which expert knowledge or objective 

models showed were foremost.   

Several researchers (Baja et al. 2002; Carver 1991; Hall et al. 1992) reported 

that the use of Boolean operators was too limiting because areas must fall into one of 

two categories (suitable or unsuitable) when in reality, areas may be marginal in their 

classification into one of these two areas – an attribute which is ignored by a strict 

Boolean classification.  Many felt that the use of fuzzy classification methods or 

suitability indices was more representative of the continuous nature of environmental 

variables (Baja et al. 2002; Carver 1991).  Hall et al. (1992) contains a complete 

discussion of the use of fuzzy classification versus Boolean classification. 

Habitat suitability is often quantified by means of a suitability index or probability 

(Store and Jokimäki 2003).  A model may or may not encompass the additional step of 

identifying areas which are not only suitable, but which have a higher probability of site 

occupancy.  This can, and probably should be, considered a separate research 

question, using separate models to estimate presence and suitability.  A species may 

not act logically in that a species may not occupy the most suitable location for a variety 

of reasons; thus an area may have a high species density but limited contribution to 

long-term species persistence and vice versa (Elith et al. 2002).   

In identifying those areas most likely to contain a species, it is often desirable to 

weight each criterion and develop levels of suitability such as was done by Joerin et al. 

(2001) and Wang (1994).  It is important to note that weights can be either quantitative 
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or qualitative (Rohde et al. 2006).  The consequence of qualitative weights is the impact 

on available statistical options and this should be a consideration when choosing to 

apply these types of weights. 

Jensen et al. (1992) used GIS to predictively model dominant freshwater 

macrophytes.  The GIS was used to store the spatial data, query the database, and 

employ Boolean logic to predict the spatial distribution of various aquatic macrophytes.  

The authors found it necessary to obtain spatially registered biophysical information; 

store the data using the appropriate GIS architecture; and specify and apply 

environmental constraint criteria rules.  The basic assumption was that aquatic 

macrophytes would be present if all the environmental constraint criteria could be met.  It 

was concluded that the techniques used in this study could predict the location of 

freshwater aquatic macrophytes and could also be used to predict where they would 

occur in the future.  Narumalani et al. (1997) came to the same conclusion when using 

GIS to model aquatic macrophyte habitat. 

 

Technical Aspects of Model Function 

Overlay analysis using map algebra approaches have been used by other 

researchers working in habitat suitability modeling (Store and Jokimäki 2003) and 

related areas such as landuse planning (Millette et al. 1997).  Map algebra is based on 

simple mathematical principles.  If each environmental constraint (or predictor variable in 

statistical terms) is contained in an individual GIS layer, the intersection of those layers 

identifies areas which satisfy multiple constraints.  Whether the approach taken is a strict 

Boolean approach (Joerin et al. 2001; Rohde et al. 2006; Romero-Calcerrada and Lunge 

2006) or fuzzy classification (Baja et al. 2002; Carver 1991; Hall et al. 1992), there will 

be areas which meet all or most criteria and those which do not meet any.  The most 
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efficient way to identify these areas in a GIS is to perform these types of overlay 

analyses.   

Map algebra allows each raster cell (or vector grid cell) to be assigned a value 

and any mathematical model can then be applied to those values.  For example, two 

layers can be “added” by adding cell values between layers for cells with corresponding 

geographic space.  With either a Boolean or fuzzy classification approach, 0’s and 1’s 

can be utilized with multiplication operations to identify areas that are suitable and not 

suitable.  Cells are assigned values of 0 or 1, with 0 being unsuitable and 1 being 

suitable.  By multiplying the maps together, areas which meet both criteria return values 

of 1, and cells which meet one or zero criteria return values of 0.   In a fuzzy 

classification system, layers can be added such that the overall magnitude of the output 

represents the level of suitability (Fig. 1.1).  Cell values in individual GIS layers or the 

predictive output layer can be binned into ordinal categories to provide multiple levels of 

suitability.   

Layers can also be combined in a more complex manner using a relationship 

developed through statistical procedures.  Again, statistical procedures will differ 

depending on choices made regarding classification of layers.  Unless actual values are 

used, categorical data analysis or nonparametric methods are more appropriate choices 

for developing algorithms for overlay.  Boolean approaches require the use of statistical 

procedures designed for a 0/1 response variable.   

 

Background for Conceptual Model 

Currently Eurasian watermilfoil (Myriophyllum spicatum) is found in almost all fifty 

states and is one of the most troublesome submerged aquatic plants in North America 
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(Madsen 1998; Smith and Barko 1990).  Among those factors which most impact 

presence of Eurasian watermilfoil, light availability, water movement, and sediment 

dynamics appear to be the major driving mechanisms.  A discussion of the relationship 

between these factors is presented in Madsen et al. (2001).   

Although many components of the aquatic environment influence presence, the 

complex interrelationship between the various components requires careful selection of 

model inputs to limit effects of multicollinearity between variables in the model.  Smith 

and Barko (1990) present a thorough list of these components in their review of Eurasian 

watermilfoil ecology (Table 1.1).  

Data on ecology of Eurasian watermilfoil are possibly of limited utility or may 

force choices (if lack of alternatives is truly considered choice) regarding model 

development in some instances.  For example, it has been noted that the species is 

typically most abundant in one to four meters of water, but will occur in up to 10 m of 

water (Smith and Barko 1990).  In a pure Boolean approach, an absolute limit may need 

to be decided on an individual case basis.  Light intensity is also related to the growth of 

this species; however it has been found growing in a wide range of clarity and turbidity 

(Smith and Barko 1990).  Again, it could be virtually impossible to assign clear 

demarcations between suitable and not suitable in this instance.   

Store and Jokimäki (2003) advocated use of existing literature and expert 

knowledge in model development.  A conceptual model was developed based on 

published scientific data (Madsen 1998; Madsen et al. 2001; Smith and Barko 1990, Fig. 

1.2).   The conceptual model acknowledges the influence only of elements of the 

physical environment which are non-anthropogenic.  Buchan and Padilla (2000) used 

GIS and regression techniques to develop and test a model for predicting the likelihood 

of Eurasian watermilfoil in lakes.  They included factors such as presence of boat ramps, 
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type of boat launch, and proximity to highways and residences.  They determined that 

these factors were poorer predictors of milfoil presence than those which related to 

species growth directly. 

 

Spatial Aspects of the Research Problem 

The landmark paper by Levin (1992) on scale and pattern in ecology addresses 

the need for analyzing the problem on multiple scales.  Levin proposes that variability 

only has meaning relative to scale, and prediction must operate at the scale relevant to 

the organism and process being examined.   Many of the environmental factors thought 

to contribute to the presence Eurasian watermilfoil vary across geography and also in 

their importance between scales.   The conceptual model (Fig. 1.2) shows an overview 

of interactions without regard for which are more important at specific scales (i.e., local, 

regional, national).  Differences in importance among scales dictate which variables 

should be considered for corresponding models.  For example, at a local level, 

fluctuations in mesoclimate and geology would likely not be significant because they 

would not vary greatly enough to be of any use.  However, variability in depth, Secchi 

measurements, other species present, etc., is likely to be quite high and these variables 

should be initially considered for predictor variables in a local-scale model.  For a 

national-scale model, temperature and climate should vary quite dramatically and would 

likely contribute greatly to a model, whereas Secchi measurements would provide an 

overabundance of data and detail which would only represent noise in a national scale 

model. 

Utilization of GIS and a spatial approach allows these variations to be better 

visually represented in a model.  The development of spatial statistics and the field of 
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landscape ecology serve as proof that many problems benefit from this method of 

inspection, and make a clear case for multi-scale analysis of spatial problems in 

predictive habitat modeling. 

 

Model Uncertainty 

Caswell (1976) suggests that the same model can and should be judged based 

on its intended purpose.  The author makes a distinction in what validity means for 

models that predict outcomes versus models which recreate processes.  Predictive 

models are validated by 1) determining the domain over which the model applies, and 2) 

attempting to refute the model to increase confidence.  Duality of validity means that a 

single model might be a valid predictor despite being scientifically refuted (i.e., provides 

a good fit to the data but an illogical outcome).   

Rykiel (1996) advocated a mechanistic approach to model evaluation as a 

frequently-missed next step, citing evidence that understanding underlying relationships 

is of crucial importance to resource managers who are often required to describe the 

influence of changing land use activities on species.  Natural variation is unlikely to be 

fully-characterized by a model (Elith et al. 2002).  As such, inaccuracy and imprecision of 

ecological data place limits on model testability (Rykiel 1996).  General linear models are 

frequently used for habitat modeling, but relatively few publications exist in ecology 

literature which discuss uncertainty in these models (Elith et al. 2002).   

Despite the push by several researchers (Levin 1992; Romero-Calcerrada and 

Luque 2006) to simplify ecological systems, Elith et al. (2002) argues that with general 

linear models uncertainty is created by simplifying assumptions and abstractions of 

ecological processes that must be made.  Specific to GIS, layers are often interpolated, 
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creating uncertainty in the basedata which is propagated or compounded as the data are 

summarized, classified, modeled, and interpolated.   Errors can also exist with field data 

due to sampling bias and observer error.  Some of these represent systematic errors 

which may not be detrimental to the model if the overall relationship is intact.  Non-

systematic errors, particularly those in measurement and location can be hard to find 

and are frequently not identified in the metadata accompanying a GIS layer.  Finally, 

spatio-temporal variability may not be fully captured by sampling protocols, which can 

skew results.  Acknowledging that their list was not exhaustive, after examining a 

substantial number of potential error sources and their rectification, Regan et al. (2002) 

concluded that a single method to address model uncertainty did not exist. 

It appears that model uncertainty cannot be fully quantified or qualified and many 

models may never be validated to levels acceptable for all purposes.  A model must be 

judged based on its intended use, simplifying assumptions, and applicable domain 

without extension unless it can be shown that this extension is scientifically feasible and 

logical. 

Project Objectives 

 Objective 1: Develop a conceptual model and associated GIS framework for 

Eurasian watermilfoil (Myriophyllum spicatum) habitat suitability. 

 Objective 2: Develop a local-scale model for M. spicatum presence in a single 

lake. 

 Objective 3: Develop a regional-scale model for M. spicatum presence in a single 

state. 

 Objective 4: Develop a national-scale model for M. spicatum presence. 
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Site location for the local-scale study was Pend Oreille Lake (Idaho).  The 

regional-scale studies were performed for the States of Minnesota and Wisconsin. 

Chapters 2, 3, and 4 present the methods, results, and conclusions for the local, 

regional, and national models, respectively.  Chapter 5 serves as a summary and 

presents future directions for this area of research. 

 

Project Contribution 

An understanding of the factors which allow invasive species such as Eurasian 

watermilfoil to invade communities would improve the ability to eradicate these species.  

Even if the goal is not eradication, providing some level of control would ease the 

economic and ecological costs of Eurasian watermilfoil presence.  As weed scientists, 

ecologists, wildlife managers, and water quality professionals work to maintain 

waterways, the GIS and GIS-modeling offers another tool in their arsenal.  Predicting the 

location and spread of these species will allow them to prioritize financial and manpower 

resources, while simultaneously protecting many water resources. 
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Figure 1.1. Example of a map algebra operation using addition (after Chrisman 2002). 
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CHAPTER 2 

LOCAL-SCALE MODEL: PEND OREILLE (IDAHO) 

 

The abiotic components of the environment necessary for survival constitute the 

habitat requirements for a species (Gillenwater et al. 2006).  Species habitat 

requirements are described by habitat factors, which cover the most essential habitat 

characteristics of preferred habitats (Store and Jokimäki 2003).  Geographic Information 

Systems (GIS) are well suited for studies involving habitat modeling and delineation, 

sometimes referred to as habitat suitability indexing (Gillenwater et al. 2006).  

Geographic Information Systems also offer the advantage of being able to overlay layers 

representing the spatial distribution of different environmental variables related to habitat 

suitability and perform spatial operations on these layers (Gillenwater et al. 2006).  

Linking habitat models with GIS represents a powerful tool in natural resource 

management and associated fields (Boyce et al. 2002). 

Jensen and others (1992) and Narumalani and others (1997) used GIS to 

predictively model dominant freshwater macrophytes.  They assumed that aquatic 

macrophytes would be present if all hypothesized environmental constraint criteria could 

be met.  They concluded that the GIS techniques used could predict the current location 

of freshwater aquatic macrophytes.   

The objective of this research is to develop a predictive model for Eurasian 

watermilfoil (Myriophyllum spicatum L.) that estimates presence of this species in a 

single lake ecosystem.  M. spicatum is an invasive, aquatic weed, introduced into the 
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U.S. in the 1940s, currently occurring in almost every one of the United States.  It is one 

of the most troublesome submerged aquatic plants in North America (Smith and Barko 

1990).   

A lengthy discussion on the dynamics of water quality and submerged 

macrophytes such as M. spicatum, is contained in Madsen et al. (2001).  Water 

movement and light availability are major influences on the growth of submerged 

macrophytes.  As a “canopy former,” M. spicatum places the majority of its biomass 

disproportionally near the water surface.  Research has shown that intermediate 

currents and wave action favor dispersal of M. spicatum because waves can break up 

canopy, spreading propagating fragments, without inducing plant mortality.  A thorough 

review of M. spicatum ecology is in Smith and Barko (1990).  A summary of their 

compiled data (Table 2.1) makes it is clear that M. spicatum has wide ranges of 

tolerance for a variety of influences, and that there are few clear cut decision rules which 

can be generalized about its preferences. 

Methods and Materials 

Site Description 

The study site for this research is Pend Oreille Lake, and the outflowing Pend 

Oreille River.  Glacially-formed Pend Oreille is located in northern Idaho and is an 

extremely deep, oligotrophic lake with more than 420 km2 of surface water (including the 

river).  It is fed by inflowing waters of the Clark Fork River.  Approximately 27% of the 

lake is considered littoral zone habitat and can support the growth of aquatic plants 

(Madsen and Wersal 2008). 
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Conceptual Model 

Based on published information, a conceptual model (Fig. 2.1) was built to show 

proposed predictor variables and interactions between variables.  The conceptual model 

was used to focus data selection, but several proposed variables were not used because 

the data do not exist, were not easy to collect, or would not vary significantly in value 

across a single lake.   

Major areas of mesoclimate and geology, labeled “indirect variables” in the 

conceptual model, would not be considerably different on a single lake, but would be of 

importance on a much larger scale, such as a national model.  However, bathymetry/ 

topography would vary greatly in a single lake, and given the depths of Pend Oreille, are 

of immense importance in the model.  

“Direct and resource variables” are of more immediate importance on a single-

lake scale.  However, for these are the variables, the risk of multicollinearity exists.  For 

example, fetch is calculated from wind data.  Thus both variables essentially yield the 

same information, and should not both be present as predictors in the same model.  

Certainly light availability, considered the most controlling factor, can be inferred from a 

variety of variables including depth and algal growth.   

Some variables are simply not available.  Many studies cite sediment nutrients as 

an important predictive mechanism.  However, the expense both in time and money to 

collect sediment data often precludes its use for many studies.  Unless a researcher 

makes a significant effort to obtain data for the specific project, it is not likely that the 

data can be found for use in a GIS or that the data will be sampled in accordance with 

the requirements of the project.  Additionally, while drawdown has been shown to be a 

somewhat effective control, this method is associated more with reservoirs and 

waterbodies with water-level-control structures, making this impractical for many studies.  
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Pend Oreille, however, is a lake with a water control structure and is drawn down each 

winter.  This affects the whole lake and thus would not be appropriate for a spatial 

analysis because the measured value would not change across the lake. 

Negative effects (Fig. 2.1) such as freezing are avoided by the timing and 

location of the study.  Information was recorded on native plant cover when the data set 

was collected.  Preliminary analysis indicated that plant cover was not useful for this 

specific study, and thus was not included in further analysis. 

Model Data Preparation 

Spatial analysis using generalized linear models was conducted to estimate the 

predictive probability for the presence of M. spicatum in Pend Oreille Lake and the 

outflowing river.  Predictor variables included water depth (hereafter depth), effective 

fetch length (hereafter fetch), and distance from nearest M. spicatum population 

(hereafter distance).   

Data were split for separate analyses on Pend Oreille (Fig. 2.2).  These areas 

have been named “littoral” and “pelagic” to reflect perceived differences in zones.  The 

littoral zone contains the entire river and an upper portion of the lake where M. spicatum 

was visibly present and water depth was shallow.  This area represents a large area of 

continous littoral zone.  The majority of the lake is extremely deep and is thought to 

prohibit M. spicatum colonization; thus, that area has been labeled as the pelagic zone.  

Additionally, the littoral zone was grid-sampled, while the pelagic was not.  It seems 

unwise to perform a unified analysis on what are clearly different systems with different 

sampling intensities, thus the division between zones for analyses.  Hereafter, “littoral” 

refers to the geographic area shown in Figure 2.2 unless otherwise stated. 
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All interpolations performed on predictor variable data were done using ordinary 

kriging with ArcGIS Geostatistical Analyst1.  In several studies designed to evaluate the 

various interpolation methods for aquatic ecosystem variables (e.g., kriging, spline, 

inverse distance weighted), kriging was generally regarded as the best option because it 

produced the lowest mean square error (Bello-Pineda and Hernandez-Stefanoni 2007; 

Valley et al. 2005).  While this tool offers options for additional types of kriging, only 

ordinary was applicable to the research problem because no a priori information 

regarding the mean over the study area is required (Goovaerts 1997).  Ordinary kriging 

produces a linear prediction based on weighted averages and is intrinsically stationary 

(i.e., assumes constant unknown mean and a semivariogram that is a function of 

distance apart only) (Waller and Gotway 2004).  The ArcGIS Geostatistical Analyst 

contains options within ordinary kriging for anisotropy and specification of nugget.  There 

was no evidence that depth and fetch changed with direction, thus anisotropy was not 

included.  Further, in the areas investigated, due to the relative continuity of depth and 

fetch, no nugget was necessary. 

Water depth for the pelagic zone was interpolated from NOAA sounding data.  

Bello-Pineda and Hernandez-Stefanoni (2007) noted that spherical models were found 

to best fit the experimental semi-variograms and to best explain the spatial 

autocorrelation present in the depth variable in their attempts to create a bathymetric 

map, and preliminary data analysis showed that this was also the best option for depth 

data from the NOAA sounding.  Water depth for the littoral zone was collected in the field 

and then interpolated.  It was not possible to get one complete depth data set for the 

entire study area.   

                                                 
1 ESRI, 380 New York Street, Redlands, CA 92373-8100 
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Fetch length was determined using methods outlined in the Shore Protection 

Manual (USACE 1984).  These methods were automated using Python scripts obtained 

from USGS (Rohweder et al. 2008).  Effective fetch gives a more representative 

measure of how the wind governs the waves because it is a weighted distance of fetch 

around a specified wind direction (Lehmann 1998).  Effective fetch is calculated as 

௙ܮ ൌ  Σݔ௜ כ  cos Υ௜/Σ cos Υ௜, 

where ܮ௙ = effective fetch,  ݔ௜ = distance to land, and Υ௜= deviation angle.  Nine radials 

are used in the calculations for this study.  In this instance the specified wind direction 

and speed were chosen to represent the dominant speed and direction such as was 

done by Narumalani et al. (1997) over the growing season of M. spicatum in Pend 

Oreille Lake.   

Distance was used in two ways.  First, distance was used as a Boolean variable 

which identified if the point was within 500 m of an existing population.  The maximum 

separation of 500 m was chosen because it represented the smallest possible distance 

which could be used with a 250-m grid.  Second, distance was used as an absolute 

variable measured from the closest observed M. spicatum presence point.  Madsen and 

Smith (1997) noted that M. spicatum, although capable of spread by stolon and 

fragments, predominately (74%) propagated via stolon production, indicating a 

significant chance for localized spread.   

Presence/absence data were obtained by field surveys conducted in summer 

2007 (Madsen and Wersal 2008).  Presence/absence data were collected using a plant 

rake with a point intercept sampling method developed by Madsen (1999). 

Data were re-sampled to a 250-m point grid for analysis in SAS.  This size was 

selected to match the point intercept sampling size, and was necessary to perform 

analysis within a unified framework.  Re-sampling and grid generation were done with 

(2.1) 
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Hawth’s Analysis Tools in ArcGIS (Beyer 2004).  To increase computational speed, only 

points where water depth was less than 10 m were considered for model use, 

representing the limit of preferred depth for M. spicatum reported in literature (Smith and 

Barko 1990) and the maximum depth observed during data collection (J. Madsen, 

personal communication). 

Data Analysis 

A wide range of statistical options for analysis exist, but the choice is driven 

primarily by known vs. unknown parameters, distribution, and model use.  It is assumed 

that the location of each observation is thought to influence the outcome, making the 

problem inherently spatial.  Tobler’s First Law of Geography (Tobler 1970) is often cited 

in reference to spatial autocorrelation and postulates the level of correlation between 

observations decreases with increasing distance.  In traditional statistics it is assumed 

that observations are independent and have normally distributed errors with mean zero 

and constant variance.  The independence assumption is violated when spatial data are 

considered to be spatially autocorrelated.  For this reason spatial statistical methods for 

spatial data analysis are correct, in contrast to traditional methods.  The challenge is 

correctly modeling the spatial dependence so that it can be included in the analysis. 

Initial models estimating the relationship between the presence of M. spicatum as 

a linear function of depth, fetch, and distance were fit using SAS Procs LOGISTIC and 

GLIMMIX2.  From these models, residuals were computed.  The residuals were then 

used to determine an appropriate class of semivariogram models using Procs 

VARIOGRAM and MEANS.  Once it was determined a spherical semivariogram model 

was fit best by the residual empirical semivariogram, Proc NLIN was used to obtain 

parameter estimates for the semivariogram.   

                                                 
2 SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513-2414 
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Five statistical models were considered for estimating the predictive probability of 

the presence of M. spicatum in terms of the three predictors.  The first was a traditional 

logistic regression model.  This model did not include a spatial autocorrelation structure, 

but did include the distance variables.  The remaining four models incorporated spatial 

autocorrelation via a spherical spatial covariance function, and did not require either 

distance variable.  Specifically the four spatial models considered in this study were a (1) 

binomial regression model with overdispersion, (2) a random effects model, (3) a 

conditional spatial generalized linear mixed model (GLMM), and (4) a marginal spatial 

generalized linear model (GLM). 

GIS Analysis 

SAS results were exported as .dbf files and imported as XY Events in ArcGIS.  

Visual pattern analysis of the data was performed to determine if there were clear areas 

of growth and potential spread (or conversely, exclusionary areas) based on clustered 

areas of consistent probability.  Boyce et al. (2002) suggested binning probabilities into 

categories following model development.  To better identify patterns, probabilities were 

re-classified into two (low, high) and three (low, medium, high) ordinal categories of risk, 

based on natural breaks, and corresponding value ranges for depth and fetch were 

assigned to these categories so that M. spicatum habitat could be characterized. 

Results 

Disparate results between the littoral and pelagic zones are due to ecological 

differences between these systems.  For the littoral zone, intercepts are always positive, 

while they are always negative for the pelagic zone.  Depth was considerably different 

between these two systems.  Results suggest that for a considerably more static, deeper 

body of water, location is the primary influencing factor.  Specifically, proximity to 
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shoreline appears to increase probability of presence for M. spicatum.  However, this is 

more likely a proxy for indicating those areas with shallow littoral zone, and necessarily 

proximity to shoreline per se. 

Depth and fetch were highly significant in every model considered.  Regardless 

of zone, depth had negative coefficients in every model, while fetch had positive 

coefficients for every model.  The negative coefficient of depth indicates that the deeper 

the water, the less likely an occurrence of Eurasian Watermilfoil.  On the other hand, the 

higher values of effective fetch indicated Eurasian Watermilfoil was more likely to occur.  

All four of the spatial models had a lower predictive probability error variance than the 

logistic regression model.  However, the additional complexity of spatial models requires 

advanced computing algorithms for covariate parameter estimation.  For this study, this 

additional complexity resulted in a lack of convergence in some cases.   In the littoral 

zone, modeling efforts were enhanced by the added complexity introduced by these 

spatial models. 

Model outputs indicate predictive probabilities for the presence of M. spicatum at 

each point in the study area.  A spatial view of these probabilities created in ArcGIS 

illustrates areas where M. spicatum is likely to occur based on existing depth and fetch. 

Littoral 

Myriophyllum spicatum was present in 64% of the sample set and absent in 36% 

(Table 2.2).  Despite repeated attempts, several models would not converge.  For some 

models attempts were made to run models as bivariate with both depth and fetch, and 

as univariate models with depth or fetch.  Convergence was never achieved for the 

random effects model (bivariate).  While the univariate models for random effects did 

converge, alone, neither could explain the response variable sufficiently.  Interaction 

between depth and fetch is likely present, and thus should not be used alone to model 
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response.  The conditional spatial GLMM converged for both bivariate and univariate 

models.  However, a standard error could not be calculated for the range despite using 

advanced techniques for estimating starting values and subsetting of data.  Models for 

which convergence was obtained include the traditional logistic regression, the binomial 

regression model with overdispersion, and the marginal spatial GLM.   

Logistic Regression 

In this research problem, logistic models explain the trend in the probability of 

occurrence of M. spicatum through the covariates depth and fetch. In this research 

problem, response ሺܻሻ is binary (i.e., presence or absence), meaning that at any 

particular location, the data have a Bernoulli distribution with probability of occurrence 

,௜ଵݔሺߤ ,௜ଵݔሺߤ ௜ଶሻ in lieu of a normal distribution, whereݔ  ௜ଶሻ is also the mean of theݔ

Bernoulli distribution.  It is also the case that, at a particular location, the variance of the 

process is ߤሺݔ௜ଵ, ௜ଶሻሾ1ݔ െ  .௜ଶሻሿݔ௜ଵݔሺߤ

The logistic regression model predicts the response variable ሺ ௜ܻሻ without regard 

to any spatial location.  This is the only model that does not have a spatial component.  

Our logistic model explains the trend in the probability of occurrence of M. spicatum, via 

the logit function, through the covariates depth and fetch.  More specifically, ௜ܻ  is 

modeled with respect to depth ൫ݔ௜,ଵ൯ and fetch ൫ݔ௜,ଶ൯ by the relationship 

௜ܻ ൌ log ൜
ఓ൫௫೔,భ,௫೔,మ൯

ଵିఓ൫௫೔,భ,௫೔,మ൯
ൠ ൅  ௜ߝ

ൌ ଴ߚ  ൅ ௜,ଵݔ,ଵߚ  ൅ ௜,ଶݔଶߚ  ൅ ,௜ߝ  ݅ ൌ 1,2, … ,1343. 

A stepwise selection procedure was used, with depth entering the model first, 

and fetch second.  The resulting fitted model was 

෠ܻ௜ ൌ 1.9182 െ ௜,ଵݔ0.3893 ൅ ,௜,ଶݔ0.000297  ݅ ൌ 1,2, … 1343. 

(2.2) 

(2.3) 
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The summary of the fit for this model indicates that intercept, depth, and fetch were 

significant (Table 2.3).  The Wald statistic reported represents the simplest and most 

commonly used interval estimate for a fitted value in a logistic regression for the logit 

function (Elith et al. 2002).  Wald 2 values (167.7, 189.7, and 64.0, respectively) 

indicate that the full model explains the response variable markedly better than a 

random variable that does not depend on values of depth and fetch.   

Measures of correlation indicate that the model did a reasonable job of correctly 

assigning predicted probabilities (Table 2.4).  More frequently than not (c = 0.78), 

predicted probabilities were assigned by the model that corresponded to the 

observations (i.e., in any matched [0, 1] pair, the higher probability was predicted for the 

location with 1, and not 0). 

Binomial Regression with Overdispersion 

In the binomial regression model with overdispersion model, the trend in the 

probability of occurrence of M. spicatum is modeled via the logit function through the 

linear relationship between the covariates depth and fetch.  The spatial component is 

indirectly modeled through the overdispersion parameter.  Overdisperion refers to the 

situation whereby the data are more dispersed than is consistent with a standard mean-

variance relationship.  The addition of overdispersion is an attempt to quantify the 

inexactness of the mean-variance relationship (Schabenberger and Gotway 2005).  The 

inexactness is thought to be due to spatial influence on the data. 

For each location, ݏ௜, the binomial regression model with overdispersion is 

described as 

ሻሿ࢏࢙ሾܻሺܧ ൌ  ሻ࢏࢙ሺߤ 

݃൫ߤሺ࢏࢙ሻ൯ ൌ ௢ߚ  ൅ ሻ࢏࢙ଵሺݔଵߚ  ൅ ሻ࢏࢙ଶሺݔଶߚ  ൌ ,௜,ଵݔ൫ߤൣݐ݅݃݋݈  ௜,ଶ൯൧ݔ

Varሾߤሺ࢏࢙ሻሿ  ൌ ሻሾ1࢏࢙ሺߤଶߪ  െ  ,ሻሿ࢏࢙ሺߤ 

(2.4) 
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where ߪଶ represents the overdispersion parameter.  The fitted model for binomial 

regression with overdispersion was 

,௜,ଵݔ൫ߤൣݐ݅݃݋݈ ௜,ଶ൯൧ݔ ൌ  1.9182 െ ሻ࢏࢙ଵሺݔ0.3893 ൅  .ሻ࢏࢙ଶሺݔ0.000297 

The overdispersion model was fitted using restricted maximum likelihood (Table 

2.5).  A value of 2 > 1 indicates the presence of overdispersion.  The large estimate of 

the overdispersion parameter of 1.8701 in this analysis indicates that the data likely is 

overdispersed.  Thus the variability is not fully described by the predictors selected.  It is 

possible this is due to underlying spatial variability.  The inclusion of the overdispersion 

parameter should be an improvement over a traditional logistic model because there is 

clearly unexplained variability that needs to be accounted for, even if its cause is not 

identified. 

Conditional Spatial GLMM 

Spatial dependence can be explained partially or wholly by the proximity of 

environmental predictor variables.  Randomness inherent in depth and fetch due to 

interpolation is accounted for through the normality assumption on the term ܵ, having 

spatial covariance structure, ߪ௦
ଶܴ௦ሺߙ௦ሻ.  Any remaining spatial dependence can be due 

to underlying biotic processes or unobservable variables (Miller and Franklin 2006).  The 

conditional approach models the unobserved spatial process through the use of random 

effects within the mean function and models the conditional mean and variance as a 

function of both fixed covariate effects and these random effects resulting from the 

unobserved spatial process.  Variance is dependent on the mean with consideration for 

overdispersion.  The data are conditionally independent and spatial dependence is 

addressed by a Gaussian random field (Schabenberger and Gotway 2005).   

The conditional spatial GLMM is described as 

(2.5) 
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ܼሺݏ௜ሻ| ࡿሺݏ௜ሻ   ~ Bernoulli൫µሺs୧ሻ൯, independent 

logitሾߤሺݏ௜ሻሿ ൌ ଴ߚ  ൅ ௜ሻݏଵሺݔଵߚ  ൅ ௜ሻݏଶሺݔଶߚ ൅   ௜ሻݏሺࡿ 

Varሾܼሺݏሻ| ࡿሺݏሻሿ ൌ  ߤࢂଶߪ 

,൫0ܰ ~  ࡿ ௦ߪ
ଶܴ௦ሺߙ௦ሻ൯. 

The fitted model for conditional spatial GLMM was  

logitሾߤሺݏ௜ሻሿ ൌ  9.1117 െ ௜ሻݏଵሺݔ1.7061  ൅ ௜ሻݏଶሺݔ0.001016 ൅  .௜ሻݏሺࡿ 

For this model, spatial autocorrelation was modeled using the spherical model given by 

ܴଷሺ݄ሻ ൌ  ൝1 െ
ଷ

ଶ
ቀ௛

ఈ
ቁ ൅

ଵ

ଶ
 ቀ

௛

ఈ
ቁ

ଷ
, ݄ ൑ ߙ 

 0,                          otherwise.
, 

The spherical covariance function specifically modeled the spatial dependency in the 

data, partially due to kriging values of fetch and depth.  The results of fitting this model 

indicate that intercept, depth, and fetch are all significant (Table 2.6).  The fitted 

covariance structure was 

,൫0ܰ ~  ࡿ 81.5731ܴ௦ሺ1.0534ሻ൯. 

Marginal Spatial GLM 

The marginal spatial GLM incorporates a term which helps to describe the 

inexactness or random behavior in depth and fetch due to interpolation.  The marginal 

spatial GLM differs from the conditional model in that the marginal mean is modeled as a 

function of unknown fixed, non-random parameters (i.e., 0, 1).  It gives the same 

inference as a conditional model, but with differing interpretation (Schabenberger and 

Gotway 2005).  The marginal spatial GLM is described as 

Eሾܼሺݏሻሿ ൌ  ሻݏሺߤ 

logitሾߤሺݏ௜ሻሿ ൌ ଴ߚ  ൅ ௜ሻݏଵሺݔଵߚ  ൅  ௜ሻݏଶሺݔଶߚ 

Varሾܼሺݏሻሿ ൌ ߤࢂଶߪ  ൅ ࢂଶߪ 
ଵ

ଶൗ ࢂ௠ሻߙ௦ሺܴߤ
ଵ

ଶൗ  .ߤ

(2.6) 

(2.10) 

(2.8) 

(2.7) 

(2.9) 
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The results of fitting this model indicate that intercept, depth, and fetch are all significant 

(Table 2.7).  The fitted model was 

logitሾߤሺݏ௜ሻሿ ൌ  1.9182 െ ௜ሻݏଵሺݔ0.3893  ൅  .௜ሻݏଶሺݔ0.000297 

GIS Analysis 

Ordinal categories illustrated a clear trend (Fig. 2.3) with respect to depth and 

fetch.  In general, probabilities were negatively related to depth and positively related to 

fetch. For many model outputs, in the 3-class system, high depth/high fetch was not 

always present.  Predicted probabilities, when mapped, showed a clear increase with 

depth (Figs. 2.4, 2.5). 

Pelagic 

Myriophyllum spicatum was present in 9% of the sample set and absent in 91% 

(Table 2.8).  Despite repeated attempts and robust methods for estimating starting 

parameter values, the conditional spatial GLM for the pelagic zone did not converge. 

Logistic Regression 

The logistic regression model predicts the response variable ሺ ௜ܻሻ without regard 

for any spatial dependency.  ௜ܻ  is modeled with respect to depth ൫ݔ௜,ଵ൯ and fetch ൫ݔ௜,ଶ൯ by 

Equation Set 2.2, with one exception: in the pelagic analysis, ݅ ൌ 1,2, … ,930.  

As with the littoral analysis, a stepwise selection procedure was used, with depth 

entering the model first, and fetch second.  The resulting fitted model was 

෠ܻ௜ ൌ െ0.8995 െ ௜,ଵݔ0.3599 ൅  .௜,ଶݔ0.000179 

The summary of the fit for this model indicates that intercept, depth, and fetch were 

significant (Table 2.9).  Wald 2 values (5.3, 28.5, and 12.1, respectively) indicate that 

the full model explains the response variable markedly better than a random variable 

that does not depend on values of depth and fetch. 

(2.12) 

(2.11) 
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 Measures of correlation indicate that the model did a reasonable job of correctly 

assigning predicted probabilities (Table 2.10).  More frequently than not (c = 0.73), 

predicted probabilities were assigned by the model that corresponded to actual real-

world observations (i.e., in any matched [0, 1] pair, the higher probability was predicted 

for the location with 1, and not 0). 

Binomial Regression with Overdispersion 

The binomial regression model with overdispersion was performed using 

Equation Set 2.4.  As with the littoral analysis, the overdispersion model was fitted using 

maximum likelihood (Table 2.11).  The fitted model was 

,௜,ଵݔ൫ߤൣݐ݅݃݋݈ ௜,ଶ൯൧ݔ ൌ  െ0.8995 െ ሻ࢏࢙ଵሺݔ0.3599 ൅  .ሻ࢏࢙ଶሺݔ0.000179 

The overdispersion parameter of 1.0320 in this analysis is likely not significantly greater 

than 1, and thus overdispersion may not be occurring.  In this event, there would be no 

need to include this more complex model over the logistic regression model.   

Random Effects 

The random effects model is a standard bivariate binomial regression model that 

incorporates random effects to model the spatial dependence.  The random effects 

model is described by  

ܻሺݏ௜ሻ| ࡿሺݏ௜ሻ ~ Bernoulli൫µሺs୧ሻ൯, independent 

logitሾߤሺݏ௜ሻሿ ൌ ଴ߚ  ൅ ௜ሻݏଵሺݔଵߚ  ൅ ௜ሻݏଶሺݔଶߚ  ൅  ௜ሻݏሺࡿ 

VarሾZሺsሻ| ܁ሺsሻሿ  ൌ  σଶ ܄µ 

,ሺ0ܰ ~ ࡿ ଶߪ
௦ ࡵሻ 

The results of fitting this model indicate that intercept, depth, and fetch are 

significant (Table 2.12).  The fitted model was 

logitሾߤሺݏ௜ሻሿ ൌ  െ8.1978 ൅  െ1.2530ݔଵሺݏ௜ሻ ൅ ௜ሻݏଶሺݔ0.000680  ൅  .௜ሻݏሺࡿ 

(2.14) 

(2.13) 

(2.15) 
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Marginal Spatial GLM 

The marginal spatial GLM is described by Equation Set 2.10.  The results of 

fitting this model indicate that intercept, depth, and fetch are significant (Table 2.13).  

The fitted model was 

logitሾߤሺݏ௜ሻሿ ൌ  െ1.3255 െ ௜ሻݏଵሺݔ0.2329  ൅  ௜ሻݏଶሺݔ0.000112 

GIS Analysis 

Ordinal categories produced mixed results, and were deemed not valuable to 

data analysis.  In general, probabilities were disparate and no clear patterns could be 

detected for any of the models with regard to both the two- and three-class systems.  For 

many model outputs, the range of values was so small that graphs were of limited utility 

for illustration purposes, and thus they are not included.  Predicted probabilities were 

low, except in the shallowest areas (Figs. 2.6, 2.7).  When higher probabilities (> 0.50) 

were compared with the true, measured, littoral zone from Pend Oreille (Fig. 2.8) it 

appears that even when light, which is traditionally the most limiting factor, is available, 

depth and fetch will still control the ability of M. spicatum to establish. 

Discussion 

Multiple justifications can be made about which model is “best”.  It is improper to 

report traditionally-interpreted metrics like R2 because R2 is best interpreted in the 

context of linear models with independent errors – both naïve assumptions in our 

context.  Consequently, it’s not clearcut to compare a single reported value for each 

model and say which one is “best”. 

In this instance the most-defensible position is that the simplest model is best.  

This theory is called “Occam’s Razor” or the “Principle of Parsimony.”  Rules of 

parsimony dictate that when two or more models are competitive, then the simplest 

(2.16) 
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model should be used.  Romero-Calcerrada and Luque (2006) reported that simpler 

models were preferred for their wider applicability and better overall prediction of species 

presence.  Therefore the added complexity of a robust spatial model for the pelagic zone 

is not warranted, and the basic logistic model will suffice.  For the littoral zone, the 

selection would be the overdispersion model.  It did prove to be superior to the logistic 

regression, and when compared to the competing, more complex spatial models, it is the 

simplest choice. 

The alternative argument is that it is irresponsible to recommend a model which 

knowingly omits information about a system, regardless of simplicity.  The more explicit 

spatial models take into account variation due to location which is ignored in the logistic 

model.  There is variability accounted for in the random effects model and conditional 

spatial GLMM due to random effects in the predictors.  In this instance, added 

computational time and complexity are worth the added effort to produce a more 

“complete” model. 

The amount of zeros (absence) in a dataset influences the failure rate for models 

relying on fixed effects.  It is possible in this study, given the high percentage of zeros in 

the pelagic zone, that these models were limited in their usefulness from the onset, and 

might yield significantly different results in a study with a large percentage of presence 

points. 

By definition a true pelagic zone would not contain aquatic plants.  It is possible 

that trying to model presence in this habitat would not be possible in practice because 

the data create a situation for which a realistic model would never converge.  Due to the 

lack of continuous true littoral zone, the model is never able to completely close around 

the pelagic zone.  
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Conclusions 

Based on the results seen in this study, robust spatial models are more useful in 

modeling smaller, shallower, more dynamic systems.  Depth and fetch were useful in 

predicting the presence of M. spicatum, but were not as significant in more robust 

models for the pelagic zone.  In these systems, location only has more explanatory 

ability than spatial covariance structures.  The littoral zone showed a clear trend of more 

frequent presence in low depth, high fetch areas.  These trends were not as clear for the 

pelagic zone.  However, the coefficients for the pelagic zone models indicate that the 

same trend should occur. 
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Figure 2.3. Summary of probabilities for marginal spatial GLMM on the littoral zone 

for two- and three-class ordinal categories (X-axis).  Bar ranges run 
from the minimum to the maximum value for each ordinal category; 
values on the Y-axis reflect probability. 
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 Figure 2.8. True littoral zone for Pend Oreille lake with points predicted at greater 
than or equal to 50% probability of being suitable M. spicatum habitat. 
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Table 2.2. Frequency table of presence of M. spicatum on Pend Oreille littoral zone. 

M. spicatum Status Frequency Percent  

 

Absent (0) 

 

488 

 

36.34 

 

Present (1) 855 63.66  
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Table 2.3. Results of logistic regression model for M. spicatum on Pend Oreille littoral 
zone. 

 
Parameter Degrees of 

Freedom 

Estimate Standard 

Error 

Wald 2 p-value  

Intercept (0) 1 1.9182 0.1481 167.7057 < 0.0001  

Depth (1) 1 -0.3893 0.0283 189.6671 < 0.0001  

Fetch (2) 1 0.000297 0.000037 64.0487 < 0.0001  
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Table 2.4.  Measures of correlation from logistic regression model for M. spicatum on 
Pend Oreille littoral zone. 

 
Percent Concordant 77.5 Somers’ D 0.555  

Percent Discordant 22.0 Gamma 0.558  

Percent Tied 0.5 a 0.257  

Pairs 417,240 c 0.778  
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Table 2.5. Results of binomial regression model with overdispersion for M. spicatum 
on Pend Oreille littoral zone. 

 
Parameter Estimate Standard 

Error 

t p-value  

Intercept (0) 1.9182 0.2026 9.47 < 0.0001  

Depth (1) -0.3893 0.03866 -10.07 < 0.0001  

Fetch (2) 0.000297 0.000051 5.85 < 0.0001  

Overdispersion (2) 1.8701     
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Table 2.6. Results of conditional spatial GLMM for M. spicatum on Pend Oreille littoral 
zone. 

 
Parameter Estimate Standard 

Error 

t p-value  

Intercept (0) 9.1117 0.6105 14.92 < 0.0001  

Depth (1) -1.7061 0.1064 -16.04 < 0.0001  

Fetch (2) 0.001016 0.000132 7.72 < 0.0001  

Variance (s
2) 81.5731 3.2593    

Residual (2) 0.000417 0.000046    

Range (m) 1.0534 .    
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Table 2.7.  Results of marginal spatial GLM for M. spicatum on Pend Oreille littoral 
zone. 

 
Parameter Estimate Standard Error t p-value  

Intercept (0) 1.9182 0.2026 9.47 < 0.0001  

Depth (1) -0.3893 0.03866 -

10.07

< 0.0001  

Fetch (2) 0.000297 0.000051 5.85 < 0.0001  

Variance (0
2) 1.8699 0.07228    

Residual (1
2) 0.000187 0.002598    

Range (m) . .    
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Table 2.8. Frequency table of presence of M. spicatum on Pend Oreille pelagic zone. 

M. spicatum Status Frequency Percent  

Absent (0) 843 90.65  

Present (1) 87 9.35  
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Table 2.9. Results of logistic regression model for M. spicatum on Pend Oreille pelagic 

zone. 
 
Parameter Degrees 

of 

Freedom 

Estimate Standard 

Error 

Wald 2 p-value  

Intercept (0) 1 -0.8995 0.3923 5.2561 0.0219

Depth (1) 1 -0.3599 0.0674 28.5205 < 0.0001

Fetch (2) 1 0.000179 0.000052 12.0954  0.0005
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Table 2.10. Measures of correlation from logistic regression model for M. spicatum on 
Pend Oreille pelagic zone. 

 
Percent Concordant 72.1 Somers’ D 0.451  

Percent Discordant 27.1 Gamma 0.455  

Percent Tied 0.8 a 0.077  

Pairs 73,341 c 0.725  
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Table 2.11. Results of binomial regression model with overdispersion for M. spicatum 
on Pend Oreille pelagic zone. 

 
Parameter Estimate Standard 

Error 

t p-value  

Intercept (0) -0.8995 0.3986 -2.26 0.0243  

Depth (1) -0.3599 0.06846 -5.26 < 0.0001  

Fetch (2) 0.000179 0.000052 3.42  0.0006  

Overdispersion (2) 1.0320     
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Table 2.12. Results of random effects model for M. spicatum on Pend Oreille pelagic 
zone. 

 
Parameter Estimate Standard Error t p-value  

Intercept (0) -8.1978 1.2516 -6.55 < 0.0001  

Depth (1) -1.2530 0.2097 -5.97 < 0.0001  

Fetch (2) 0.000680 0.000166 4.10 < 0.0001  

Variance (s
2) 2.82 x 10-6 .    

Residual (2) 76.3477 3.5646    
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Table 2.13. Results of marginal spatial GLM model for M. spicatum on Pend Oreille 
pelagic zone. 

 
Parameter Estimate Standard Error t p-value  

Intercept (0) -1.3255 0.4874 -2.72  0.0067  

Depth (1) -0.2329 0.07844 -2.97  0.0031  

Fetch (2) 0.000112 0.000069 1.63 0.1030  

Variance (0
2) 0.6775 0.05145    

Residual (1
2) 0.2514 0.5866    

Range (m) 999.56 153.10    
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CHAPTER 3 

REGIONAL-SCALE MODEL: MINNESOTA 

 

Development of ecological models provides a simple, direct method by which to 

predict presence, absence, and spread of species in given environments.  Models can 

be used to highlight areas of concern with regard to invasive species such as Eurasian 

watermilfoil (Myriophyllum spicatum L.) because they can indicate areas susceptible to 

future invasion (Buchan and Padilla 2000).  Roley and Newman (2008) reported that up 

to 4,700 lakes in Minnesota are uninfested but susceptible to invasion by M. spicatum.  

Invasions are often found providentially by state agencies or private citizens (Roley and 

Newman 2008).  Thus a mechanism for directing scouting efforts could allow for better 

cataloging of current populations of this and other invasive species, which can mean 

better chances at early detection and eradication. 

One method that can be used in modeling habitat is Mahalanobis distance.  

Mahalanobis distance is a dimensionless measure of the distance in multivariate space 

from the ideal ecological niche (Calenge et al. 2008; Knick and Rotenberry 1998).  A 

special case of Mahalanobis distance can be used in a set of “presence only” methods 

for predictive habitat modeling.  The majority of species data available tends to be 

presence only (Zaniewski et al. 2002).  This is particularly true of invasive species as 

many data collection efforts are focused on detection.  These data are often recorded 

without planned sampling schemes so that absences cannot be inferred (Elith et al. 
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2006).  Regardless, Elith et al. (2006) reported that in many instances it was possible to 

achieve valid results using some presence-only methods. 

In a maximum entropy analysis (hereafter “maxent”), areas without values are 

not automatically considered absences, which reduces bias from inclusion of false 

absences (Elith et al. 2006; Phillips et al. 2006).  Maxent utilizes maximum entropy to 

make predictions from incomplete data, which in invasive species work could be 

unsampled areas.  It can be used to estimate species distribution by finding the 

probability distribution that is closest to uniform (i.e., “maximum entropy”) for a study 

area under a specified set of environmental constraints (Phillips et al. 2006).   The 

maxent statistic weights each variable by a different constant where the value of each 

weight corresponds to the importance or the magnitude of the variable to the system’s 

entropy.  The probability distribution is estimated by iteratively altering one weight at a 

time to maximize the likelihood of the occurrence dataset.  To avoid overfitting, the 

estimated distribution is constrained so that the average value for a given predictor is 

close to the empirical average rather than equal to it (Hernandez et al. 2006).  In 

comparison studies, maxent outperformed other accepted quantitative methods for 

ecological modeling (Hernandez et al. 2006; Phillips et al. 2006).   

An advantage of Mahalanobis, however, is that it assumes a species will 

distribute itself optimally within the available habitat.  This method is thus ideal for spatial 

studies involving GIS because it partially accounts for the influences of spatial 

autocorrelation, interaction between variables, and covariance (Knick and Rotenberry 

1998). 

In general, most models assume that species distribution is a function of 

environmental conditions (Guisan and Zimmerman 2000).  Some research (Cheruvelil 

and Soranno 2008) has reported that anthropogenic landscape features may outweigh 
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natural landscape influence in importance.  In a study focusing specifically on detection 

of M. spicatum in Minnesota lakes, Roley and Newman (2008) found only physical 

habitat variables to be of significance despite including variables to serve as surrogates 

for human vectoring (i.e., boat ramps). 

Cheruvelil and Soranno (2008) examined the ability of lake and landscape 

features to predict various metrics of macrophyte cover.  They used combinations of 

variables including road density and lake hydrology, among other factors, in their 

determination that anthropogenic landscape features may outweigh natural landscape 

influence in importance.  Conversely, Buchan and Padilla (2000) reported that 

anthropogenic variables were poorer predictors of M. spicatum presence.  Both papers 

point to exceptions, however, that can explain these divergent conclusions.  Cheruvelil 

and Soranno (2008) note that growth form affected variable selection, noting specifically 

that M. spicatum cover required the most complex model.  Buchan and Padilla (2000) 

follow up their conclusions by stating that statistical significance of predictor variables 

may not equate to ecological significance.  Thus anthropogenic variables may or may 

not be of use in a model, but intuitively are included because invasion ecology indicates 

these are key influences. 

Methods and Materials 

The states of Minnesota and Wisconsin were divided into a 500 m grid using 

ArcGIS3 and Hawth’s Tools (Beyer 2004).  Non-water areas were removed from the 

sample.  Data for analysis were obtained from the Minnesota Department of Natural 

Resources Data Deli4 and researchers at the University of Minnesota (Roley and 

                                                 
3 ESRI, 380 New York Street, Redlands, CA 92373-8100 
 
4http://deli.dnr.state.mn.us/index.html. 
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Newman 2008).  These included Secchi depth, total alkalinity, Carlson’s Trophic State 

Index, lake size, distance from lake access (i.e., boat launch), distance from road, 

distance from reported bass habitat, and M. spicatum presence.  Data were weighted for 

analysis using flow accumulation rates obtained from the National Hydrography Dataset 

Plus5. 

Mahalanobis 

A Mahalanobis analysis was performed on the dataset using the Mahalanobis 

extension (Jenness 2003) for ArcView 3.x6.  All variables were included in the analysis.  

The Mahalanobis extension calculates distance using the following equation (Jenness 

2003) 

Dଶ ൌ  ሺ࢞ െ ݉ሻ்ି࡯ଵሺ࢞ െ ݉ሻ, 

where x = vector of data, m = vector of mean values of x, C-1 = inverse covariance matrix 

of x, and T indicates transpose. 

D2 is approximately x2
k-1.  It is only exactly if all x are N(,).  P-values for a 2 

distribution with k-1 degrees of freedom (where k = the number of predictor variables) 

were derived Mahalanobis distances and re-classed using cut-off values of 0.5 (Fig 3.1) 

and 0.4.  The value of 0.5 is a standard choice, and 0.4 was selected because this was 

the natural break in the data.  Values greater than or equal to 0.5 and 0.4, respectively, 

were considered presence when the data were re-classified, with values less than these 

thresholds considered absence.  Re-classed output was compared to known values of 

presence and absence for validation.  Validation included calculating Cohen’s kappa, 

specificity, and sensitivity (Hirzel et al. 2006). 

                                                 
5 Horizon Systems Corporation, P.O. Box 5084, Herndon, VA 20170 
6 ESRI, 380 New York Street, Redlands, CA 92373-8100 

(3.1)
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The Mahalanobis methods were repeated using combined data from Wisconsin 

and Minnesota.  Data for Wisconsin were obtained from the Wisconsin Department of 

Natural Resources7 and USGS Nonidigenous Aquatic Species database8.  These 

included the same variables used for the Minnesota study.    

Maxent 

The maxent statistic (q஛ሻ was calculated using the Maxent software9.  Only the 

state of Minnesota was considered.  Maxent is defined by the following equation (Phillips 

and Dudik 2008) 

q஛ሺxሻ ൌ
ଵ

Zಓ
 exp൛∑ λ୨

௞
௝ୀଵ f୨ሺxሻൟ, 

where for each ݆, ݆ ൌ 1, … ݇,  ௝ represents the weight, ௝݂ is the jth feature at x, x isߣ

presence and Z is a normalizing constant forcing the sum of the entropy components to 

one. 

In addition to maps of predicted suitability, the Maxent software produces a 

receiver operating characteristic (ROC) curve, information regarding the relative 

contribution of each variables, jackknife tests of variable importance, and response 

curves.  From a GIS standpoint, the map provides a useful tool in the production of a 

spatially-referenced continuous variable ranging from 0 to1 where higher values indicate 

higher relative suitability (Gibson et al. 2007).  These values can be thresholded and 

binned into any number of ordinal categories for further analysis. 

                                                 
7http://dnr.wi.gov/ 
 
8 http://nas.er.usgs.gov/ 
 
9 http://www.cs.princeton.edu/~schapire/maxent/ 

(3.2)
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Results 

Mahalanobis 

 The Kappa statistic () measures the proportion of agreement between 

Mahalanobis predicted and the field observed presence and absence values, removing 

that part of agreement that is due to chance (Feuerman and Miller 2005).  Despite 

repeated modifications to variable combinations, the results of  for Minnesota alone 

were below acceptable thresholds (typically 0.7 in literature).  The highest  obtained 

was 0.1, which would not be considered a success under any circumstances.  

Calculated specificity and sensitivity were 0.75 and 0.55, respectively (Table 3.1).  This 

indicates that there is high probability of correctly identifying an absence, but only a 

marginally better than random chance of correctly identifying a presence. Feuerman and 

Miller (2005) have shown that when both specificity and sensitivity are less than 0.875, it 

is not possible to obtain a  of 0.75 or greater (which indicates good to excellent 

agreement between model and observations). 

The combined data for Minnesota and Wisconsin produced a  of 0.54, with 

specificity and sensitivity of 0.94 and 0.54, respectively (Fig. 3.2, Table 3.2).  Again,  

was below the standard threshold albeit substantially improved from the Minnesota 

alone analysis.  Specificity and sensitivity values again indicate a high probability of 

correctly identifying an absence, but only a marginally better than random chance of 

correctly identifying a presence. 

Maxent 

An analysis based on maxent resulted in a highly predictive model for Minnesota.  

The ROC curve (Fig. 3.3) showed an area under the curve (AUC) of 0.968.  AUC 

represents the probability that a randomly chosen presence site will be ranked more 
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suitable than a randomly chosen absence site (Phillips and Dudik 2008) and values > 

0.9 are considered to be highly accurate (Manel et al. 2001).   

The most useful variable in terms of explanatory power was bass habitat (45%) 

followed by Carlson’s TSI (28%).  Lake access was shown to be least useful (0.6%), 

which confirms what has been shown in other studies (Buchan and Padilla 2000; Roley 

and Newman 2008) with regard to anthropogenic contributions to presence.  Spatially it 

appears the most suitable areas are clustered near the major metropolitan area of 

Minneapolis-St. Paul (Fig. 3.4).   

A causal link may not exist between bass and M. spicatum, but empirically bass 

habitat would be an excellent predictor of M. spicatum presence.  Both species prefer 

lakes dominated by a shallow littoral zone with abundant aquatic plant habitat.  It is no 

secret on popular fishing press and natural resource agency websites that bass and M. 

spicatum are often co-located.  This is particularly problematic because it creates friction 

between groups wishing to eliminate the threat posed by this invasive weed and bass 

fishing enthusiasts who equate M. spicatum mats with quality fishing.  Guntersville Lake 

(Alabama) is a legendary bass fishing lake, largely due to its much-touted M. spicatum 

(Felsher 2007; Russow 2010).  In other areas of the country many comments are made 

about how the bass fishing was better when M. spicatum was more prevalent 

(Anonymous 2002; Knapp 2004) or how the introduction of M. spicatum has been a 

positive step for the bass fishing community (Vick 2003).  This problem is exacerbated 

by the disturbance (and subsequent fragmentation) caused by fishermen and their boats 

and also by the purposeful introduction of M. spicatum to a waterbody in the hopes of 

creating more bass habitat.  Frequently the information given on forums does little to 

discourage spread and introduction.  It is not difficult to find comments on forums 

(http://www.HotSpotOutdoors.com, accessed Jun 16, 2010) such as “Milfoil creates 



 
 

64 
 

awesome fish habitat while clearing up the water at the same time” and “I think people 

know what milfoil and zebra mussels are, but do we really know the true effects they can 

have -- both positive and negative? I know of the potential positive effects, and I have 

'heard' of the potential negative effects.”  These comments illustrate that there is a 

definite culture that not only identifies bass habitat with M. spicatum, but encourages the 

growth of one species to support the other. 

Discussion 

Despite its prominence in ecology research, utility of Cohen’s  is under some 

debate.  A significant number of absences have been recorded for Minnesota.  While the 

modeling methods used in these analyses do not rely on these data, the validation did 

utilize these figures.  Therefore it seems fair to acknowledge potential limitations of these 

metrics. 

Manel et al. (2001) reviewed published ecological literature and determined that 

many studies make no effort to evaluate the results, and when results are evaluated, 

performance metrics are potentially biased by the number of presence samples included 

in development of the model.  Their findings indicated that specificity and sensitivity were 

influenced by prevalence, but that  was not.  Vaughn and Ormerod (2005) raised 

concerns about  regarding the definition of “chance” and then pointed to specificity and 

sensitivity as better alternatives which are “independent of prevalence”.  However, 

McPherson et al. (2004) reported that changes in prevalence affected all three metrics.  

Changes in prevalence affected , with deviations from optimum prevalence resulting in 

bias with low prevalence decreasing  values and high prevalence increasing  values.  

Higher prevalence also led to better sensitivity but poorer specificity.  McPherson et al. 

(2004) cautioned that these biases made kappa inappropriate for comparisons between 
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models performed in varying regions of on varying species, stating that this issue had 

not been addressed by current (at that time) ecological literature.   

In contrast, ROC curves are thought to be uninfluenced by prevalence 

(McPherson et al. 2004; Manel et al. 2001).  Manel et al. (2001) reported that  was a 

more robust indicator of model performance, but they detected no prevalence bias in 

their analysis. 

The dataset used in this analysis was considered to have sufficient sample points 

with more than reasonable spatial distribution.  Although results from a Mahalanobis 

analysis may not be reasonably validated by chosen metrics, results from a maxent 

analysis indicate that a model can be formed for this dataset that is not influenced by 

prevalence bias because maxent analysis do not require absence data.  Further, given 

the size and breadth of input data it is not likely the results are influenced by a “detection 

bias” which can sometimes be the case, particularly with invasive species. 

Based on results from the Mahalanobis analysis, it appears possible the 

fundamental niche for M. spicatum is much larger than the realized niche.  Roley and 

Newman (2008) reported that over 4,700 waterbodies were susceptible but not infested 

with M. spicatum.   It is possible with more time that M. spicatum will spread to these 

areas if conditions are favorable.  Roley and Newman (2008) also reported that 

infestations appeared to spread out from the point of initial introduction, with lakes 

closest to the initial invasion more likely to be positive for M. spicatum.  This could be 

further support that proliferation in Minnesota is a function of time, and not a funcation of 

the natural characteristics of the waterbodies themselves precluding infestation by M. 

spicatum.  

Additionally, the State of Minnesota’s Department of Natural Resources has an 

active education campaign to prevent and limit spread of milfoil.  These efforts include 
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billboards, radio and television advertising, public service announcements, printed 

materials, press releases, media contacts, newspaper ads, staffing at sports shows and 

other major events, educational displays and exhibits, informational signs at public water 

accesses, presentations to the public, and training all designed to increase awareness 

and limit introductions of M. spicatum.  Surveys to quantify effectiveness indicate that 

these efforts are producing the desired results with 97% of boaters in one survey 

indicating they were aware of the State’s invasive species laws, and 99% indicating the 

campaign had led them to action (Invasive Species Program 2010). 

Unrelated to niche mechanics, this educational campaign could be artificially 

limiting the species’ ability to spread, and would probably not be captured by the model 

input variables.  Management strategies employed as a result of early detection and 

prevention campaigns could also limit M. spicatum’s ability to spread into some areas 

that are suitable habitat from a modeling standpoint.  

The inclusion of Wisconsin in a second, combined Mahalanobis method was 

done to test which explanation was more likely.  Wisconsin was selected more for its 

characteristics, not all of which are a function of its proximity to Minnesota.  Wisconsin 

has a comparable environment; however, Wisconsin has had populations for M. 

spicatum for a much longer period of time.  The earliest populations of M. spicatum in 

Wisconsin are from the late 1960’s (Buchan and Padilla 2000), while the earliest 

population in Minnesota is from the late 1980’s (Roley and Newman 2008). Wisconsin 

has also not had the aggressive education campaign of Minnesota.   

Conclusion 

From these results it may be concluded that (1) Mahalanobis is an inappropriate 

choice for modeling M. spicatum habitat, or (2) that the metrics used to evaluate the 

Mahalanobis model were inappropriate.  Cohen’s  values indicate that the calculated 
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model would have no accuracy for predicting habitat.  Perhaps this is due to bias from 

prevalence, which has been shown to be troublesome for Cohen’s , specificity, and 

sensitivity in previous research.  Alternatively, and more likely, the Mahalanobis model 

could indicate that Eurasian watermilfoil may occupy only a small proportion of the 

habitat available in Minnesota.  This conclusion is supported by results of the combined 

analysis of Minnesota and Wisconsin and results from the Mahalanobis analysis, in 

addition to other literature (Roley and Newman 2008). 

Results of the maxent analysis indicate that M. spicatum habitat is correctly 

characterized by the maxent model or that M. spicatum has not reached all potential 

habitats due to some limiting factor, possibly time.  Myriophyllum spicatum habitat is 

influenced primarily by bass habitat and trophic status.  While it is true that M. spicatum 

does provide cover for bass, the coincidence in finding M. spicatum and bass is likely 

due to their favoring of similar conditions.  Both prefer the shallow areas of highly 

productive lakes with similarly mesotrophic conditions.  

Lack of M. spicatum spread into the fundamental niche may be a simple function 

of time for dispersal but it is not possible with current data to validate this hypothesis.  

Any data available would likely state the year M. spicatum was found, which may or may 

not be a valid indicator of when M. spicatum appeared given the aforementioned 

providential nature of species’ discovery.   

Based on the results seen from the joint analysis of Minnesota and Wisconsin, it 

appears the most likely scenario is that M. spicatum has not reached its maximum 

habitat potential in Minnesota, and in agreement with the findings of Roley and Newman 

(2008) will continue to find suitable habitat in Minnesota when allowed to spread to new 

areas.    
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Figure 3.1.  Results of Mahalanobis analysis using 0.5 as the threshold for 

presence/absence of M. spicatum in Minnesota. 



 
 

 
  

 

 F
ig

ur
e 

3.
2.

  R
es

ul
ts

 o
f 

M
ah

al
an

ob
is

 a
na

ly
si

s 
us

in
g 

0.
5 

as
 t

he
 t

hr
es

ho
ld

 fo
r 

pr
es

en
ce

/a
bs

en
ce

 o
f 

M
. 

sp
ic

at
um

 in
 M

in
ne

so
ta

 a
nd

 W
is

co
ns

in
. 

71



 
 

 
  

 
 F

ig
ur

e 
3.

3.
 R

ec
ei

ve
r 

op
er

at
in

g 
ch

ar
ac

te
ris

tic
 c

ur
ve

 fo
r 

m
a

xe
nt

 a
na

ly
si

s 
of

 M
. s

pi
ca

tu
m

 in
 M

in
ne

so
ta

. 

72 



 
 

73 
 

   
Figure 3.4. Results of maxent analysis for prediction of M. spicatum in Minnesota. 
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Table 3.1.  Validation results comparing presence (P) and absence (A) for field 
(observed) and predicted from Mahalanobis model for prediction of M. 
spicatum in Minnesota. 

 
  Field  

  P A  

Mahalanobis P 244 1478  

A 81 1842  
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Table 3.2.  Validation results comparing presence (P) and absence (A) for field 
(observed) and predicted from Mahalanobis model for prediction of M. 
spicatum in Minnesota and Wisconsin. 

 
  Field  

  P A  

Mahalanobis P 558 474  

A 172 2846  
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CHAPTER 4 

NATIONAL-SCALE MODEL 

 

Previous work in habitat modeling predominately focuses on identifying and 

delineating potentially suitable habitats for desirable species.  Less focus has been given 

to using predictive modeling for species control or proactive, preventative practices for 

troublesome species, although interest in this area is increasing.  Modeling of this sort 

could be especially useful for economically important invasive pest species (Peterson et 

al. 2003).  Managers and researchers may find many benefits in large-scale solutions for 

identifying habitat that are neither labor intensive nor prohibitively time-consuming 

(Dettmers and Bart 1999) as these solutions may provide not only location information, 

but also help guide containment boundaries, identify priority areas for early detection 

and rapid response, and monitor control strategies and cost-effectiveness in different 

states.  Large-scale national models could also be used to guide higher-resolution 

models for smaller extents (Morisette et al. 2006).   

Morisette and others (2006) developed a nationwide habitat map for tamarisk 

(Tamarix spp.).  Environmental layers used were those which covered large areas, 

including the land-cover component from NASA’s MODIS instrument.  Hirzel and Le Lay 

(2008) reported that land cover data have the most diverse influence on ecological 

niche, but were quick to add these data may not be well suited for ecological purposes 

because they are designed for a different purpose and suffer from poor spatial accuracy, 
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precluding their use in fine-scaled modeling.  However a national model is not likely to 

be at the level of scale where slight locational accuracy is an issue. 

Climate variables are also thought to drive species distribution, particularly at 

large extents.  Climate is thought to affect plants in particular because, unlike animals, 

they cannot avoid adverse climates by sheltering or migrating (Hirzel and Le Lay 2008).  

Neilsen et al. (2008) constructed both national and regional models for the invasive 

ornamental, Heracleum mantegazzianum.  Climate was shown to be significant in the 

national model for explaining distribution.  Certainly the preponderance of studies on 

species range changes in response to climate change indicates that climate is a large 

driver in habitat determination.   

Thuiller et al. (2004) assessed the influence of land cover and climate on species 

distribution in Europe.  They concluded that climate was the major driver for both 

species distribution and land cover.  However they also found that land cover inclusion 

improved the explanatory power of their models despite this.  In larger-scale models, this 

effect was negligible unless the climate variables had poor predictive power.  This was 

possibly due to correlation between climate and land cover, with exceptions occurring in 

specific classes where land cover was not as influenced by climatic conditions (i.e., 

inland water and arable land). 

Many considerations go into developing a national-scale model covering a large 

geographic extent and requiring a large volume of data.  In previous studies (Peterson et 

al. 2003) it has been noted that processing time was a bottleneck in model runs for 

predicting potential invasive distributions of plant species.  Morisette and others (2006) 

produced their national map at a scale of 1 km, which was felt to be the resolution that fit 

both the available data and the practical constraints of computation.   
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Morisette et al. (2006) collected data for their tamarisk model from 45 disparate 

databases and additional geospatial information that was found via web search.  In other 

studies (Peterson et al. 2003), another shortcoming of collecting data on-line was related 

to the availability of herbarium records and other forms of presence data in digital form 

on the web.  This is applicable to many studies on invasive species, as the majority of 

available data is frequently presence-only and often comes from herbarium records. 

The objective of this study is to develop a national model for the predicted habitat 

of Eurasian watermilfoil (Myriophyllum spicatum L.), an invasive, aquatic weed.  This 

non-native weed was introduced into the U.S. in the 1940s, with the earliest herbarium 

records coming from Washington D.C. (1942), Arizona (1945), California (1948), Ohio 

(1949) (Couch and Nelson 1985).  Myriophyllum spicatum currently occurs in almost 

every state, but some areas have more pronounced problems with this weed. 

Methods and Materials 

Each county in the United States was described by a set of predictor variables.  

These variables included those which were thought to vary across broad areas and 

influence suitability of habitat.  Variables were hardiness zones, land cover, average 

precipitation, and percent water.  All data were collected from publicly available sources 

of GIS data.  Hardiness zones were obtained from the USDA (Cathey 1990).  Land 

cover data was downloaded from the USGS National Land Cover Database (Homer et 

al. 2004).  Precipitation data represented 30-yr average monthly precipitation and was 

compiled by the PRISM climate group at Oregon State University (PRISM climate group, 

2006).  Data on the percentage of water surface per county (hereafter “percent water”) 

were acquired from NOAA (Anonymous, 1999).  Presence data were collected using 

several publicly available web databases.  These included the Invasive Plant Atlas of 
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New England (IPANE)10, the Invasive Plant Atlas of the Midsouth (IPAMS)11, USGS 

Nonindigenous Aquatic Species (NAS) database12, and USDA Plants database13.  

Presence data also came from unpublished field surveys.  

Data were compiled in ArcGIS14 so that each county had a value for each 

variable.  These data were joined to county centroids so that (x,y) coordinates could be 

determined for input into maxent, which requires a latitude, longitude pair for each 

presence entry.  Although a county-level analysis is not ideal, compiling data from 

various states showed a range of data assembly level, with many states reporting data 

on a county-level only.  Thus a “lowest useable unit” of county was adopted for analysis. 

The maxent statistic (q஛ሻ was calculated using the Maxent software15.  Only the 

state of Minnesota was considered.  Maxent is defined by the following equation (Phillips 

and Dudik 2008) 

q஛ሺxሻ ൌ
ଵ

Zಓ
 exp൛∑ λ୨

௞
௝ୀଵ f୨ሺxሻൟ, 

where for each ݆, ݆ ൌ 1, … ݇,  ௝ represents the weight, ௝݂ is the jth feature at x, x isߣ

presence and Z is a normalizing constant forcing the sum of the entropy components to 

one.  Maxent allows for both categorical and continuous predictor variables.  In the 

analysis hardiness zones and landcover are used as categorical, while precipitation and 

percent water are continuous variables. 

                                                 
10 IPANE, http://nbii-nin.ciesin.columbia.edu/ipane 
 
11 IPAMS, http://www.gri.msstate.edu/ipams/ 
 
12 USGS NAS database, http://nas.er.usgs.gov 
 
13 USDA PLANTS database, http://plants.usda.gov 
 
14 ESRI, 380 New York Street, Redlands, CA 92373-8100 
 
15 http://www.cs.princeton.edu/~schapire/maxent/ 

(4.1)
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In addition to maps of predicted suitability, the Maxent software produces a 

receiver operating characteristic (ROC) curve, information regarding the relative 

contribution of each variables, jackknife tests of variable importance, and response 

curves.  From a GIS standpoint, the map provides a useful tool in the production of a 

spatially-referenced continuous variable ranging from 0 to1 where higher values indicate 

higher relative suitability (Gibson et al. 2007).  Another benefit is that these values can 

be thresholded and binned into any number of ordinal categories for further analysis. 

Maxent utilizes maximum entropy to make predictions from incomplete data.  It 

can be used to estimate species distribution by finding the probability distribution that is 

closest to uniform (i.e., “maximum entropy”) for a study area under a specified set of 

environmental constraints (Phillips et al. 2006).  The maxent statistic weights each 

variable by a different constant where the value of each weight corresponds to the 

importance or the magnitude of the variable to the system’s entropy.  The probability 

distribution is estimated by iteratively altering one weight at a time to maximize the 

likelihood of the occurrence dataset.  To avoid overfitting, the estimated distribution is 

constrained so that the average value for a given predictor is close to the empirical 

average rather than equal to it (Hernandez et al. 2006).  In comparison studies, maxent 

outperformed other accepted quantitative methods for ecological modeling (Hernandez 

et al. 2006; Phillips et al. 2006).  A major advantage of maxent over many popular 

methods is that areas without values are not automatically considered absences, which 

reduces bias from inclusion of false absences (Elith et al. 2006; Phillips et al. 2006). 

Graham et al. (2007) concluded that maxent experienced no decline in performance due 

to errors in spatial accuracy when compared with other model techniques, also making it 

an appropriate choice for this study since data were not collected specifically for the 
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purpose of this study and it has been argued that landcover data suffered from spatial 

inaccuracy (Hirzel and Le Lay 2008). 

Results and Discussion 

The maxent analysis resulted in a highly predictive model.  Maxent was run with 

different combinations of the selected variables until the highest area under the curve 

(AUC) for the ROC curve could be obtained.  A ROC curve is plotted by placing all 

sensitivity values on the y-axis against their equivalent (1-specificity) values on the x-

axis (Miller 2005).  The AUC statistic represents the probability that a randomly chosen 

presence site will be ranked more suitable than a randomly chosen absence site (Phillips 

and Dudik 2008).  AUC is a measure of overall accuracy and is independent of 

prevalence, making it well-suited for studies on vegetation modeling (Miller 2005).  The 

model which produced the best ROC curve included all 4 variables.  The ROC curve 

(Fig. 4.1) showed an area under the curve (AUC) of 0.792.  AUC values > 0.7 indicate 

useful application (Manel et al. 2001), thus the model was considered to be good.  The 

AUC of 0.792 indicates a reasonable likelihood of correctly predicting habitat. 

The most useful variable in terms of explanatory power was precipitation (43%) 

followed by percent water (30%).  Hardiness zone was shown to be least useful (10%).  

Jackknife analysis showed that land cover appears to have the most information by 

itself.  Percent water was the variable with the most information not contained in the 

other variables.   

It is hypothesized that hardiness zones were considered the least useful because 

the information that goes into the development of a hardiness zone is likely correlated 

with data already in the model.  These zones are based on, among other things, rainfall, 

temperature, and day length (Cathey 1990), indicating that the precipitation data may 

have been adequate to describe the model without hardiness zones.  It may also be that 
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hardiness zones are developed with additional data that are uninformative for M. 

spicatum distribution at this scale.  It is possible percent water has the most explanatory 

power of a single variable solely since as an aquatic species, M. spicatum has greater 

likelihood of occurrence in areas where there is more available habitat (suitable or 

otherwise). 

The geological processes which formed most lakes created lake districts, or 

groupings of lakes (Wetzel 2001).  Soranno et al. (1999) found that annual climate was 

an important driver for synchrony – a measure of the degree to which lakes in a district 

behave similarly over time – in lake districts.  This could explain why when precipitation 

is considered as the most useful explanatory variable, the resultant maxent output map 

appears to show clustering of probabilities within areas of high lake density (i.e., lake 

districts).  Additionally, if it can be accepted that humans are the primary vector for M. 

spicatum as many authors suggest, the proximity of lakes in the district likely increases 

the number of chances for introductions from one lake to the next.  Johnstone et al. 

(1985) reported that boaters had low probability of moving between lakes beyond 125 

km apart, and around 0.25 probability of moving between lakes in a district.  They 

concluded that boats provided a viable mechanism for interlake transport of plant 

fragments. 

Neilsen et al. (2008) found that human population density was a driving force 

behind distribution of H. mantegazzianum.  Although not considered in this study, the 

areas for which lower relative probabilities were determined are also areas for which 

populations are known to be limited (i.e., the Western U.S.).  This could be an additional 

explanatory variable for consideration in future studies. Again, if humans can be 

considered a primary vector, the more populated areas pose more chances for 

introductions and increased likelihood of lake utilization. 
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Low probabilities in the areas for which density of lakes is smaller and 

populations are lower may also be explained by the arid nature of these areas.  

Chambers (1994) noticed a relationship between mean annual dew point temperature 

and M. spicatum range.  Since by their nature aquatic plants must remain wet to remain 

viable, in an arid environment, fragments may have a harder time surviving transport on 

boat trailers, considered to be the primary means by which humans spread this weed.  

Additionally, with less dense distributions of lakes, the distance between lakes is greater, 

limiting the movement between lakes and increasing the time available for desiccation of 

plant fragments on boat trailers.  

Specific to the model results, it is important not to equate availability with use 

(Dettmers and Bart 1999), as these are not the same thing for a species.  Chambers 

(1994) reported no instance of M. spicatum in the Prairie Provinces of Canada despite 

no environmental constraint on its establishment.  With few populations near these 

provinces, it was assumed that geographic restraints were likely one of the biggest 

mechanisms preventing presence of M. spicatum, with the nearest documented 

occurrence of M. spicatum over 300 km away.  Additionally, depending on a state or 

county’s protocols, M. spicatum may be aggressively managed, thus limiting its 

occurrence, despite high probability of habitat suitability.  In Minnesota for example, 

Roley and Newman (2008) reported that over 4,700 waterbodies were susceptible but 

not infested with M. spicatum.  This may be attributable to the State of Minnesota’s 

Department of Natural Resources (MN DNR), which has an active education campaign 

to prevent and limit spread of M. spicatum.  Multiple outlets are utilized by MN DNR in 

this endeavor including media outlets and other traditional forms of education and 

outreach all designed to increase awareness and limit introductions of M. spicatum.  

Ninety-seven percent of boaters in one survey conducted by MN DNR indicated they 
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were aware of the State’s invasive species laws, and 99% indicated the campaign had 

led them to action (Invasive Species Program 2010).   

Zaniewski et al. (2002) concluded that presence-only models were more likely to 

predict the fundamental niche, unless absences or even “pseudo” absences could be 

included.  Phillips et al. (2006) stated that to the extent the model accurately predicts the 

fundamental niche, however, the projection to geographic space will represent the 

species’ potential distribution.  Even without absence data, concurrence with prior 

studies (Couch and Nelson 1985, Fig. 4.3) indicates that these results may accurately 

portray the fundamental niche, and thus the potential distribution of M. spicatum.   

It should also be acknowledged several challenges are associated with use of 

presence-only data, specifically when the researcher is not the collector.  Elith and 

others (2006) evaluated the capacity of presence-only data to predict species’ 

distribution.  They concluded that these data were useful for modeling distribution and 

that methods such as maxent were effective in these endeavors.  Ideally presence and 

absence data would be used to create the model, particularly for a weed species that is 

as ubiquitous as M. spicatum.  Unfortunately, data sources like IPANE log presence 

almost exclusively. The only way to obtain absence data would be to purposefully collect 

it, but this also presents many challenges.  Because the analysis is done on a county 

level, it would be impossible to survey an entire county and guarantee absence.  It wouls 

also be impossible to determine if this is truly absence or simply suitable area which has 

not been colonized by M. spicatum.  Many states for which data are missing, Mississippi 

for example, do not have a severe enough problem with M. spicatum to warrant 

statewide surveys.  Collecting these data would be prohibitive in terms of both cost and 

time. 
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Further, utilizing “volunteer” type databases such as IPANE introduces unknown 

sampling bias into the input data (Elith et al. 2006; Zaniewski et al. 2002).  Often the 

data in these databases are collected without a sampling scheme, which can create data 

clustering in areas that are more accessible.  Inputs in this case tended to be clustered 

in parts of the country where M. spicatum is problematic.  Dependency on previously 

collected databases did limit the available inputs to the model, although it would be just 

as easy to argue that the prevalence is higher and the frequency greater in these areas 

because of the duration of M. spicatum in these areas, allowing for much more 

established populations. 

Conclusion 

While there are many considerations for presence-only models, the use of 

maxent overcomes many of the limitations these models present.  Given the nature of 

data available on invasive species from public databases, it is more common to see 

these types of analysis.  While it could be argued that more reliable results for a species’ 

potential distribution can be obtained when absence data are added, these studies are 

less feasible for large area models, particularly for ubiquitous invasive weed species like 

M. spicatum. 

Invasive plants are known for their opportunistic traits.  A large percentage of the 

U.S., particular in the Eastern half, appears to be available to M. spicatum, should it find 

an opportunity for introduction.  Maxent produced a reasonable county-level national 

model of M. spicatum habitat based on land cover, precipitation, hardiness zone and 

percentage of water.  Results indicated that percent water largely influences the 

probability of suitable habitat.  Presence may be dictated by lake density, human 

population density, and dew point as reasonable justification can be made for each and 

all.  These results closely resembled an introduction and spread pattern for M. spicatum, 
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perhaps indicating that habitat is colonized as time permits, and not necessarily as 

conditions permit.    
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CHAPTER 5 

SUMMARY AND FUTURE RESEARCH 

 

In their review paper, Guisan and Thuiller (2005) determined the earliest known 

example of modeling species was published in 1924 to predict the spread of cactus 

species in Australia.  Computer-based modeling approaches for species distribution 

began in the mid-1970s, but it was not until the early 1990s when publications on 

predictive modeling of species distribution increased sharply (Guisan and Thuiller 2005).  

The area of predictive modeling in ecology and related fields continues to grow with new 

methods taken from other fields.  These methods are then incorporated into a broader 

suite of tools which can be used to address issues related to invasive species. 

For stakeholders and decision makers dealing with Eurasian watermilfoil 

(Myriopyllum spicatum L.), models can help direct limited financial and personnel 

resources aimed at prevention or containment.  As pressure from tightening budgets at 

funding sources trickles down to front-line managers such as government agencies, 

water management districts, and university research programs, a targeted approach to 

invasion prevention will be key. 

Using models can present a set of challenges.  Many decisions, frequently 

subjective, go into building a model.  Use of presence and/or absence data is frequently 

dictated by extent of the area of interest, economic considerations for data collection and 

processing, and the abundance of the species of interest.  Methods exist for modeling 
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under both approaches and research supports positive outcomes for both 

presence/absence and presence-only modeling.  When dealing with large areas, such 

as a national model, presence-only modeling is the most convenient option.  Particular to 

invasive species, most available data is presence-only, so choices are dictated almost a 

priori by available data.  Maxent is a very appealing option for presence-only modeling 

because it doesn’t complicate a model by assuming unknown (i.e., unsurveyed or 

sampled) areas are absences.  This assumption can be crucial when modeling invasive 

species. 

Another decision which can not be ignored is the choice of scale.  Levin (1992) 

posed that variability has meaning relative only to scale of observation.  He added that it 

was more important to capture how a system changes across scales in lieu of trying to 

determine the correct scale.  By using a three-scale approach in this study, it has been 

possible to use a variety of predictor variables to characterize M. spicatum habitat at 

different levels of observation.  Given what is known about introduction, spread, and 

transport of Eurasian watermilfoil, it makes sense to examine all three scales in order to 

determine how spread is influenced: 1) in a single lake where stem elongation and 

fragments account for the majority of spread; 2) on a regional scale where spread is 

largely to due to transport among lakes by anthropogenic mechanisms; and 3) on a 

national scale where broader issues of climate and landcover influence habitat 

availability against the pressures from local and regional factors. 

A comparison across scales of results from maximum entropy (hereafter 

“maxent”) analysis yields AUCs of 0.771, 0.953, 0.968, and 0.792 for littoral, pelagic, 

Minnesota, and National models, respectively.  It appears then, that the most useful 

scale is a regional-level model.  Levin (1992) indicates that by increasing our scaling unit 

(i.e., going from local to regional) a model moves from “unpredictable, unrepeatable 
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individual cases” to a model which is more generalized, trading detail for predictability.  

This does not appear to extend to the case of the National model, for which the AUC 

decreases.  It may be possible, however, that the AUC for the National model could be 

improved by increasing the number of samples.  For a fixed number of predictor 

variables, increasing the sample size would increase ability to estimate coefficients, 

potentially increasing the AUC for this model. 

The value of 0.953 for the pelagic seems extremely high and can likely be 

explained by the fact that for the largest part of the pelagic zone, predictions of absence 

or low probability are correct.  Given the depths of the pelagic zone, intuitively M. 

spicatum would not be expected and thus if the model predicted the entire zone to be 

void of M. spicatum, the error rate for false positives would not be sufficiently high.   

 

Positive Outcomes 

Despite a fairly ubiquitous distribution, it is encouraging to see that when a 

concerted effort is made, Eurasian watermilfoil can successfully be prevented from 

overtaking habitat.  M. spicatum spread appears to be largely time dependent, less than 

habitat dependent.  When comparing the status of Eurasian watermilfoil in Wisconsin 

with Minnesota, it is possible to see the difference 20 years can make in establishment 

of Eurasian watermilfoil as a nuisance species.  The experience of Minnesota proves 

that public education can be effective at limiting the spread of this invasive species.  

Even more promising is that this was true even when habitat was deemed suitable.  For 

states where M. spicatum is still a non-nuisance species, this is extremely valuable, as 

these states can begin to think about approaches that can be undertaken to help 

ameliorate risks of widespread establishment and implement these measures early. 
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Public awareness and education programs, in addition to limiting spread, could 

provide added benefits to “volunteer” type databases such as IPANE16 and IPAMS17.  A 

more informed citizenry is resource that would be a boon to data collection and 

identification of invasives such as Eurasian watermilfoil.  The economic and practical 

feasibilities of collecting both presence and absence data at large scales creates a need 

to focus on methods for presence-only prediction, and increases the dependency on 

these types of databases. While maybe not ideal, a sufficient amount of research 

supports the idea that presence-only data can be effectively used to predict habitat for 

many species.  The development of methods specific to presence-only models will likely 

escalate, and public awareness of invasives can only benefit this type of work.  A more 

informed citizenry is also much more likely to be supportive of control and prevention 

methods for Eurasian watermilfoil; something front-line managers can also appreciate. 

 

Future Research 

Macrophytes have traditionally been neglected in many water quality models 

including the most commonly used models such as WASP18 and QUAL2K19 (Park et al. 

2003).  Park and others (2003) were able to develop a non-GIS based, more “traditional” 

water quality model which also included the effect of macrophytes on environmental 

features such as dissolved oxygen and nutrient cycling.  Another model, MILFO20, 

models vegetative growth, but not location, of Eurasian watermilfoil based on 

                                                 
16 IPANE, http://nbii-nin.ciesin.columbia.edu/ipane 
 
17 IPAMS, http://www.gri.msstate.edu/ipams/ 
 
18 Water Analysis Simulation Program, U.S. Environmental Protection Agency, Washington, 

D.C., http://www.epa.gov 
 
19 U.S. Environmental Protection Agency, Washington, D.C., http://www.epa.gov  
 
20 U.S. Army Corps of Engineers, Washington, D.C., http://www.usace.army.mil 
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environment.  Jensen and others (1992) were able to incorporate features such as fetch 

to determine not only presence, but density and spread of aquatic macrophytes.  These 

successes represent pieces of a total modeling approach to Eurasian watermilfoil 

management.  A logical next step is to incorporate existing mathematical-based water 

quality models into a GIS-based habitat suitability model for M. spicatum.  A real world 

model requires the user to have pre-existing data which show the conditions present.  

Ideally it is desirable to link GIS-based habitat models for Eurasian watermilfoil with 

other existing water quality models so that this need not be the case.  

Ultimately, incorporation of these models allows the user not only to predict 

probability of occurrence but also spread in response to user specified changes in 

environment variables.  There is already considerable research underway about how 

climate change will affect the range of many species, including invasives. 

Incorporation with water quality models would further allow the user to generate 

scenarios with simulated changes in water quality upstream or downstream, and also 

run models without measured field data on water quality.  Not that it should be 

advocated, but it would be entirely possible for the user to run whole simulations from 

start to finish without leaving the desk.   

Dependence on modeling will only increase as new methods and novel 

approaches are developed.  Good science and a push for validation will help to ensure 

that modeling remains of value. 
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