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Eurasian watermilfoil (Myriophyllum spicatum) habitat was predicted at multiple
scales, including a lake, regional, and national level. This dissertation illustrates how
habitat can be predicted for M. spicatum using publically-available data for both
presence and environmental variables. Models were generated using statistical
procedures and quantative methods to determine where the greatest likelihood of
presence was located. For the single lake, presence and absence data were available,
but the larger-scale models used presence-only methods of prediction. These models
were paired with a Geographic Information System so that data could be visualized on a
map. For the selected lake, Pend Oreille (Idaho), spatial analysis using general linear
mixed models was used to show that depth and fetch could be used to predict habitat,
although differences were seen in their importance between the littoral and pelagic
zones. For the states of Minnesota and Wisconsin, Mahalanobis distance and maximum
entropy methods were used to demonstrate that available habitat will not always mean
presence of M. spicatum. The differing approaches to management in these states
illustrated how an aggressive public education campaign can limit spread of M.

spicatum, even when habitat is available. Bass habitat appeared to be the largest



predictor of M. spicatum in Minnesota, although this was due to the similar
environmental preferences by these species. Using maximum entropy, on a national
level, presence of M. spicatum appeared to be best predicted by annual precipitation.
Again, results showed that habitat is colonized as time permits, and not necessarily as

conditions permit.
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CHAPTER 1

INTRODUCTION

The abiotic components of the environment necessary for survival constitute the
habitat requirements for a species (Gillenwater et al. 2006). Species habitat
requirements are described by habitat factors, which cover the most essential
characteristics of preferred habitats (Store and Jokimaki 2003). Geographic Information
Systems (GIS) are well suited for studies involving habitat modeling and delineation,
sometimes referred to as habitat suitability indexing (Gillenwater et al. 2006; Wang
1994). Geographic Information Systems also offer the advantage of being able to
overlay layers representing the spatial distribution of different environmental variables
related to habitat suitability and perform spatial operations on these layers (Gillenwater
et al. 2006).

The majority of previous work in habitat modeling, with and without the use of
GIS, focused on identifying and delineating potentially suitable habitats for desirable
species. Less focus has been given to using predictive modeling for species control or
proactive, preventative practices for nuisance species. Modeling such as this is
necessary to provide natural resource managers and policy makers with predictions of
the effects of a particular management practice (Valley et al. 2005). Morisette et al.
(2006) developed a nationwide habitat map for tamarisk (Tamarix spp.). The habitat
distribution map provided not only location information, but also helped guide

containment boundaries, identify priority areas for early detection and rapid response,



and monitor control strategies and cost-effectiveness in different states. Ecological

models can also be used as a forecasting tool to examine potential ecological impacts
and prioritize needs (Rotenberry et al. 2006), and to evaluate the expected effects of a
variety of landuse changes on a species or an ecological system (Romero-Calcerrada

and Luque 2006).

Theoretical Background

Development of ecological models provides a simple, direct method by which to
predict presence, absence, and spread of species in given environments. Levin (1992)
calls the understanding of patterns and process the “essence of science” while
acknowledging that complexity in nature forces modelers to make a trade-off between
detail and generalization. Romero-Calcerrada and Luque (2006) urged a “need to
develop indicators that simplify complexity in natural systems.” Simpler models are often
preferred to complex models because it is believed they have wider applicability and
represent better overall prediction of species presence. Levin (1992) noted that models
should contain “just enough” detail with the idea that the objective of the model build
should ultimately be to ask how much detail can be ignored. This approach is useful
because it limits the influence of peculiarities specific to a particular sample of species
data (Elith et al. 2002).

Store and Jokimaki (2003) identified four steps to habitat suitability modeling: 1)
constructing conceptual habitat suitability models; 2) producing the data needed for the
models; 3) evaluating a target area based on habitat factors; and 4) combining the
separate suitability indices. Empirical models in Store and Jokimaki (2003) were

constructed based on investigated relationships between abundance of species and



appropriate background variables. For species lacking objective, data-driven models,
habitat suitability models were based on expert knowledge of which factors determine
the habitat for a species and the relative importance of these variables. Suitability was
then determined by overlay analysis and cartographic modeling in a GIS using
standardized and weighted layers for those factors which expert knowledge or objective
models showed were foremost.

Several researchers (Baja et al. 2002; Carver 1991; Hall et al. 1992) reported
that the use of Boolean operators was too limiting because areas must fall into one of
two categories (suitable or unsuitable) when in reality, areas may be marginal in their
classification into one of these two areas — an attribute which is ignored by a strict
Boolean classification. Many felt that the use of fuzzy classification methods or
suitability indices was more representative of the continuous nature of environmental
variables (Baja et al. 2002; Carver 1991). Hall et al. (1992) contains a complete
discussion of the use of fuzzy classification versus Boolean classification.

Habitat suitability is often quantified by means of a suitability index or probability
(Store and Jokiméki 2003). A model may or may not encompass the additional step of
identifying areas which are not only suitable, but which have a higher probability of site
occupancy. This can, and probably should be, considered a separate research
qguestion, using separate models to estimate presence and suitability. A species may
not act logically in that a species may not occupy the most suitable location for a variety
of reasons; thus an area may have a high species density but limited contribution to
long-term species persistence and vice versa (Elith et al. 2002).

In identifying those areas most likely to contain a species, it is often desirable to
weight each criterion and develop levels of suitability such as was done by Joerin et al.

(2001) and Wang (1994). It is important to note that weights can be either quantitative
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or qualitative (Rohde et al. 2006). The consequence of qualitative weights is the impact
on available statistical options and this should be a consideration when choosing to
apply these types of weights.

Jensen et al. (1992) used GIS to predictively model dominant freshwater
macrophytes. The GIS was used to store the spatial data, query the database, and
employ Boolean logic to predict the spatial distribution of various aquatic macrophytes.
The authors found it necessary to obtain spatially registered biophysical information;
store the data using the appropriate GIS architecture; and specify and apply
environmental constraint criteria rules. The basic assumption was that aquatic
macrophytes would be present if all the environmental constraint criteria could be met. It
was concluded that the techniques used in this study could predict the location of
freshwater aquatic macrophytes and could also be used to predict where they would
occur in the future. Narumalani et al. (1997) came to the same conclusion when using

GIS to model aquatic macrophyte habitat.

Technical Aspects of Model Function

Overlay analysis using map algebra approaches have been used by other
researchers working in habitat suitability modeling (Store and Jokimé&ki 2003) and
related areas such as landuse planning (Millette et al. 1997). Map algebra is based on
simple mathematical principles. If each environmental constraint (or predictor variable in
statistical terms) is contained in an individual GIS layer, the intersection of those layers
identifies areas which satisfy multiple constraints. Whether the approach taken is a strict
Boolean approach (Joerin et al. 2001; Rohde et al. 2006; Romero-Calcerrada and Lunge
2006) or fuzzy classification (Baja et al. 2002; Carver 1991; Hall et al. 1992), there will

be areas which meet all or most criteria and those which do not meet any. The most
4



efficient way to identify these areas in a GIS is to perform these types of overlay
analyses.

Map algebra allows each raster cell (or vector grid cell) to be assigned a value
and any mathematical model can then be applied to those values. For example, two
layers can be “added” by adding cell values between layers for cells with corresponding
geographic space. With either a Boolean or fuzzy classification approach, 0's and 1's
can be utilized with multiplication operations to identify areas that are suitable and not
suitable. Cells are assigned values of O or 1, with 0 being unsuitable and 1 being
suitable. By multiplying the maps together, areas which meet both criteria return values
of 1, and cells which meet one or zero criteria return values of 0. In a fuzzy
classification system, layers can be added such that the overall magnitude of the output
represents the level of suitability (Fig. 1.1). Cell values in individual GIS layers or the
predictive output layer can be binned into ordinal categories to provide multiple levels of
suitability.

Layers can also be combined in a more complex manner using a relationship
developed through statistical procedures. Again, statistical procedures will differ
depending on choices made regarding classification of layers. Unless actual values are
used, categorical data analysis or nonparametric methods are more appropriate choices
for developing algorithms for overlay. Boolean approaches require the use of statistical

procedures designed for a 0/1 response variable.

Background for Conceptual Model
Currently Eurasian watermilfoil (Myriophyllum spicatum) is found in almost all fifty

states and is one of the most troublesome submerged aquatic plants in North America



(Madsen 1998; Smith and Barko 1990). Among those factors which most impact
presence of Eurasian watermilfoil, light availability, water movement, and sediment
dynamics appear to be the major driving mechanisms. A discussion of the relationship
between these factors is presented in Madsen et al. (2001).

Although many components of the aquatic environment influence presence, the
complex interrelationship between the various components requires careful selection of
model inputs to limit effects of multicollinearity between variables in the model. Smith
and Barko (1990) present a thorough list of these components in their review of Eurasian
watermilfoil ecology (Table 1.1).

Data on ecology of Eurasian watermilfoil are possibly of limited utility or may
force choices (if lack of alternatives is truly considered choice) regarding model
development in some instances. For example, it has been noted that the species is
typically most abundant in one to four meters of water, but will occur in up to 10 m of
water (Smith and Barko 1990). In a pure Boolean approach, an absolute limit may need
to be decided on an individual case basis. Light intensity is also related to the growth of
this species; however it has been found growing in a wide range of clarity and turbidity
(Smith and Barko 1990). Again, it could be virtually impossible to assign clear
demarcations between suitable and not suitable in this instance.

Store and Jokimaki (2003) advocated use of existing literature and expert
knowledge in model development. A conceptual model was developed based on
published scientific data (Madsen 1998; Madsen et al. 2001; Smith and Barko 1990, Fig.
1.2). The conceptual model acknowledges the influence only of elements of the
physical environment which are non-anthropogenic. Buchan and Padilla (2000) used
GIS and regression techniques to develop and test a model for predicting the likelihood

of Eurasian watermilfoil in lakes. They included factors such as presence of boat ramps,
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type of boat launch, and proximity to highways and residences. They determined that
these factors were poorer predictors of milfoil presence than those which related to

species growth directly.

Spatial Aspects of the Research Problem

The landmark paper by Levin (1992) on scale and pattern in ecology addresses
the need for analyzing the problem on multiple scales. Levin proposes that variability
only has meaning relative to scale, and prediction must operate at the scale relevant to
the organism and process being examined. Many of the environmental factors thought
to contribute to the presence Eurasian watermilfoil vary across geography and also in
their importance between scales. The conceptual model (Fig. 1.2) shows an overview
of interactions without regard for which are more important at specific scales (i.e., local,
regional, national). Differences in importance among scales dictate which variables
should be considered for corresponding models. For example, at a local level,
fluctuations in mesoclimate and geology would likely not be significant because they
would not vary greatly enough to be of any use. However, variability in depth, Secchi
measurements, other species present, etc., is likely to be quite high and these variables
should be initially considered for predictor variables in a local-scale model. For a
national-scale model, temperature and climate should vary quite dramatically and would
likely contribute greatly to a model, whereas Secchi measurements would provide an
overabundance of data and detail which would only represent noise in a national scale
model.

Utilization of GIS and a spatial approach allows these variations to be better

visually represented in a model. The development of spatial statistics and the field of



landscape ecology serve as proof that many problems benefit from this method of
inspection, and make a clear case for multi-scale analysis of spatial problems in

predictive habitat modeling.

Model Uncertainty

Caswell (1976) suggests that the same model can and should be judged based
on its intended purpose. The author makes a distinction in what validity means for
models that predict outcomes versus models which recreate processes. Predictive
models are validated by 1) determining the domain over which the model applies, and 2)
attempting to refute the model to increase confidence. Duality of validity means that a
single model might be a valid predictor despite being scientifically refuted (i.e., provides
a good fit to the data but an illogical outcome).

Rykiel (1996) advocated a mechanistic approach to model evaluation as a
frequently-missed next step, citing evidence that understanding underlying relationships
is of crucial importance to resource managers who are often required to describe the
influence of changing land use activities on species. Natural variation is unlikely to be
fully-characterized by a model (Elith et al. 2002). As such, inaccuracy and imprecision of
ecological data place limits on model testability (Rykiel 1996). General linear models are
frequently used for habitat modeling, but relatively few publications exist in ecology
literature which discuss uncertainty in these models (Elith et al. 2002).

Despite the push by several researchers (Levin 1992; Romero-Calcerrada and
Luque 2006) to simplify ecological systems, Elith et al. (2002) argues that with general
linear models uncertainty is created by simplifying assumptions and abstractions of

ecological processes that must be made. Specific to GIS, layers are often interpolated,



creating uncertainty in the basedata which is propagated or compounded as the data are
summarized, classified, modeled, and interpolated. Errors can also exist with field data
due to sampling bias and observer error. Some of these represent systematic errors
which may not be detrimental to the model if the overall relationship is intact. Non-
systematic errors, particularly those in measurement and location can be hard to find
and are frequently not identified in the metadata accompanying a GIS layer. Finally,
spatio-temporal variability may not be fully captured by sampling protocols, which can
skew results. Acknowledging that their list was not exhaustive, after examining a
substantial number of potential error sources and their rectification, Regan et al. (2002)
concluded that a single method to address model uncertainty did not exist.

It appears that model uncertainty cannot be fully quantified or qualified and many
models may never be validated to levels acceptable for all purposes. A model must be
judged based on its intended use, simplifying assumptions, and applicable domain
without extension unless it can be shown that this extension is scientifically feasible and

logical.

Project Objectives
o Objective 1: Develop a conceptual model and associated GIS framework for
Eurasian watermilfoil (Myriophyllum spicatum) habitat suitability.
e Obijective 2: Develop a local-scale model for M. spicatum presence in a single
lake.
¢ Obijective 3: Develop a regional-scale model for M. spicatum presence in a single
state.

e Obijective 4: Develop a national-scale model for M. spicatum presence.



Site location for the local-scale study was Pend Oreille Lake (Idaho). The
regional-scale studies were performed for the States of Minnesota and Wisconsin.

Chapters 2, 3, and 4 present the methods, results, and conclusions for the local,
regional, and national models, respectively. Chapter 5 serves as a summary and

presents future directions for this area of research.

Project Contribution

An understanding of the factors which allow invasive species such as Eurasian
watermilfoil to invade communities would improve the ability to eradicate these species.
Even if the goal is not eradication, providing some level of control would ease the
economic and ecological costs of Eurasian watermilfoil presence. As weed scientists,
ecologists, wildlife managers, and water quality professionals work to maintain
waterways, the GIS and GIS-modeling offers another tool in their arsenal. Predicting the
location and spread of these species will allow them to prioritize financial and manpower

resources, while simultaneously protecting many water resources.
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Figure 1.1. Example of a map algebra operation using addition (after Chrisman 2002).
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CHAPTER 2

LOCAL-SCALE MODEL: PEND OREILLE (IDAHO)

The abiotic components of the environment necessary for survival constitute the
habitat requirements for a species (Gillenwater et al. 2006). Species habitat
requirements are described by habitat factors, which cover the most essential habitat
characteristics of preferred habitats (Store and Jokimaki 2003). Geographic Information
Systems (GIS) are well suited for studies involving habitat modeling and delineation,
sometimes referred to as habitat suitability indexing (Gillenwater et al. 2006).
Geographic Information Systems also offer the advantage of being able to overlay layers
representing the spatial distribution of different environmental variables related to habitat
suitability and perform spatial operations on these layers (Gillenwater et al. 2006).
Linking habitat models with GIS represents a powerful tool in natural resource
management and associated fields (Boyce et al. 2002).

Jensen and others (1992) and Narumalani and others (1997) used GIS to
predictively model dominant freshwater macrophytes. They assumed that aquatic
macrophytes would be present if all hypothesized environmental constraint criteria could
be met. They concluded that the GIS techniques used could predict the current location
of freshwater aquatic macrophytes.

The objective of this research is to develop a predictive model for Eurasian
watermilfoil (Myriophyllum spicatum L.) that estimates presence of this species in a

single lake ecosystem. M. spicatum is an invasive, aquatic weed, introduced into the
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U.S. in the 1940s, currently occurring in almost every one of the United States. It is one
of the most troublesome submerged aquatic plants in North America (Smith and Barko
1990).

A lengthy discussion on the dynamics of water quality and submerged
macrophytes such as M. spicatum, is contained in Madsen et al. (2001). Water
movement and light availability are major influences on the growth of submerged
macrophytes. As a “canopy former,” M. spicatum places the majority of its biomass
disproportionally near the water surface. Research has shown that intermediate
currents and wave action favor dispersal of M. spicatum because waves can break up
canopy, spreading propagating fragments, without inducing plant mortality. A thorough
review of M. spicatum ecology is in Smith and Barko (1990). A summary of their
compiled data (Table 2.1) makes it is clear that M. spicatum has wide ranges of
tolerance for a variety of influences, and that there are few clear cut decision rules which

can be generalized about its preferences.
Methods and Materials

Site Description

The study site for this research is Pend Oreille Lake, and the outflowing Pend
Oreille River. Glacially-formed Pend Oreille is located in northern Idaho and is an
extremely deep, oligotrophic lake with more than 420 km? of surface water (including the
river). Itis fed by inflowing waters of the Clark Fork River. Approximately 27% of the
lake is considered littoral zone habitat and can support the growth of aquatic plants

(Madsen and Wersal 2008).
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Conceptual Model

Based on published information, a conceptual model (Fig. 2.1) was built to show
proposed predictor variables and interactions between variables. The conceptual model
was used to focus data selection, but several proposed variables were not used because
the data do not exist, were not easy to collect, or would not vary significantly in value
across a single lake.

Major areas of mesoclimate and geology, labeled “indirect variables” in the
conceptual model, would not be considerably different on a single lake, but would be of
importance on a much larger scale, such as a national model. However, bathymetry/
topography would vary greatly in a single lake, and given the depths of Pend Oreille, are
of immense importance in the model.

“Direct and resource variables” are of more immediate importance on a single-
lake scale. However, for these are the variables, the risk of multicollinearity exists. For
example, fetch is calculated from wind data. Thus both variables essentially yield the
same information, and should not both be present as predictors in the same model.
Certainly light availability, considered the most controlling factor, can be inferred from a
variety of variables including depth and algal growth.

Some variables are simply not available. Many studies cite sediment nutrients as
an important predictive mechanism. However, the expense both in time and money to
collect sediment data often precludes its use for many studies. Unless a researcher
makes a significant effort to obtain data for the specific project, it is not likely that the
data can be found for use in a GIS or that the data will be sampled in accordance with
the requirements of the project. Additionally, while drawdown has been shown to be a
somewhat effective control, this method is associated more with reservoirs and

waterbodies with water-level-control structures, making this impractical for many studies.
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Pend Oreille, however, is a lake with a water control structure and is drawn down each
winter. This affects the whole lake and thus would not be appropriate for a spatial
analysis because the measured value would not change across the lake.

Negative effects (Fig. 2.1) such as freezing are avoided by the timing and
location of the study. Information was recorded on native plant cover when the data set
was collected. Preliminary analysis indicated that plant cover was not useful for this

specific study, and thus was not included in further analysis.

Model Data Preparation

Spatial analysis using generalized linear models was conducted to estimate the
predictive probability for the presence of M. spicatum in Pend Oreille Lake and the
outflowing river. Predictor variables included water depth (hereafter depth), effective
fetch length (hereafter fetch), and distance from nearest M. spicatum population
(hereafter distance).

Data were split for separate analyses on Pend Oreille (Fig. 2.2). These areas
have been named “littoral” and “pelagic” to reflect perceived differences in zones. The
littoral zone contains the entire river and an upper portion of the lake where M. spicatum
was visibly present and water depth was shallow. This area represents a large area of
continous littoral zone. The majority of the lake is extremely deep and is thought to
prohibit M. spicatum colonization; thus, that area has been labeled as the pelagic zone.
Additionally, the littoral zone was grid-sampled, while the pelagic was not. It seems
unwise to perform a unified analysis on what are clearly different systems with different
sampling intensities, thus the division between zones for analyses. Hereatter, “littoral”

refers to the geographic area shown in Figure 2.2 unless otherwise stated.
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All interpolations performed on predictor variable data were done using ordinary
kriging with ArcGIS Geostatistical Analyst'. In several studies designed to evaluate the
various interpolation methods for aquatic ecosystem variables (e.qg., kriging, spline,
inverse distance weighted), kriging was generally regarded as the best option because it
produced the lowest mean square error (Bello-Pineda and Hernandez-Stefanoni 2007;
Valley et al. 2005). While this tool offers options for additional types of kriging, only
ordinary was applicable to the research problem because no a priori information
regarding the mean over the study area is required (Goovaerts 1997). Ordinary kriging
produces a linear prediction based on weighted averages and is intrinsically stationary
(i.e., assumes constant unknown mean and a semivariogram that is a function of
distance apart only) (Waller and Gotway 2004). The ArcGIS Geostatistical Analyst
contains options within ordinary kriging for anisotropy and specification of nugget. There
was no evidence that depth and fetch changed with direction, thus anisotropy was not
included. Further, in the areas investigated, due to the relative continuity of depth and
fetch, no nugget was necessary.

Water depth for the pelagic zone was interpolated from NOAA sounding data.
Bello-Pineda and Hernandez-Stefanoni (2007) noted that spherical models were found
to best fit the experimental semi-variograms and to best explain the spatial
autocorrelation present in the depth variable in their attempts to create a bathymetric
map, and preliminary data analysis showed that this was also the best option for depth
data from the NOAA sounding. Water depth for the littoral zone was collected in the field
and then interpolated. It was not possible to get one complete depth data set for the

entire study area.

L ESRI, 380 New York Street, Redlands, CA 92373-8100
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Fetch length was determined using methods outlined in the Shore Protection
Manual (USACE 1984). These methods were automated using Python scripts obtained
from USGS (Rohweder et al. 2008). Effective fetch gives a more representative
measure of how the wind governs the waves because it is a weighted distance of fetch
around a specified wind direction (Lehmann 1998). Effective fetch is calculated as

Ly = Zx; * cosY;/ZcosY;, (2.2)
where L, = effective fetch, x; = distance to land, and Y;= deviation angle. Nine radials
are used in the calculations for this study. In this instance the specified wind direction
and speed were chosen to represent the dominant speed and direction such as was
done by Narumalani et al. (1997) over the growing season of M. spicatum in Pend
Oreille Lake.

Distance was used in two ways. First, distance was used as a Boolean variable
which identified if the point was within 500 m of an existing population. The maximum
separation of 500 m was chosen because it represented the smallest possible distance
which could be used with a 250-m grid. Second, distance was used as an absolute
variable measured from the closest observed M. spicatum presence point. Madsen and
Smith (1997) noted that M. spicatum, although capable of spread by stolon and
fragments, predominately (74%) propagated via stolon production, indicating a
significant chance for localized spread.

Presence/absence data were obtained by field surveys conducted in summer
2007 (Madsen and Wersal 2008). Presence/absence data were collected using a plant
rake with a point intercept sampling method developed by Madsen (1999).

Data were re-sampled to a 250-m point grid for analysis in SAS. This size was
selected to match the point intercept sampling size, and was necessary to perform
analysis within a unified framework. Re-sampling and grid generation were done with
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Hawth'’s Analysis Tools in ArcGIS (Beyer 2004). To increase computational speed, only
points where water depth was less than 10 m were considered for model use,
representing the limit of preferred depth for M. spicatum reported in literature (Smith and
Barko 1990) and the maximum depth observed during data collection (J. Madsen,

personal communication).

Data Analysis

A wide range of statistical options for analysis exist, but the choice is driven
primarily by known vs. unknown parameters, distribution, and model use. Itis assumed
that the location of each observation is thought to influence the outcome, making the
problem inherently spatial. Tobler’s First Law of Geography (Tobler 1970) is often cited
in reference to spatial autocorrelation and postulates the level of correlation between
observations decreases with increasing distance. In traditional statistics it is assumed
that observations are independent and have normally distributed errors with mean zero
and constant variance. The independence assumption is violated when spatial data are
considered to be spatially autocorrelated. For this reason spatial statistical methods for
spatial data analysis are correct, in contrast to traditional methods. The challenge is
correctly modeling the spatial dependence so that it can be included in the analysis.

Initial models estimating the relationship between the presence of M. spicatum as
a linear function of depth, fetch, and distance were fit using SAS Procs LOGISTIC and
GLIMMIX2. From these models, residuals were computed. The residuals were then
used to determine an appropriate class of semivariogram models using Procs
VARIOGRAM and MEANS. Once it was determined a spherical semivariogram model
was fit best by the residual empirical semivariogram, Proc NLIN was used to obtain

parameter estimates for the semivariogram.

% SAS Institute Inc., 100 SAS Campus Drive, Cary, NC 27513-2414
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Five statistical models were considered for estimating the predictive probability of
the presence of M. spicatum in terms of the three predictors. The first was a traditional
logistic regression model. This model did not include a spatial autocorrelation structure,
but did include the distance variables. The remaining four models incorporated spatial
autocorrelation via a spherical spatial covariance function, and did not require either
distance variable. Specifically the four spatial models considered in this study were a (1)
binomial regression model with overdispersion, (2) a random effects model, (3) a
conditional spatial generalized linear mixed model (GLMM), and (4) a marginal spatial

generalized linear model (GLM).

GIS Analysis
SAS results were exported as .dbf files and imported as XY Events in ArcGIS.

Visual pattern analysis of the data was performed to determine if there were clear areas
of growth and potential spread (or conversely, exclusionary areas) based on clustered
areas of consistent probability. Boyce et al. (2002) suggested binning probabilities into
categories following model development. To better identify patterns, probabilities were
re-classified into two (low, high) and three (low, medium, high) ordinal categories of risk,
based on natural breaks, and corresponding value ranges for depth and fetch were

assigned to these categories so that M. spicatum habitat could be characterized.

Results
Disparate results between the littoral and pelagic zones are due to ecological
differences between these systems. For the littoral zone, intercepts are always positive,
while they are always negative for the pelagic zone. Depth was considerably different
between these two systems. Results suggest that for a considerably more static, deeper

body of water, location is the primary influencing factor. Specifically, proximity to
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shoreline appears to increase probability of presence for M. spicatum. However, this is
more likely a proxy for indicating those areas with shallow littoral zone, and necessarily
proximity to shoreline per se.

Depth and fetch were highly significant in every model considered. Regardless
of zone, depth had negative coefficients in every model, while fetch had positive
coefficients for every model. The negative coefficient of depth indicates that the deeper
the water, the less likely an occurrence of Eurasian Watermilfoil. On the other hand, the
higher values of effective fetch indicated Eurasian Watermilfoil was more likely to occur.
All four of the spatial models had a lower predictive probability error variance than the
logistic regression model. However, the additional complexity of spatial models requires
advanced computing algorithms for covariate parameter estimation. For this study, this
additional complexity resulted in a lack of convergence in some cases. In the littoral
zone, modeling efforts were enhanced by the added complexity introduced by these
spatial models.

Model outputs indicate predictive probabilities for the presence of M. spicatum at
each point in the study area. A spatial view of these probabilities created in ArcGIS

illustrates areas where M. spicatum is likely to occur based on existing depth and fetch.

Littoral

Myriophyllum spicatum was present in 64% of the sample set and absent in 36%
(Table 2.2). Despite repeated attempts, several models would not converge. For some
models attempts were made to run models as bivariate with both depth and fetch, and
as univariate models with depth or fetch. Convergence was never achieved for the
random effects model (bivariate). While the univariate models for random effects did
converge, alone, neither could explain the response variable sufficiently. Interaction

between depth and fetch is likely present, and thus should not be used alone to model
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response. The conditional spatial GLMM converged for both bivariate and univariate
models. However, a standard error could not be calculated for the range despite using
advanced techniques for estimating starting values and subsetting of data. Models for
which convergence was obtained include the traditional logistic regression, the binomial

regression model with overdispersion, and the marginal spatial GLM.

Logistic Regression

In this research problem, logistic models explain the trend in the probability of
occurrence of M. spicatum through the covariates depth and fetch. In this research
problem, response (Y) is binary (i.e., presence or absence), meaning that at any
particular location, the data have a Bernoulli distribution with probability of occurrence
u(xiq, xi2) in lieu of a normal distribution, where u(x;4, x;2) is also the mean of the
Bernoulli distribution. It is also the case that, at a particular location, the variance of the
process is u(x;1, xi2)[1 — u(xin xi2)].

The logistic regression model predicts the response variable (Y;) without regard
to any spatial location. This is the only model that does not have a spatial component.
Our logistic model explains the trend in the probability of occurrence of M. spicatum, via
the logit function, through the covariates depth and fetch. More specifically, Y; is

modeled with respect to depth (x; ;) and fetch (x;,) by the relationship

Yi = IOg {—M(xi'l,Xi’z) } + &

1-p(xi1.%02)
o (2.2)
= Bo+ BiXixt Boxiz + & i=1,2,..,1343.
A stepwise selection procedure was used, with depth entering the model first,

and fetch second. The resulting fitted model was

¥, = 1.9182 — 0.3893x; ; + 0.000297x;,,i = 1,2,..1343.  (2.3)
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The summary of the fit for this model indicates that intercept, depth, and fetch were
significant (Table 2.3). The Wald statistic reported represents the simplest and most
commonly used interval estimate for a fitted value in a logistic regression for the logit
function (Elith et al. 2002). Wald y? values (167.7, 189.7, and 64.0, respectively)
indicate that the full model explains the response variable markedly better than a
random variable that does not depend on values of depth and fetch.

Measures of correlation indicate that the model did a reasonable job of correctly
assigning predicted probabilities (Table 2.4). More frequently than not (c = 0.78),
predicted probabilities were assigned by the model that corresponded to the
observations (i.e., in any matched [0, 1] pair, the higher probability was predicted for the

location with 1, and not 0).

Binomial Regression with Overdispersion

In the binomial regression model with overdispersion model, the trend in the
probability of occurrence of M. spicatum is modeled via the logit function through the
linear relationship between the covariates depth and fetch. The spatial component is
indirectly modeled through the overdispersion parameter. Overdisperion refers to the
situation whereby the data are more dispersed than is consistent with a standard mean-
variance relationship. The addition of overdispersion is an attempt to quantify the
inexactness of the mean-variance relationship (Schabenberger and Gotway 2005). The
inexactness is thought to be due to spatial influence on the data.

For each location, s;, the binomial regression model with overdispersion is

described as
E[Y(sp)] = u(sy)

g(u(s)) = Bo + Bixi(s) + Baxa(sy) = logit[u(x;1,x;2)] (2.4)

o?u(s)l1 — ulsyl,
26
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where o2 represents the overdispersion parameter. The fitted model for binomial
regression with overdispersion was
logit[u(xi1,x;2)] = 1.9182 — 0.3893x,(s;) + 0.000297x,(sy). (2.5)

The overdispersion model was fitted using restricted maximum likelihood (Table
2.5). Avalue of ¢* > 1 indicates the presence of overdispersion. The large estimate of
the overdispersion parameter of 1.8701 in this analysis indicates that the data likely is
overdispersed. Thus the variability is not fully described by the predictors selected. It is
possible this is due to underlying spatial variability. The inclusion of the overdispersion
parameter should be an improvement over a traditional logistic model because there is
clearly unexplained variability that needs to be accounted for, even if its cause is not

identified.

Conditional Spatial GLMM

Spatial dependence can be explained partially or wholly by the proximity of
environmental predictor variables. Randomness inherent in depth and fetch due to
interpolation is accounted for through the normality assumption on the term S, having
spatial covariance structure, o,2R,(a;). Any remaining spatial dependence can be due
to underlying biotic processes or unobservable variables (Miller and Franklin 2006). The
conditional approach models the unobserved spatial process through the use of random
effects within the mean function and models the conditional mean and variance as a
function of both fixed covariate effects and these random effects resulting from the
unobserved spatial process. Variance is dependent on the mean with consideration for
overdispersion. The data are conditionally independent and spatial dependence is
addressed by a Gaussian random field (Schabenberger and Gotway 2005).

The conditional spatial GLMM is described as
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Z(s)| S(s;) ~ Bernoulli(u(s;)), independent

logit[u(s)] = By + Br1x1(sy) + B2x2(s)) + S(s;)

Var[Z(s)| S(s)] = o%Vyu (2.6)
S ~ N(0,02Rs(ay)).
The fitted model for conditional spatial GLMM was
logit[u(s;)] = 9.1117 — 1.7061x,(s;) + 0.001016x,(s;) + S(s;). (2.7)

For this model, spatial autocorrelation was modeled using the spherical model given by
Ry = 13O+ hza @.8)
0, otherwise.
The spherical covariance function specifically modeled the spatial dependency in the
data, partially due to kriging values of fetch and depth. The results of fitting this model
indicate that intercept, depth, and fetch are all significant (Table 2.6). The fitted

covariance structure was

S ~N(0,81.5731R;(1.0534)). (2.9)

Marginal Spatial GLM

The marginal spatial GLM incorporates a term which helps to describe the
inexactness or random behavior in depth and fetch due to interpolation. The marginal
spatial GLM differs from the conditional model in that the marginal mean is modeled as a
function of unknown fixed, non-random parameters (i.e., Bo, B1). It gives the same
inference as a conditional model, but with differing interpretation (Schabenberger and
Gotway 2005). The marginal spatial GLM is described as

E[Z(s)] = u(s)
logit[u(sp)] = Bo + Prx1(si) + Paxa(s) (2.10)

Var[Z(s)] = o2Vu+ o2V /2uR (a,)V /2.
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The results of fitting this model indicate that intercept, depth, and fetch are all significant
(Table 2.7). The fitted model was

logit[u(s;))] = 1.9182 — 0.3893x,(s;) + 0.000297x,(s,). (2.11)

GIS Analysis

Ordinal categories illustrated a clear trend (Fig. 2.3) with respect to depth and
fetch. In general, probabilities were negatively related to depth and positively related to
fetch. For many model outputs, in the 3-class system, high depth/high fetch was not
always present. Predicted probabilities, when mapped, showed a clear increase with

depth (Figs. 2.4, 2.5).

Pelagic
Myriophyllum spicatum was present in 9% of the sample set and absent in 91%
(Table 2.8). Despite repeated attempts and robust methods for estimating starting

parameter values, the conditional spatial GLM for the pelagic zone did not converge.

Logistic Regression

The logistic regression model predicts the response variable (Y;) without regard
for any spatial dependency. Y; is modeled with respect to depth (x;,) and fetch (x; ) by
Equation Set 2.2, with one exception: in the pelagic analysis, i = 1,2, ...,930.

As with the littoral analysis, a stepwise selection procedure was used, with depth
entering the model first, and fetch second. The resulting fitted model was

7, = —0.8995 — 0.3599x;; + 0.000179x; ,. (2.12)

The summary of the fit for this model indicates that intercept, depth, and fetch were
significant (Table 2.9). Wald y? values (5.3, 28.5, and 12.1, respectively) indicate that
the full model explains the response variable markedly better than a random variable

that does not depend on values of depth and fetch.
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Measures of correlation indicate that the model did a reasonable job of correctly
assigning predicted probabilities (Table 2.10). More frequently than not (c = 0.73),
predicted probabilities were assigned by the model that corresponded to actual real-
world observations (i.e., in any matched [0, 1] pair, the higher probability was predicted

for the location with 1, and not 0).

Binomial Regression with Overdispersion
The binomial regression model with overdispersion was performed using
Equation Set 2.4. As with the littoral analysis, the overdispersion model was fitted using
maximum likelihood (Table 2.11). The fitted model was
logit[u(x;1,xi5)] = —0.8995 — 0.3599x; (s;) + 0.000179x,(sy). (2.13)
The overdispersion parameter of 1.0320 in this analysis is likely not significantly greater
than 1, and thus overdispersion may not be occurring. In this event, there would be no

need to include this more complex model over the logistic regression model.

Random Effects

The random effects model is a standard bivariate binomial regression model that
incorporates random effects to model the spatial dependence. The random effects
model is described by

Y(s;)| S(s;) ~ Bernoulli(u(si)), independent

logit[u(sp] = Bo + Brx1(s) + Boxa(s) + S(sp)
(2.14)
Var[Z(s)| S(s)] = 6% Vu
S~N(0,0%, 1)
The results of fitting this model indicate that intercept, depth, and fetch are
significant (Table 2.12). The fitted model was
logit[u(s;)] = —8.1978 + —1.2530x;(s;) + 0.000680x,(s;) + S(s;). (2.15)
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Marginal Spatial GLM

The marginal spatial GLM is described by Equation Set 2.10. The results of
fitting this model indicate that intercept, depth, and fetch are significant (Table 2.13).
The fitted model was

logit[u(s;)] = —1.3255 — 0.2329x,(s;) + 0.000112x,(s;) (2.16)

GIS Analysis

Ordinal categories produced mixed results, and were deemed not valuable to
data analysis. In general, probabilities were disparate and no clear patterns could be
detected for any of the models with regard to both the two- and three-class systems. For
many model outputs, the range of values was so small that graphs were of limited utility
for illustration purposes, and thus they are not included. Predicted probabilities were
low, except in the shallowest areas (Figs. 2.6, 2.7). When higher probabilities (> 0.50)
were compared with the true, measured, littoral zone from Pend Oreille (Fig. 2.8) it
appears that even when light, which is traditionally the most limiting factor, is available,

depth and fetch will still control the ability of M. spicatum to establish.

Discussion

Multiple justifications can be made about which model is “best”. It is improper to
report traditionally-interpreted metrics like R? because R? is best interpreted in the
context of linear models with independent errors — both naive assumptions in our
context. Consequently, it's not clearcut to compare a single reported value for each
model and say which one is “best”.

In this instance the most-defensible position is that the simplest model is best.
This theory is called “Occam’s Razor” or the “Principle of Parsimony.” Rules of

parsimony dictate that when two or more models are competitive, then the simplest
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model should be used. Romero-Calcerrada and Luque (2006) reported that simpler
models were preferred for their wider applicability and better overall prediction of species
presence. Therefore the added complexity of a robust spatial model for the pelagic zone
is not warranted, and the basic logistic model will suffice. For the littoral zone, the
selection would be the overdispersion model. It did prove to be superior to the logistic
regression, and when compared to the competing, more complex spatial models, it is the
simplest choice.

The alternative argument is that it is irresponsible to recommend a model which
knowingly omits information about a system, regardless of simplicity. The more explicit
spatial models take into account variation due to location which is ignored in the logistic
model. There is variability accounted for in the random effects model and conditional
spatial GLMM due to random effects in the predictors. In this instance, added
computational time and complexity are worth the added effort to produce a more
“complete” model.

The amount of zeros (absence) in a dataset influences the failure rate for models
relying on fixed effects. It is possible in this study, given the high percentage of zeros in
the pelagic zone, that these models were limited in their usefulness from the onset, and
might yield significantly different results in a study with a large percentage of presence
points.

By definition a true pelagic zone would not contain aquatic plants. It is possible
that trying to model presence in this habitat would not be possible in practice because
the data create a situation for which a realistic model would never converge. Due to the
lack of continuous true littoral zone, the model is never able to completely close around

the pelagic zone.
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Conclusions

Based on the results seen in this study, robust spatial models are more useful in
modeling smaller, shallower, more dynamic systems. Depth and fetch were useful in
predicting the presence of M. spicatum, but were not as significant in more robust
models for the pelagic zone. In these systems, location only has more explanatory
ability than spatial covariance structures. The littoral zone showed a clear trend of more
frequent presence in low depth, high fetch areas. These trends were not as clear for the
pelagic zone. However, the coefficients for the pelagic zone models indicate that the

same trend should occur.
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Figure 2.3. Summary of probabilities for marginal spatial GLMM on the littoral zone
for two- and three-class ordinal categories (X-axis). Bar ranges run
from the minimum to the maximum value for each ordinal category;
values on the Y-axis reflect pr%%ability.
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Legend

¢ Probability > 50

B Littoral Zone

Pelagic Zone

Figure 2.8. True littoral zone for Pend Oreille lake with points predicted at greater
than or equal to 50% probability of being suitable M. spicatum habitat.
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Table 2.2. Frequency table of presence of M. spicatum on Pend Oreille littoral zone.

M. spicatum Status Frequency Percent
Absent (0) 488 36.34
Present (1) 855 63.66
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Table 2.3. Results of logistic regression model for M. spicatum on Pend Oreille littoral

zone.

Parameter Degrees of Estimate Standard Wald 2 p-value
Freedom Error

Intercept (Bo) 1 1.9182 0.1481 167.7057 < 0.0001

Depth (1) 1 -0.3893  0.0283  189.6671 < 0.0001

Fetch (B2) 1 0.000297 0.000037 64.0487 < 0.0001
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Table 2.4. Measures of correlation from logistic regression model for M. spicatum on
Pend Oreille littoral zone.

Percent Concordant 77.5 Somers’ D 0.555
Percent Discordant 22.0 Gamma 0.558
Percent Tied 0.5 Ta 0.257
Pairs 417,240 o 0.778
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Table 2.5. Results of binomial regression model with overdispersion for M. spicatum
on Pend Oreille littoral zone.

Parameter Estimate  Standard t p-value
Error

Intercept (Bo) 1.9182 0.2026 9.47 < 0.0001

Depth (B1) -0.3893  0.03866 -10.07 < 0.0001

Fetch (B2) 0.000297 0.000051 5.85 < 0.0001

Overdispersion (¢°)  1.8701
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Table 2.6. Results of conditional spatial GLMM for M. spicatum on Pend Oreille littoral

zone.

Parameter Estimate Standard t p-value
Error

Intercept (Bo) 9.1117 0.6105 14.92 < 0.0001

Depth (B1) -1.7061  0.1064 -16.04  <0.0001

Fetch (B2) 0.001016 0.000132 7.72 < 0.0001

Variance (%) 81.5731  3.2593

Residual (6% 0.000417 0.000046

Range (am) 1.0534
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Table 2.7. Results of marginal spatial GLM for M. spicatum on Pend Oreille littoral

zone.

Parameter Estimate Standard Error t p-value

Intercept (Bo) 1.9182 0.2026 9.47 <0.0001

Depth (B1) -0.3893  0.03866 - <0.0001
10.07

Fetch (B2) 0.000297 0.000051 5.85 < 0.0001

Variance (%) 1.8699 0.07228
Residual (5;2)  0.000187 0.002598

Range (o)
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Table 2.8. Frequency table of presence of M. spicatum on Pend Oreille pelagic zone.

M. spicatum Status Frequency Percent
Absent (0) 843 90.65
Present (1) 87 9.35
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Table 2.9. Results of logistic regression model for M. spicatum on Pend Oreille pelagic

zone.
Parameter Degrees  Estimate Standard ~ Wald y? p-value

of Error

Freedom
Intercept (Bo) 1 -0.8995 0.3923 5.2561 0.0219
Depth (B1) 1 -0.3599  0.0674 28.5205 <0.0001
Fetch (B2) 1 0.000179 0.000052 12.0954 0.0005
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Table 2.10. Measures of correlation from logistic regression model for M. spicatum on
Pend Oreille pelagic zone.

Percent Concordant 72.1 Somers’ D 0.451
Percent Discordant 27.1 Gamma 0.455
Percent Tied 0.8 1, 0.077
Pairs 73,341 c 0.725
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Table 2.11. Results of binomial regression model with overdispersion for M. spicatum
on Pend Oreille pelagic zone.

Parameter Estimate Standard t p-value
Error

Intercept (Bo) -0.8995  0.3986 -2.26 0.0243

Depth (B1) -0.3599  0.06846 -5.26 <0.0001

Fetch (Bo) 0.000179 0.000052 3.42 0.0006

Overdispersion (¢°)  1.0320
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Table 2.12. Results of random effects model for M. spicatum on Pend Oreille pelagic

zone.

Parameter Estimate Standard Error t p-value
Intercept (Bo) -8.1978 1.2516 -6.55 < 0.0001
Depth (B1) -1.2530 0.2097 -5.97  <0.0001
Fetch (B.) 0.000680 0.000166 410  <0.0001
Variance (cs?) 2.82x10°

Residual (6% 76.3477 3.5646
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Table 2.13. Results of marginal spatial GLM model for M. spicatum on Pend Oreille

pelagic zone.
Parameter Estimate Standard Error t p-value
Intercept (Bo) -1.3255 0.4874 -2.72 0.0067
Depth (B1) -0.2329  0.07844 -2.97 0.0031
Fetch (B2) 0.000112 0.000069 1.63 0.1030
Variance (c¢?) 0.6775 0.05145
Residual (1% 0.2514 0.5866
Range (om) 999.56 153.10
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CHAPTER 3

REGIONAL-SCALE MODEL: MINNESOTA

Development of ecological models provides a simple, direct method by which to
predict presence, absence, and spread of species in given environments. Models can
be used to highlight areas of concern with regard to invasive species such as Eurasian
watermilfoil (Myriophyllum spicatum L.) because they can indicate areas susceptible to
future invasion (Buchan and Padilla 2000). Roley and Newman (2008) reported that up
to 4,700 lakes in Minnesota are uninfested but susceptible to invasion by M. spicatum.
Invasions are often found providentially by state agencies or private citizens (Roley and
Newman 2008). Thus a mechanism for directing scouting efforts could allow for better
cataloging of current populations of this and other invasive species, which can mean
better chances at early detection and eradication.

One method that can be used in modeling habitat is Mahalanobis distance.
Mahalanobis distance is a dimensionless measure of the distance in multivariate space
from the ideal ecological niche (Calenge et al. 2008; Knick and Rotenberry 1998). A
special case of Mahalanobis distance can be used in a set of “presence only” methods
for predictive habitat modeling. The majority of species data available tends to be
presence only (Zaniewski et al. 2002). This is particularly true of invasive species as
many data collection efforts are focused on detection. These data are often recorded

without planned sampling schemes so that absences cannot be inferred (Elith et al.
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2006). Regardless, Elith et al. (2006) reported that in many instances it was possible to
achieve valid results using some presence-only methods.

In a maximum entropy analysis (hereafter “maxent”), areas without values are
not automatically considered absences, which reduces bias from inclusion of false
absences (Elith et al. 2006; Phillips et al. 2006). Maxent utilizes maximum entropy to
make predictions from incomplete data, which in invasive species work could be
unsampled areas. It can be used to estimate species distribution by finding the
probability distribution that is closest to uniform (i.e., “maximum entropy”) for a study
area under a specified set of environmental constraints (Phillips et al. 2006). The
maxent statistic weights each variable by a different constant where the value of each
weight corresponds to the importance or the magnitude of the variable to the system’s
entropy. The probability distribution is estimated by iteratively altering one weight at a
time to maximize the likelihood of the occurrence dataset. To avoid overfitting, the
estimated distribution is constrained so that the average value for a given predictor is
close to the empirical average rather than equal to it (Hernandez et al. 2006). In
comparison studies, maxent outperformed other accepted quantitative methods for
ecological modeling (Hernandez et al. 2006; Phillips et al. 2006).

An advantage of Mahalanobis, however, is that it assumes a species will
distribute itself optimally within the available habitat. This method is thus ideal for spatial
studies involving GIS because it partially accounts for the influences of spatial
autocorrelation, interaction between variables, and covariance (Knick and Rotenberry
1998).

In general, most models assume that species distribution is a function of
environmental conditions (Guisan and Zimmerman 2000). Some research (Cheruvelil

and Soranno 2008) has reported that anthropogenic landscape features may outweigh
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natural landscape influence in importance. In a study focusing specifically on detection
of M. spicatum in Minnesota lakes, Roley and Newman (2008) found only physical
habitat variables to be of significance despite including variables to serve as surrogates
for human vectoring (i.e., boat ramps).

Cheruvelil and Soranno (2008) examined the ability of lake and landscape
features to predict various metrics of macrophyte cover. They used combinations of
variables including road density and lake hydrology, among other factors, in their
determination that anthropogenic landscape features may outweigh natural landscape
influence in importance. Conversely, Buchan and Padilla (2000) reported that
anthropogenic variables were poorer predictors of M. spicatum presence. Both papers
point to exceptions, however, that can explain these divergent conclusions. Cheruvelil
and Soranno (2008) note that growth form affected variable selection, noting specifically
that M. spicatum cover required the most complex model. Buchan and Padilla (2000)
follow up their conclusions by stating that statistical significance of predictor variables
may not equate to ecological significance. Thus anthropogenic variables may or may
not be of use in a model, but intuitively are included because invasion ecology indicates

these are key influences.

Methods and Materials
The states of Minnesota and Wisconsin were divided into a 500 m grid using
ArcGIS® and Hawth’s Tools (Beyer 2004). Non-water areas were removed from the
sample. Data for analysis were obtained from the Minnesota Department of Natural

Resources Data Deli* and researchers at the University of Minnesota (Roley and

3 ESRI, 380 New York Street, Redlands, CA 92373-8100
*http://deli.dnr.state.mn.us/index.html.
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Newman 2008). These included Secchi depth, total alkalinity, Carlson’s Trophic State
Index, lake size, distance from lake access (i.e., boat launch), distance from road,
distance from reported bass habitat, and M. spicatum presence. Data were weighted for
analysis using flow accumulation rates obtained from the National Hydrography Dataset

Plus®.

Mahalanobis

A Mahalanobis analysis was performed on the dataset using the Mahalanobis
extension (Jenness 2003) for ArcView 3.x°. All variables were included in the analysis.
The Mahalanobis extension calculates distance using the following equation (Jenness

2003)
D2 = (x —m)TC 1 (x —m), (3.1)

where x = vector of data, m = vector of mean values of x, C* = inverse covariance matrix
of x, and T indicates transpose.

D? is approximately x?.1. It is only exactly if all x are N(M,%). P-values for a y?
distribution with k-1 degrees of freedom (where k = the number of predictor variables)
were derived Mahalanobis distances and re-classed using cut-off values of 0.5 (Fig 3.1)
and 0.4. The value of 0.5 is a standard choice, and 0.4 was selected because this was
the natural break in the data. Values greater than or equal to 0.5 and 0.4, respectively,
were considered presence when the data were re-classified, with values less than these
thresholds considered absence. Re-classed output was compared to known values of
presence and absence for validation. Validation included calculating Cohen’s kappa,

specificity, and sensitivity (Hirzel et al. 2006).

®> Horizon Systems Corporation, P.O. Box 5084, Herndon, VA 20170
® ESRI, 380 New York Street, Redlands, CA 92373-8100
60



The Mahalanobis methods were repeated using combined data from Wisconsin
and Minnesota. Data for Wisconsin were obtained from the Wisconsin Department of
Natural Resources’ and USGS Nonidigenous Aquatic Species database®. These

included the same variables used for the Minnesota study.

Maxent
The maxent statistic (q;) was calculated using the Maxent software®. Only the
state of Minnesota was considered. Maxent is defined by the following equation (Phillips

and Dudik 2008)
1
() = - exp{Xj_i 4 (0}, (3.2)
where for each j,j =1, ...k, A; represents the weight, f is the jth feature at x, x is

presence and Z, is a normalizing constant forcing the sum of the entropy components to
one.

In addition to maps of predicted suitability, the Maxent software produces a
receiver operating characteristic (ROC) curve, information regarding the relative
contribution of each variables, jackknife tests of variable importance, and response
curves. From a GIS standpoint, the map provides a useful tool in the production of a
spatially-referenced continuous variable ranging from 0 tol where higher values indicate
higher relative suitability (Gibson et al. 2007). These values can be thresholded and

binned into any number of ordinal categories for further analysis.

"http://dnr.wi.gov/
® http://nas.er.usgs.gov/

® http://www.cs.princeton.edu/~schapire/maxent/
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Results

Mahalanobis

The Kappa statistic (K) measures the proportion of agreement between
Mahalanobis predicted and the field observed presence and absence values, removing
that part of agreement that is due to chance (Feuerman and Miller 2005). Despite
repeated modifications to variable combinations, the results of K for Minnesota alone
were below acceptable thresholds (typically 0.7 in literature). The highest K obtained
was 0.1, which would not be considered a success under any circumstances.
Calculated specificity and sensitivity were 0.75 and 0.55, respectively (Table 3.1). This
indicates that there is high probability of correctly identifying an absence, but only a
marginally better than random chance of correctly identifying a presence. Feuerman and
Miller (2005) have shown that when both specificity and sensitivity are less than 0.875, it
is not possible to obtain a K of 0.75 or greater (which indicates good to excellent
agreement between model and observations).

The combined data for Minnesota and Wisconsin produced a K of 0.54, with
specificity and sensitivity of 0.94 and 0.54, respectively (Fig. 3.2, Table 3.2). Again, K
was below the standard threshold albeit substantially improved from the Minnesota
alone analysis. Specificity and sensitivity values again indicate a high probability of
correctly identifying an absence, but only a marginally better than random chance of

correctly identifying a presence.

Maxent

An analysis based on maxent resulted in a highly predictive model for Minnesota.
The ROC curve (Fig. 3.3) showed an area under the curve (AUC) of 0.968. AUC
represents the probability that a randomly chosen presence site will be ranked more
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suitable than a randomly chosen absence site (Phillips and Dudik 2008) and values >
0.9 are considered to be highly accurate (Manel et al. 2001).

The most useful variable in terms of explanatory power was bass habitat (45%)
followed by Carlson’s TSI (28%). Lake access was shown to be least useful (0.6%),
which confirms what has been shown in other studies (Buchan and Padilla 2000; Roley
and Newman 2008) with regard to anthropogenic contributions to presence. Spatially it
appears the most suitable areas are clustered near the major metropolitan area of
Minneapolis-St. Paul (Fig. 3.4).

A causal link may not exist between bass and M. spicatum, but empirically bass
habitat would be an excellent predictor of M. spicatum presence. Both species prefer
lakes dominated by a shallow littoral zone with abundant aquatic plant habitat. It is no
secret on popular fishing press and natural resource agency websites that bass and M.
spicatum are often co-located. This is particularly problematic because it creates friction
between groups wishing to eliminate the threat posed by this invasive weed and bass
fishing enthusiasts who equate M. spicatum mats with quality fishing. Guntersville Lake
(Alabama) is a legendary bass fishing lake, largely due to its much-touted M. spicatum
(Felsher 2007; Russow 2010). In other areas of the country many comments are made
about how the bass fishing was better when M. spicatum was more prevalent
(Anonymous 2002; Knapp 2004) or how the introduction of M. spicatum has been a
positive step for the bass fishing community (Vick 2003). This problem is exacerbated
by the disturbance (and subsequent fragmentation) caused by fishermen and their boats
and also by the purposeful introduction of M. spicatum to a waterbody in the hopes of
creating more bass habitat. Frequently the information given on forums does little to
discourage spread and introduction. It is not difficult to find comments on forums

(http://www.HotSpotOutdoors.com, accessed Jun 16, 2010) such as “Milfoil creates
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awesome fish habitat while clearing up the water at the same time” and “I think people
know what milfoil and zebra mussels are, but do we really know the true effects they can
have -- both positive and negative? | know of the potential positive effects, and | have
'heard’ of the potential negative effects.” These comments illustrate that there is a
definite culture that not only identifies bass habitat with M. spicatum, but encourages the

growth of one species to support the other.

Discussion

Despite its prominence in ecology research, utility of Cohen’s K is under some
debate. A significant number of absences have been recorded for Minnesota. While the
modeling methods used in these analyses do not rely on these data, the validation did
utilize these figures. Therefore it seems fair to acknowledge potential limitations of these
metrics.

Manel et al. (2001) reviewed published ecological literature and determined that
many studies make no effort to evaluate the results, and when results are evaluated,
performance metrics are potentially biased by the number of presence samples included
in development of the model. Their findings indicated that specificity and sensitivity were
influenced by prevalence, but that K was not. Vaughn and Ormerod (2005) raised
concerns about K regarding the definition of “chance” and then pointed to specificity and
sensitivity as better alternatives which are “independent of prevalence”. However,
McPherson et al. (2004) reported that changes in prevalence affected all three metrics.
Changes in prevalence affected K, with deviations from optimum prevalence resulting in
bias with low prevalence decreasing K values and high prevalence increasing K values.
Higher prevalence also led to better sensitivity but poorer specificity. McPherson et al.

(2004) cautioned that these biases made kappa inappropriate for comparisons between

64



models performed in varying regions of on varying species, stating that this issue had
not been addressed by current (at that time) ecological literature.

In contrast, ROC curves are thought to be uninfluenced by prevalence
(McPherson et al. 2004; Manel et al. 2001). Manel et al. (2001) reported that K was a
more robust indicator of model performance, but they detected no prevalence bias in
their analysis.

The dataset used in this analysis was considered to have sufficient sample points
with more than reasonable spatial distribution. Although results from a Mahalanobis
analysis may not be reasonably validated by chosen metrics, results from a maxent
analysis indicate that a model can be formed for this dataset that is not influenced by
prevalence bias because maxent analysis do not require absence data. Further, given
the size and breadth of input data it is not likely the results are influenced by a “detection
bias” which can sometimes be the case, particularly with invasive species.

Based on results from the Mahalanobis analysis, it appears possible the
fundamental niche for M. spicatum is much larger than the realized niche. Roley and
Newman (2008) reported that over 4,700 waterbodies were susceptible but not infested
with M. spicatum. It is possible with more time that M. spicatum will spread to these
areas if conditions are favorable. Roley and Newman (2008) also reported that
infestations appeared to spread out from the point of initial introduction, with lakes
closest to the initial invasion more likely to be positive for M. spicatum. This could be
further support that proliferation in Minnesota is a function of time, and not a funcation of
the natural characteristics of the waterbodies themselves precluding infestation by M.
spicatum.

Additionally, the State of Minnesota’s Department of Natural Resources has an

active education campaign to prevent and limit spread of milfoil. These efforts include
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billboards, radio and television advertising, public service announcements, printed
materials, press releases, media contacts, newspaper ads, staffing at sports shows and
other major events, educational displays and exhibits, informational signs at public water
accesses, presentations to the public, and training all designed to increase awareness
and limit introductions of M. spicatum. Surveys to quantify effectiveness indicate that
these efforts are producing the desired results with 97% of boaters in one survey
indicating they were aware of the State’s invasive species laws, and 99% indicating the
campaign had led them to action (Invasive Species Program 2010).

Unrelated to niche mechanics, this educational campaign could be artificially
limiting the species’ ability to spread, and would probably not be captured by the model
input variables. Management strategies employed as a result of early detection and
prevention campaigns could also limit M. spicatum’s ability to spread into some areas
that are suitable habitat from a modeling standpoint.

The inclusion of Wisconsin in a second, combined Mahalanobis method was
done to test which explanation was more likely. Wisconsin was selected more for its
characteristics, not all of which are a function of its proximity to Minnesota. Wisconsin
has a comparable environment; however, Wisconsin has had populations for M.
spicatum for a much longer period of time. The earliest populations of M. spicatum in
Wisconsin are from the late 1960’s (Buchan and Padilla 2000), while the earliest
population in Minnesota is from the late 1980’s (Roley and Newman 2008). Wisconsin

has also not had the aggressive education campaign of Minnesota.

Conclusion
From these results it may be concluded that (1) Mahalanobis is an inappropriate
choice for modeling M. spicatum habitat, or (2) that the metrics used to evaluate the

Mahalanobis model were inappropriate. Cohen’s K values indicate that the calculated
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model would have no accuracy for predicting habitat. Perhaps this is due to bias from
prevalence, which has been shown to be troublesome for Cohen’s K, specificity, and
sensitivity in previous research. Alternatively, and more likely, the Mahalanobis model
could indicate that Eurasian watermilfoil may occupy only a small proportion of the
habitat available in Minnesota. This conclusion is supported by results of the combined
analysis of Minnesota and Wisconsin and results from the Mahalanobis analysis, in
addition to other literature (Roley and Newman 2008).

Results of the maxent analysis indicate that M. spicatum habitat is correctly
characterized by the maxent model or that M. spicatum has not reached all potential
habitats due to some limiting factor, possibly time. Myriophyllum spicatum habitat is
influenced primarily by bass habitat and trophic status. While it is true that M. spicatum
does provide cover for bass, the coincidence in finding M. spicatum and bass is likely
due to their favoring of similar conditions. Both prefer the shallow areas of highly
productive lakes with similarly mesotrophic conditions.

Lack of M. spicatum spread into the fundamental niche may be a simple function
of time for dispersal but it is not possible with current data to validate this hypothesis.
Any data available would likely state the year M. spicatum was found, which may or may
not be a valid indicator of when M. spicatum appeared given the aforementioned
providential nature of species’ discovery.

Based on the results seen from the joint analysis of Minnesota and Wisconsin, it
appears the most likely scenario is that M. spicatum has not reached its maximum
habitat potential in Minnesota, and in agreement with the findings of Roley and Newman
(2008) will continue to find suitable habitat in Minnesota when allowed to spread to new

areas.
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Figure 3.1. Results of Mahalanobis analysis using 0.5 as the threshold for
presence/absence of M. spicatum in Minnesota.
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Figure 3.4. Results of maxent analysis for prediction of M. spicatum in Minnesota.
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Table 3.1. Validation results comparing presence (P) and absence (A) for field
(observed) and predicted from Mahalanobis model for prediction of M.
spicatum in Minnesota.

Field

P A

Mahalanobis P 244 1478

A 81 1842
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Table 3.2. Validation results comparing presence (P) and absence (A) for field
(observed) and predicted from Mahalanobis model for prediction of M.
spicatum in Minnesota and Wisconsin.

Field

P A

Mahalanobis P 558 474

A 172 2846
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CHAPTER 4

NATIONAL-SCALE MODEL

Previous work in habitat modeling predominately focuses on identifying and
delineating potentially suitable habitats for desirable species. Less focus has been given
to using predictive modeling for species control or proactive, preventative practices for
troublesome species, although interest in this area is increasing. Modeling of this sort
could be especially useful for economically important invasive pest species (Peterson et
al. 2003). Managers and researchers may find many benefits in large-scale solutions for
identifying habitat that are neither labor intensive nor prohibitively time-consuming
(Dettmers and Bart 1999) as these solutions may provide not only location information,
but also help guide containment boundaries, identify priority areas for early detection
and rapid response, and monitor control strategies and cost-effectiveness in different
states. Large-scale national models could also be used to guide higher-resolution
models for smaller extents (Morisette et al. 2006).

Morisette and others (2006) developed a nationwide habitat map for tamarisk
(Tamarix spp.). Environmental layers used were those which covered large areas,
including the land-cover component from NASA’s MODIS instrument. Hirzel and Le Lay
(2008) reported that land cover data have the most diverse influence on ecological
niche, but were quick to add these data may not be well suited for ecological purposes

because they are designed for a different purpose and suffer from poor spatial accuracy,
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precluding their use in fine-scaled modeling. However a national model is not likely to
be at the level of scale where slight locational accuracy is an issue.

Climate variables are also thought to drive species distribution, particularly at
large extents. Climate is thought to affect plants in particular because, unlike animals,
they cannot avoid adverse climates by sheltering or migrating (Hirzel and Le Lay 2008).
Neilsen et al. (2008) constructed both national and regional models for the invasive
ornamental, Heracleum mantegazzianum. Climate was shown to be significant in the
national model for explaining distribution. Certainly the preponderance of studies on
species range changes in response to climate change indicates that climate is a large
driver in habitat determination.

Thuiller et al. (2004) assessed the influence of land cover and climate on species
distribution in Europe. They concluded that climate was the major driver for both
species distribution and land cover. However they also found that land cover inclusion
improved the explanatory power of their models despite this. In larger-scale models, this
effect was negligible unless the climate variables had poor predictive power. This was
possibly due to correlation between climate and land cover, with exceptions occurring in
specific classes where land cover was not as influenced by climatic conditions (i.e.,
inland water and arable land).

Many considerations go into developing a national-scale model covering a large
geographic extent and requiring a large volume of data. In previous studies (Peterson et
al. 2003) it has been noted that processing time was a bottleneck in model runs for
predicting potential invasive distributions of plant species. Morisette and others (2006)
produced their national map at a scale of 1 km, which was felt to be the resolution that fit

both the available data and the practical constraints of computation.
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Morisette et al. (2006) collected data for their tamarisk model from 45 disparate
databases and additional geospatial information that was found via web search. In other
studies (Peterson et al. 2003), another shortcoming of collecting data on-line was related
to the availability of herbarium records and other forms of presence data in digital form
on the web. This is applicable to many studies on invasive species, as the majority of
available data is frequently presence-only and often comes from herbarium records.

The objective of this study is to develop a national model for the predicted habitat
of Eurasian watermilfoil (Myriophyllum spicatum L.), an invasive, aquatic weed. This
non-native weed was introduced into the U.S. in the 1940s, with the earliest herbarium
records coming from Washington D.C. (1942), Arizona (1945), California (1948), Ohio
(1949) (Couch and Nelson 1985). Myriophyllum spicatum currently occurs in almost

every state, but some areas have more pronounced problems with this weed.

Methods and Materials

Each county in the United States was described by a set of predictor variables.
These variables included those which were thought to vary across broad areas and
influence suitability of habitat. Variables were hardiness zones, land cover, average
precipitation, and percent water. All data were collected from publicly available sources
of GIS data. Hardiness zones were obtained from the USDA (Cathey 1990). Land
cover data was downloaded from the USGS National Land Cover Database (Homer et
al. 2004). Precipitation data represented 30-yr average monthly precipitation and was
compiled by the PRISM climate group at Oregon State University (PRISM climate group,
2006). Data on the percentage of water surface per county (hereafter “percent water”)
were acquired from NOAA (Anonymous, 1999). Presence data were collected using

several publicly available web databases. These included the Invasive Plant Atlas of
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New England (IPANE)', the Invasive Plant Atlas of the Midsouth (IPAMS)*!, USGS
Nonindigenous Aquatic Species (NAS) database'?, and USDA Plants database®®.
Presence data also came from unpublished field surveys.

Data were compiled in ArcGIS* so that each county had a value for each
variable. These data were joined to county centroids so that (x,y) coordinates could be
determined for input into maxent, which requires a latitude, longitude pair for each
presence entry. Although a county-level analysis is not ideal, compiling data from
various states showed a range of data assembly level, with many states reporting data
on a county-level only. Thus a “lowest useable unit” of county was adopted for analysis.

The maxent statistic (q;) was calculated using the Maxent software’®. Only the
state of Minnesota was considered. Maxent is defined by the following equation (Phillips

and Dudik 2008)
1
p(x) = 7 eXp{Z;Ll A f; (X)}, (4.1)
where for each j,j =1, ...k, A;j represents the weight, fi is the jth feature at x, x is

presence and Z, is a normalizing constant forcing the sum of the entropy components to

one. Maxent allows for both categorical and continuous predictor variables. In the
analysis hardiness zones and landcover are used as categorical, while precipitation and

percent water are continuous variables.

% | pANE, http://nbii-nin.ciesin.columbia.edu/ipane

1 IPAMS, http://www.gri.msstate.edu/ipams/

12 USGS NAS database, http:/nas.er.usgs.gov

13 USDA PLANTS database, http://plants.usda.gov

“ ESRI, 380 New York Street, Redlands, CA 92373-8100

' http://www.cs.princeton.edu/~schapire/maxent/
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In addition to maps of predicted suitability, the Maxent software produces a
receiver operating characteristic (ROC) curve, information regarding the relative
contribution of each variables, jackknife tests of variable importance, and response
curves. From a GIS standpoint, the map provides a useful tool in the production of a
spatially-referenced continuous variable ranging from 0 tol where higher values indicate
higher relative suitability (Gibson et al. 2007). Another benefit is that these values can
be thresholded and binned into any number of ordinal categories for further analysis.

Maxent utilizes maximum entropy to make predictions from incomplete data. It
can be used to estimate species distribution by finding the probability distribution that is
closest to uniform (i.e., “maximum entropy”) for a study area under a specified set of
environmental constraints (Phillips et al. 2006). The maxent statistic weights each
variable by a different constant where the value of each weight corresponds to the
importance or the magnitude of the variable to the system’s entropy. The probability
distribution is estimated by iteratively altering one weight at a time to maximize the
likelihood of the occurrence dataset. To avoid overfitting, the estimated distribution is
constrained so that the average value for a given predictor is close to the empirical
average rather than equal to it (Hernandez et al. 2006). In comparison studies, maxent
outperformed other accepted quantitative methods for ecological modeling (Hernandez
et al. 2006; Phillips et al. 2006). A major advantage of maxent over many popular
methods is that areas without values are not automatically considered absences, which
reduces bias from inclusion of false absences (Elith et al. 2006; Phillips et al. 2006).
Graham et al. (2007) concluded that maxent experienced no decline in performance due
to errors in spatial accuracy when compared with other model techniques, also making it

an appropriate choice for this study since data were not collected specifically for the
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purpose of this study and it has been argued that landcover data suffered from spatial

inaccuracy (Hirzel and Le Lay 2008).

Results and Discussion

The maxent analysis resulted in a highly predictive model. Maxent was run with
different combinations of the selected variables until the highest area under the curve
(AUC) for the ROC curve could be obtained. A ROC curve is plotted by placing all
sensitivity values on the y-axis against their equivalent (1-specificity) values on the x-
axis (Miller 2005). The AUC statistic represents the probability that a randomly chosen
presence site will be ranked more suitable than a randomly chosen absence site (Phillips
and Dudik 2008). AUC is a measure of overall accuracy and is independent of
prevalence, making it well-suited for studies on vegetation modeling (Miller 2005). The
model which produced the best ROC curve included all 4 variables. The ROC curve
(Fig. 4.1) showed an area under the curve (AUC) of 0.792. AUC values > 0.7 indicate
useful application (Manel et al. 2001), thus the model was considered to be good. The
AUC of 0.792 indicates a reasonable likelihood of correctly predicting habitat.

The most useful variable in terms of explanatory power was precipitation (43%)
followed by percent water (30%). Hardiness zone was shown to be least useful (10%).
Jackknife analysis showed that land cover appears to have the most information by
itself. Percent water was the variable with the most information not contained in the
other variables.

It is hypothesized that hardiness zones were considered the least useful because
the information that goes into the development of a hardiness zone is likely correlated
with data already in the model. These zones are based on, among other things, rainfall,
temperature, and day length (Cathey 1990), indicating that the precipitation data may

have been adequate to describe the model without hardiness zones. It may also be that
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hardiness zones are developed with additional data that are uninformative for M.
spicatum distribution at this scale. It is possible percent water has the most explanatory
power of a single variable solely since as an aquatic species, M. spicatum has greater
likelihood of occurrence in areas where there is more available habitat (suitable or
otherwise).

The geological processes which formed most lakes created lake districts, or
groupings of lakes (Wetzel 2001). Soranno et al. (1999) found that annual climate was
an important driver for synchrony — a measure of the degree to which lakes in a district
behave similarly over time — in lake districts. This could explain why when precipitation
is considered as the most useful explanatory variable, the resultant maxent output map
appears to show clustering of probabilities within areas of high lake density (i.e., lake
districts). Additionally, if it can be accepted that humans are the primary vector for M.
spicatum as many authors suggest, the proximity of lakes in the district likely increases
the number of chances for introductions from one lake to the next. Johnstone et al.
(1985) reported that boaters had low probability of moving between lakes beyond 125
km apart, and around 0.25 probability of moving between lakes in a district. They
concluded that boats provided a viable mechanism for interlake transport of plant
fragments.

Neilsen et al. (2008) found that human population density was a driving force
behind distribution of H. mantegazzianum. Although not considered in this study, the
areas for which lower relative probabilities were determined are also areas for which
populations are known to be limited (i.e., the Western U.S.). This could be an additional
explanatory variable for consideration in future studies. Again, if humans can be
considered a primary vector, the more populated areas pose more chances for

introductions and increased likelihood of lake utilization.
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Low probabilities in the areas for which density of lakes is smaller and
populations are lower may also be explained by the arid nature of these areas.
Chambers (1994) noticed a relationship between mean annual dew point temperature
and M. spicatum range. Since by their nature aquatic plants must remain wet to remain
viable, in an arid environment, fragments may have a harder time surviving transport on
boat trailers, considered to be the primary means by which humans spread this weed.
Additionally, with less dense distributions of lakes, the distance between lakes is greater,
limiting the movement between lakes and increasing the time available for desiccation of
plant fragments on boat trailers.

Specific to the model results, it is important not to equate availability with use
(Dettmers and Bart 1999), as these are not the same thing for a species. Chambers
(1994) reported no instance of M. spicatum in the Prairie Provinces of Canada despite
no environmental constraint on its establishment. With few populations near these
provinces, it was assumed that geographic restraints were likely one of the biggest
mechanisms preventing presence of M. spicatum, with the nearest documented
occurrence of M. spicatum over 300 km away. Additionally, depending on a state or
county’s protocols, M. spicatum may be aggressively managed, thus limiting its
occurrence, despite high probability of habitat suitability. In Minnesota for example,
Roley and Newman (2008) reported that over 4,700 waterbodies were susceptible but
not infested with M. spicatum. This may be attributable to the State of Minnesota’s
Department of Natural Resources (MN DNR), which has an active education campaign
to prevent and limit spread of M. spicatum. Multiple outlets are utilized by MN DNR in
this endeavor including media outlets and other traditional forms of education and
outreach all designed to increase awareness and limit introductions of M. spicatum.

Ninety-seven percent of boaters in one survey conducted by MN DNR indicated they
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were aware of the State’s invasive species laws, and 99% indicated the campaign had
led them to action (Invasive Species Program 2010).

Zaniewski et al. (2002) concluded that presence-only models were more likely to
predict the fundamental niche, unless absences or even “pseudo” absences could be
included. Phillips et al. (2006) stated that to the extent the model accurately predicts the
fundamental niche, however, the projection to geographic space will represent the
species’ potential distribution. Even without absence data, concurrence with prior
studies (Couch and Nelson 1985, Fig. 4.3) indicates that these results may accurately
portray the fundamental niche, and thus the potential distribution of M. spicatum.

It should also be acknowledged several challenges are associated with use of
presence-only data, specifically when the researcher is not the collector. Elith and
others (2006) evaluated the capacity of presence-only data to predict species’
distribution. They concluded that these data were useful for modeling distribution and
that methods such as maxent were effective in these endeavors. ldeally presence and
absence data would be used to create the model, particularly for a weed species that is
as ubiquitous as M. spicatum. Unfortunately, data sources like IPANE log presence
almost exclusively. The only way to obtain absence data would be to purposefully collect
it, but this also presents many challenges. Because the analysis is done on a county
level, it would be impossible to survey an entire county and guarantee absence. It wouls
also be impossible to determine if this is truly absence or simply suitable area which has
not been colonized by M. spicatum. Many states for which data are missing, Mississippi
for example, do not have a severe enough problem with M. spicatum to warrant
statewide surveys. Collecting these data would be prohibitive in terms of both cost and

time.
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Further, utilizing “volunteer” type databases such as IPANE introduces unknown
sampling bias into the input data (Elith et al. 2006; Zaniewski et al. 2002). Often the
data in these databases are collected without a sampling scheme, which can create data
clustering in areas that are more accessible. Inputs in this case tended to be clustered
in parts of the country where M. spicatum is problematic. Dependency on previously
collected databases did limit the available inputs to the model, although it would be just
as easy to argue that the prevalence is higher and the frequency greater in these areas
because of the duration of M. spicatum in these areas, allowing for much more

established populations.

Conclusion

While there are many considerations for presence-only models, the use of
maxent overcomes many of the limitations these models present. Given the nature of
data available on invasive species from public databases, it is more common to see
these types of analysis. While it could be argued that more reliable results for a species’
potential distribution can be obtained when absence data are added, these studies are
less feasible for large area models, particularly for ubiquitous invasive weed species like
M. spicatum.

Invasive plants are known for their opportunistic traits. A large percentage of the
U.S., particular in the Eastern half, appears to be available to M. spicatum, should it find
an opportunity for introduction. Maxent produced a reasonable county-level national
model of M. spicatum habitat based on land cover, precipitation, hardiness zone and
percentage of water. Results indicated that percent water largely influences the
probability of suitable habitat. Presence may be dictated by lake density, human

population density, and dew point as reasonable justification can be made for each and

all. These results closely resembled an introduction and spread pattern for M. spicatum,
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perhaps indicating that habitat is colonized as time permits, and not necessarily as

conditions permit.
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CHAPTER 5

SUMMARY AND FUTURE RESEARCH

In their review paper, Guisan and Thuiller (2005) determined the earliest known
example of modeling species was published in 1924 to predict the spread of cactus
species in Australia. Computer-based modeling approaches for species distribution
began in the mid-1970s, but it was not until the early 1990s when publications on
predictive modeling of species distribution increased sharply (Guisan and Thuiller 2005).
The area of predictive modeling in ecology and related fields continues to grow with new
methods taken from other fields. These methods are then incorporated into a broader
suite of tools which can be used to address issues related to invasive species.

For stakeholders and decision makers dealing with Eurasian watermilfoil
(Myriopyllum spicatum L.), models can help direct limited financial and personnel
resources aimed at prevention or containment. As pressure from tightening budgets at
funding sources trickles down to front-line managers such as government agencies,
water management districts, and university research programs, a targeted approach to
invasion prevention will be key.

Using models can present a set of challenges. Many decisions, frequently
subjective, go into building a model. Use of presence and/or absence data is frequently
dictated by extent of the area of interest, economic considerations for data collection and

processing, and the abundance of the species of interest. Methods exist for modeling
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under both approaches and research supports positive outcomes for both
presence/absence and presence-only modeling. When dealing with large areas, such
as a national model, presence-only modeling is the most convenient option. Particular to
invasive species, most available data is presence-only, so choices are dictated almost a
priori by available data. Maxent is a very appealing option for presence-only modeling
because it doesn’t complicate a model by assuming unknown (i.e., unsurveyed or
sampled) areas are absences. This assumption can be crucial when modeling invasive
species.

Another decision which can not be ignored is the choice of scale. Levin (1992)
posed that variability has meaning relative only to scale of observation. He added that it
was more important to capture how a system changes across scales in lieu of trying to
determine the correct scale. By using a three-scale approach in this study, it has been
possible to use a variety of predictor variables to characterize M. spicatum habitat at
different levels of observation. Given what is known about introduction, spread, and
transport of Eurasian watermilfoil, it makes sense to examine all three scales in order to
determine how spread is influenced: 1) in a single lake where stem elongation and
fragments account for the majority of spread; 2) on a regional scale where spread is
largely to due to transport among lakes by anthropogenic mechanisms; and 3) on a
national scale where broader issues of climate and landcover influence habitat
availability against the pressures from local and regional factors.

A comparison across scales of results from maximum entropy (hereafter
“maxent”) analysis yields AUCs of 0.771, 0.953, 0.968, and 0.792 for littoral, pelagic,
Minnesota, and National models, respectively. It appears then, that the most useful
scale is a regional-level model. Levin (1992) indicates that by increasing our scaling unit

(i.e., going from local to regional) a model moves from “unpredictable, unrepeatable
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individual cases” to a model which is more generalized, trading detail for predictability.
This does not appear to extend to the case of the National model, for which the AUC
decreases. It may be possible, however, that the AUC for the National model could be
improved by increasing the number of samples. For a fixed number of predictor
variables, increasing the sample size would increase ability to estimate coefficients,
potentially increasing the AUC for this model.

The value of 0.953 for the pelagic seems extremely high and can likely be
explained by the fact that for the largest part of the pelagic zone, predictions of absence
or low probability are correct. Given the depths of the pelagic zone, intuitively M.
spicatum would not be expected and thus if the model predicted the entire zone to be

void of M. spicatum, the error rate for false positives would not be sufficiently high.

Positive Outcomes

Despite a fairly ubiquitous distribution, it is encouraging to see that when a
concerted effort is made, Eurasian watermilfoil can successfully be prevented from
overtaking habitat. M. spicatum spread appears to be largely time dependent, less than
habitat dependent. When comparing the status of Eurasian watermilfoil in Wisconsin
with Minnesota, it is possible to see the difference 20 years can make in establishment
of Eurasian watermilfoil as a nuisance species. The experience of Minnesota proves
that public education can be effective at limiting the spread of this invasive species.
Even more promising is that this was true even when habitat was deemed suitable. For
states where M. spicatum is still a non-nuisance species, this is extremely valuable, as
these states can begin to think about approaches that can be undertaken to help

ameliorate risks of widespread establishment and implement these measures early.
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Public awareness and education programs, in addition to limiting spread, could
provide added benefits to “volunteer” type databases such as IPANE*® and IPAMS'. A
more informed citizenry is resource that would be a boon to data collection and
identification of invasives such as Eurasian watermilfoil. The economic and practical
feasibilities of collecting both presence and absence data at large scales creates a need
to focus on methods for presence-only prediction, and increases the dependency on
these types of databases. While maybe not ideal, a sufficient amount of research
supports the idea that presence-only data can be effectively used to predict habitat for
many species. The development of methods specific to presence-only models will likely
escalate, and public awareness of invasives can only benefit this type of work. A more
informed citizenry is also much more likely to be supportive of control and prevention

methods for Eurasian watermilfoil; something front-line managers can also appreciate.

Future Research
Macrophytes have traditionally been neglected in many water quality models
including the most commonly used models such as WASP® and QUAL2K" (Park et al.
2003). Park and others (2003) were able to develop a non-GIS based, more “traditional”
water quality model which also included the effect of macrophytes on environmental
features such as dissolved oxygen and nutrient cycling. Another model, MILFO?,

models vegetative growth, but not location, of Eurasian watermilfoil based on

% |IPANE, http://nbii-nin.ciesin.columbia.edu/ipane
" |PAMS, http://www.gri.msstate.edu/ipams/

18 Water Analysis Simulation Program, U.S. Environmental Protection Agency, Washington,
D.C., http://www.epa.gov

% U.S. Environmental Protection Agency, Washington, D.C., http://www.epa.gov

0 U.S. Army Corps of Engineers, Washington, D.C., http://www.usace.army.mil
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environment. Jensen and others (1992) were able to incorporate features such as fetch
to determine not only presence, but density and spread of aquatic macrophytes. These
successes represent pieces of a total modeling approach to Eurasian watermilfoil
management. A logical next step is to incorporate existing mathematical-based water
guality models into a GIS-based habitat suitability model for M. spicatum. A real world
model requires the user to have pre-existing data which show the conditions present.
Ideally it is desirable to link GIS-based habitat models for Eurasian watermilfoil with
other existing water quality models so that this need not be the case.

Ultimately, incorporation of these models allows the user not only to predict
probability of occurrence but also spread in response to user specified changes in
environment variables. There is already considerable research underway about how
climate change will affect the range of many species, including invasives.

Incorporation with water quality models would further allow the user to generate
scenarios with simulated changes in water quality upstream or downstream, and also
run models without measured field data on water quality. Not that it should be
advocated, but it would be entirely possible for the user to run whole simulations from
start to finish without leaving the desk.

Dependence on modeling will only increase as new methods and novel
approaches are developed. Good science and a push for validation will help to ensure

that modeling remains of value.
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