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a b s t r a c t

Analyses and simulations of vector nonlinear time series typically run into weeks or even
months because the methods used are computationally intensive. Statisticians have been
known to base empirical results on a relatively small number of simulation replications,
sacrificing precision and reliability of results in the interest of time and productivity. The
simulations are amenable for parallelization. However, parallel computing technology has
not yet been widely used in this specific research area. This paper proposes an approach to
the parallelization of statistical simulation codes to address the challenge of long running
times. Requiring minimal code revision, this approach takes advantage of recent advances
in dynamic loop scheduling to achieve high performance on general-purpose clusters, even
with the presence of unpredictable load imbalance factors. Preliminary results of applying
this approach in the simulation of normal white noise and threshold autoregressive model
obtains efficiencies in the range 95%–98% on 8–64 processors. Furthermore, previously
unobserved properties of the statistical procedures for the models are uncovered by the
simulation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Correct application of traditional statistical analysis methods rely heavily on the assumption that observations are
independent. However, there are many situations when the independence assumption is violated—for example, time series
data. Time series models describe the behavior of the present as a function of past values of the series and random noise.
Whenmultiple series are observed at each timepoint, the series is called a vector time series. Vector time series are prevalent
inmany areas and have been shown to out-perform their univariate counterparts inmodeling co-dependent characteristics;
see for example, [1,2] or [3]. Examples of vector time series are common in applications such as population dynamics,
economics and finance, physics and astronomy, or meteorology.

Nonlinear time seriesmodels are quite effective inmodeling complex dynamic systems. A particularly powerfulmodel in
vector nonlinear time series is the vector functional coefficient autoregressive (VFCAR)model. Because of its general nature,
statistical inference using thismodel is nonparametric. On a single processor, numerical investigation of statistical properties
of estimators or inferential procedures requires execution times of weeks, even months. Consequently statisticians have
based empirical results on a relatively small number of replications and on less than optimal computing parameters,
sacrificing precision, accuracy, and possibly compromising the reliability of results in the interest of time or ‘‘computational
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expediency’’ [4]. Techniques which require thousands of replications for accuracy often have at most a few hundred.
Fortunately the replications are amenable for computation in parallel. Thus parallel processing technology can be exploited
to enable the extensive simulation of a variety of models within reasonable running time limits. This paper demonstrates
an approach to the simulation of such models which takes advantage of recent advances in dynamic loop scheduling on
clusters of workstations, in order to shorten the simulation time.

The remainder of this paper is organized as follows. Section 2 defines the vector functional coefficient autoregressive
(VFCAR) models. In Section 2.1, the most common statistical method for estimating the parameters in VFCAR models are
discussed, along with the computational issues related to that procedure. Section 2.2 presents a computational bootstrap
hypothesis testing procedure for model selection, and a discussion of using the nonparametric VFCAR model for predicting
M steps into the future. Section 3 provides an approach to facing the challenges in implementing the procedures in the
previous sections numerous times, as would be done in a typical Monte Carlo study for any of the procedures in the earlier
sections. This section also shows preliminary results which demonstrate the high parallel performance achieved by this
approach. Section 4 discusses advances in understanding of the structure of the power function of the test that becomes
possible by applying the computing methods of Section 3. Concluding remarks are given in Section 5.

2. The VFCAR model

In this section, we define the vector functional coefficient autoregressive (VFCAR) model. For specifics, the reader is
referred to the series of papers in [5,6] or the paper in [7]. In what follows, the univariate time series observed at time t is
denoted Yt , t = 1, 2, . . . , T . When k multiple processes are concurrently observed, individual processes are denoted Yi,t ,
where i = 1, . . . , k indicates the process, and the set of observations on all k processes at time t , is denoted by the bold-face
Yt = (Y1,t , . . . , Yk,t)

′, where ′ denotes transpose.
A nonlinear autoregressivemodel is one where the time series at Yi,t is written as somemeasurable, real-valued function

ηi of past values of each component of the series plus some error term; that is,

Yi,t = ηi(Yt−1, . . . , Yt−p) + εi,t , (1)

where, for each i, the series {εi,t}
T
t=1 is white noise, independent of {Yt}

T
t=1. We consider the case where all ηi in Eq. (1) are

additive; that is,

ηi =

p−
j=1

f (j)
i (Zt)Yt−j, (2)

(j) is a superscript, and Zt is an exogenous predictor, e.g., time, or lagged values of the series Y . There is little or
no information about the specific forms of the f (j)

i . When components of Y are correlated and the error terms have
positive contemporaneous correlation, simultaneously nonparametrically estimating the f (j)

i using local regressionmethods
provides improved efficiency compared to fitting separate (unrelated) univariate models.

Combining Eqs. (1) and (2) yields the vector functional coefficient autoregressive model of order p,VFCAR(p), defined by

Yt = f (0)(Zt) +

p−
j=1

f (j)(Zt)Yt−j + εt , t = p + 1, . . . , T , (3)

where Zt is the functional variable of dimensionm ≥ 1 and the εt are independent, identically distributed random variables
with mean vector 0 and k × k covariance matrix 6, εt independent of Ys and Zs for all s < t . The Zt are as defined for
Eq. (2), and f (j), j = 1, . . . , p are k × kmatrices with elements [f (j)

il ] that are real-valued measurable functions that change
as a function of Zt and which have continuous second derivatives. If the variable Zt is lagged values of Yt−d with d ≤ p,
the inclusion of the intercept function f (0) results in a non-identifiable model, giving unstable estimates of the functional
coefficients. In such cases, the intercept should be omitted.

2.1. Estimation of VFCAR parameters

Since there is little or no information about the form of the coefficients f (j) in (3), estimation of the f (j), j = 1, . . . , p at
observations {Zt , Yt}

T
t=1 is accomplished using locally constant or local linear multivariate regression in a neighborhood of

Zt with a specified kernel and numerically determined bandwidth matrix. Section 2.1.1 outlines the method for bandwidth
and autoregressive (AR) order (p) selection.

At time t , denote the fitted AR order by p∗, and the kp∗-vector of predictors by Xt ; that is, let Xt = [1, Yt−1, Yt−2,
. . . , Yt−p∗ ]

′, where Yt−j = [Y1,t−j, Y2,t−j, . . . , Yk,t−j]
′, for j = 1, . . . , p∗, and let f (Zt) be defined as f (Zt) = [f (0), f (1)(Zt),

. . . , f (p∗)(Zt)]
′. Then model (3) can be written as

Yt = f (Zt)Xt + εt , t = p∗
+ 1, . . . , T .
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For the sake of discussion, we temporarily restrict the dimension of Zt tom = 1. Since all elements of f have continuous
second-order derivatives, each f (j)

il (·) may be approximated locally at z0 by a linear function f (j)
il (z) = α

(j)
il + β

(j)
il (z − z0).

Writing the coefficient matrices in the form [α | β], the local linear least squares kernel estimator of f (Zt) is defined as
f̂ (z0) = α̂, where [α̂ | β̂] is the solution to [α | β] that minimizes the sum of weighted squares

T−
t=p∗+1

[
Yt − [α | β]


Xt
Ut

]
[
Yt − [α | β]


Xt
Ut

]′

Kh(Zt − z0).

(4)

HereUt is a partitionedmatrix, with the first partition being [Xp∗+1, . . . ,XT ]
′, and the second partition is the first multiplied

by (Zt − z0). The function K is a specified kernel, h > 0 is the bandwidth, and Kh(u) = h−1K(u/h). If the intent is to use
the VFCAR model for model testing (see Section 2.2), a boundary kernel is recommended to avoid trimming the functional
coefficient estimates. The solution to (4) is a straightforward least squares problem,[

α̂

β̂

]
= (U ′WU)−1U ′WY ,

whereW = diag{Kh(Zp∗+1 − z0), . . . , Kh(Zn − z0)}. If the dimension of Z ism > 1, the first kp∗ rows of Ut are the product of
Xt and (Z1,t −z1,0), the second kp∗ rows ofUt are the product of Xt and (Z2,t −z2,0), etc. In this case, K is a specifiedm-variate
kernel function, H1/2 is the bandwidth matrix, and KH (u) = |H |

−1/2K(H−1/2u).

2.1.1. Bandwidth matrix
The accuracy and precision of the estimators in the previous section are highly affected by the choice of bandwidth H1/2.

The optimal bandwidth, along with the optimal value for p, are selected numerically using a modified multi-fold cross-
validation criterion, that numerically minimizes accumulated prediction error. This method has been successfully used for
nonlinear time series modeling in the univariate framework [8,4,5] and in the multivariate framework [5,6].

Let r and Q be two positive integers such that T > rQ . To find an optimal value for the bandwidth, the first Q subseries
of lengths T − rq (q = 1, . . . ,Q ) are used to estimate the unknown coefficient functions. Using the estimated coefficients,
one-step forecasting errors are computed based on the next section of length r of the time series. The value chosen hopt for
h is the value minimizing the average mean square prediction error (APE), defined by

APE(h) =

Q−
q=1

APEq(h), (5)

where for q = 1, . . . ,Q ,APEq(h) is trace of the estimated error covariancematrix; that is, for e = Y ∗
q − f̂q(Zt)X∗

q ,APEq(h) =

trace

ee′


, where Y ∗

q and X∗
q are the matrices containing the observations indexed from T − qr + 1 to T − qr + r and the

{f̂q(·)} are computed from the sample {(Zt , Yt), 1 ≤ t ≤ T − qr} with bandwidth h = [T/(T − qr)]1/5.
Cai et al. [4] present a univariate version of the methods described above with Q = 4 and ‘‘r = [0.1T ] rather than r = 1

simply because of computational expediency’’. The two papers in the literature in [5,6] follow suit. Since the number of
computations increases exponentially when the method moves from the univariate framework to the vector framework, it
is here we encounter the first computational challenge in applying the methods.

2.1.2. Smoothing variable selection
Smoothing variable selection can also affect the model’s performance. Obviously, if knowledge of the physical process

is available, that knowledge should be a guiding force in selecting Zt . However, if no prior knowledge is available, the
smoothing variable can be chosen by data-driven methods. Fan et al. [9] explore choosing a univariate smoothing variable
as a linear function of given explanatory variables, i.e. a single index model, according to some optimal criterion. Harvill
and Ray [6] choose the functional variable as the component of Y at lag d that minimizes the accumulated prediction error
defined in (5).

2.2. Model testing procedure

Specific choices g for the elements of thematrices f in the VFCARmodel can result in parametric time series models. This
feature of the VFCAR model is particularly useful in validating specific choices of functional forms to model the observed
data. Consider testing

H0 : f (l)(Z) = g (l)(Z; θ) vs. H1 : f (l)(Z) ≠ g (l)(Z; θ), (6)

where g (l)(·; θ) is a given family of functions indexed by unknown parameter vector θ.
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The power of the test is the probability that H1 is correctly declared as truth. To find a mathematical expression for the
power of the test, the probability distribution of the test statistic ismodified to satisfy the conditions ofH1. In nonparametric
settings, it is often impossible to develop an analytic expression for the distribution of the test statistic, and thus to compute
the power of the test.

2.2.1. Test statistic
Let θ̂ be an estimator of θ in g (l)(Z; θ). Under the null hypothesis, the estimated error covariance matrix is

RSS0 = n−1

Y − g(Zt; θ̂)X

 
Y − g(Zt; θ̂)X

′

. (7)

Under the VFCAR model, the estimated error covariance matrix is

RSS1 = n−1

Y − f̂ (Zt)X

 
Y − f̂ (Zt)X

′

. (8)

Then the likelihood ratio test statistic is given by

3 =

[
trace(RSS0)
trace(RSS1)

]1/2

, and L =
1 − 3

3
. (9)

The null hypothesis is rejected for large values of L. If a boundary kernel is not used, the residual sums of squares should be
computed using a trimmed version to avoid inflating the statistic due to edge effects.

2.2.2. Bootstrap procedure
The distribution of the test statistic (9) is difficult to derive for finite sample size. Even in the univariate case, the

best asymptotic approximation for the null distribution does not necessarily give a good approximation for finite samples
(see p. 412 of [10]). An alternative for finding p-values for testing (6) uses bootstrap resampling. Harvill and Ray [6] extend
themethods of [4] to the vector case series, andpresent an investigation of the properties of the test. The bootstrap procedure
is outlined below. For a more thorough discussion, the reader is referred to the originating papers cited previously.

1. Sample bootstrap residuals {εt}
T
t=1 from the empirical distribution of the centered residuals {ε̂t − ¯̂ε}

T
t=1, where ¯̂ε is the

k-vector of means of the component residuals; that is,

¯̂εi = T−1
T−

t=1

ε̂t,i, i = 1, . . . , k,

where εt = Yt − f̂ (Zt)Xt , t = p∗
+ 1, . . . , T .

2. Compute the bootstrap sample

Y B
t = g(Zt; θ̂)Xt + εB

t .

3. Replacing the Y in (7) and (8) with Y B
t , compute the bootstrap test statistics LB.

4. Reject the null hypothesis in (6) when L is greater than the upper α point of the conditional distribution of LB given the
original data.

The p-value of the test is the relative frequency of the event {LB
≥ L} in the replications of the bootstrap sampling.

A careful reading of the literature which introduces bootstrap tests reveals that computational expediency allowed only
limited numerical studies of the properties of the estimators. For example, in most cases, the number of replications was
small (200 or 400). In all of the papers, the time series lengths T were limited in either the number of lengths considered,
or size of the lengths. The number of nonlinear behaviors examined was few, with the exception of [6], who consider only
moderate series lengths for vector nonlinear series (T = 100 and 250) and a few values for error cross-correlation. However,
the numerical properties of statistical estimators and hypothesis tests are best examined for a variety of series lengths across
multiple behaviors and parameter perturbations.

2.3. Forecasting

Forecasting with nonparametrically fitted models necessitates the use of computationally intensive techniques. Even
though these models can outperform their simpler counterparts [11,5], the mathematical and computational complexity
incurred from using thesemodels for forecasting is the primary reason that currently only three papers exist in the statistics
literature. For the model given by

Yt = f0(Zt) +

p−
j=1

fj(Zt)Yt−j + εt , t = p + 1, . . . , T , (10)



I. Banicescu et al. / Journal of Computational and Applied Mathematics 236 (2011) 411–421 415

the goal of prediction is to find an estimator of the conditional expectation

E[YT+M | YT , . . . , YT−p] =

p−
j=1

fj(ZT+M)ŶT+M−j, (11)

assuming fj(·) is known and Zt is exogenous. The three methods described below for finding an M-step predictive estimate
hinge on different ways of dealing with this complication.

2.3.1. Naive plug-in predictor
The naive plug-in predictor ignores the fact that the expectation in (11) is not a linear function of Yt+M−j for M ≥ 2 and

simply plugs Ŷt+M−j into the forecast equation. The form of the functional coefficient is determined using only the within-
sample series values. In other words, for Zt = Yt−d,

ŶT+M =

p∗−
j=1

f̂j(ŶT+M−d)ŶT+M−j, (12)

where Ŷt = Yt , t ≤ T and f̂j(·) are the values α̂j minimizing (4).

2.3.2. Bootstrap predictor
Like the plug-in estimator, the bootstrap prediction method uses only within-sample values to compute the functional

coefficients and evaluates these coefficients at the predicted values. However, the predicted values are obtained as ŶT+M =∑p∗

j=1 f̂j(ŶT+M−d)ŶT+M−j + ϵb, where ϵb is a bootstrapped value of the within-sample residuals from the fitted FCAR model.
The bootstrapped forecast is obtained for b = 1, . . . , B and the average across all bootstrap predictions is used as theM-step
ahead point forecast. The predictive density of Yt+M can be obtained using the complete set of bootstrap predictions. Note
that care must be taken when Ŷt+M−d falls outside or near the boundary of the range of the original Yt−d, as the estimated
functional coefficients may be very unreliable in this case.

2.3.3. Multi-stage predictor
Themulti-stage predictor is a modification of the naive predictor in which the functional coefficients are updated at each

step to incorporate the information from Yt encoded in the predicted response at time T + j, j = 1, . . . ,M − 1. Specifically,

ŶT+M =

p∗−
j=1

f̂ Mj (ŶT+M−d)ŶT+M−j, (13)

where Ŷt = Yt , t ≤ T and f̂ Mj are the values α̂j minimizing

T+M−1−
t=s∗+1


Yt −

p−
j=1

[
αj + βj(Zt − z)

]
Yt−j


Kh(Zt − z). (14)

Numerical studies of these forecasting methods are presented in [5], having the same limitations as the hypothesis testing
computational studies.

3. Simulation

Fig. 1 illustrates a high-level flowchart of a simulation procedure to investigate the statistical properties of the methods
used in the VFCAR model. The procedure synthetically generates a large number of time series samples for a given
combination of data model, error cross correlation and series length. Then, for each sample, the procedure estimates the
model parameters and applies the hypothesis test.

Although the procedure above can be accomplished in the R system [12], the total computation timewould be enormous
when using a large number of replications, more bootstrap samples, and more parameter choices. One solution to reduce
this computation time is by utilizing parallel processing technology. Thus, compromises in parameter selection for the
sake of expediency become less important. Simple parallel implementation of work in the R language is developed in [13].
However, because of the nature of the FCAR computations, a Fortran implementation still offers significant improvement in
the computing time.

An initial Fortran 90 implementation of the simulation running on a desktop computer with a 1 GHz Pentium 4 processor
and 256 MB RAM, for 1000 replications of a single bivariate model using a sample size of 400 takes approximately nine (9)
days. An investigation of various models using more error cross correlation values and larger sample sizes or number of
replications will run into months on a single machine.
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Fig. 1. Outline of VFCAR simulation procedure.

Fig. 2. Parallelization of replication loop, with the serial code largely intact.

3.1. Parallelization

The simulation procedure presents two opportunities for exploiting coarse grain parallelism. Up to M data models can
be investigated concurrently. Also, for a given data model, the no_reps replications can be distributed among, say, P
processors. Typically, no_reps ≫ P , hence the focus of this paper on parallel execution of the replications. In general,
equally distributing the replications among the processors leads to high performance if the replications have the same
execution time and if the processors are homogeneous. However, this static assignment may result in load imbalance
due to heterogeneity of processors, irregular iteration execution times, or unpredictable systemic effects like operating
system interference leading to varying effective processor speeds. Load imbalance is typically indicated by highly uneven
processor finishing times, and is amajor cause of performance degradation in parallel applications. Dynamic loop scheduling
is therefore necessary in order to balance processor loads and achieve improved performance.

The parallel simulation program was obtained after minor alterations to the initial Fortran 90 code. Essentially, three
(3) lines of code are added before and after the original replication loop code, and the loop extents were changed, as
illustrated by Fig. 2. The routines LS_Initialize, LS_Finalize, etc., are contained in a module specifically designed for
quick integration of dynamic loop scheduling into sequential programs containing parallel loops. This module evolved from
previously developed code for dynamic loop scheduling in scientific applications that utilize the Message Passing Interface
(MPI) library [14]. Prior versions of the module were used to improve the performance of applications such as the profiling
of automatic quadrature routines [15,16] and simulation of wave packets by the quantum trajectory method [17].

The routine LS_Initialize signals the start of dynamic scheduling of loop iterations: foreman specifies the rank
of the process that will serve as the scheduler, (1,no_reps) is the loop extent, and method identifies the scheduling
technique. The logical function LS_Terminated tests for loop termination. LS_Finalize synchronizes the processes,
and returns nIters and workTime, the count and total execution time, respectively, of the replications computed by the
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Table 1
Sample job times of performance tests.

Cluster Test Id Size Reps P STAT AF

Sun TAR30 30 10000 8 11:09 11:25
Solaris TAR75 75 10000 16 27:47 29:05

WN150 150 10000 32 31:15 23:28

Intel WN500 500 10000 64 5:56 4:47
Linux TAR500 500 10000 64 15:42 15:59

Notes: Size = Sample size; Reps = no_reps; P = Processors; STAT = job
time, no loop scheduling; AF = job time with loop scheduling using AF.

calling process. These two quantities are useful in analyzing the performance of load balancing; ideally, the work times of
the processors should be approximately equal.

The routine LS_StartChunk returns the start cStart and size cSize of a chunk of iterations to be executed by
the calling processor. These quantities are determined according to the scheduling technique specified by method. After
the chunk is finished, the routine LS_FinishChunk is invoked. Internally, the calling processor sends performance data
pertaining to the recently executed chunk to the scheduler. The scheduler receives the performance data, and if there are
remaining iterations, it computes and sends the next (cStart, cSize) to the processor; otherwise, the scheduler sends a
termination message.

In addition to the changes in the replication loop, other modifications to enable parallelization pertain to the use of
MPI. The usual calls to MPI_Init(), MPI_Comm_size() and MPI_Comm_rank() are added at the start of the program, and
MPI_Finalize() added just before the program ends. Also, each processor computes only a fraction of the total number of
replications, resulting in partial results being stored in each processor. The full set of results is obtained by performing the
reduction operation MPI_Allreduce().

3.2. Parallel performance testing

Performance tests of the Fortran 90+MPI implementation of the VFCAR simulation procedure were conducted on the
general-purpose Solaris and Linux clusters at the Mississippi State University Engineering Research Center. The Solaris
cluster consists of Myrinet-interconnected SunMicrosystems SMPs. Each SMP has four (4) UltraSPARC 400MHz processors,
and the cluster has 16 nodes for a total of 64 processors. However, the cluster usage policy allows a job to utilize no more
than 32 processors and nomore than 48 h execution time. The Linux cluster, on the other hand, has a total of 1038 Pentium III
(1.0 GHz and 1.266 GHz) processors, runs the Red Hat Linux operating system, and is interconnected via fast Ethernet
switches with Gigabit Ethernet uplinks. The general submission queue allows jobs to request up to 64 processors for 48 h.
The queuing system (PBS) attempts to assign homogeneous compute nodes to a job, but this is not guaranteed. Other jobs
were also running on the clusters along with the experiments, thus network traffic volume may have varied during the
experiments, with unpredictable effects on the performance tests.

Table 1 summarizes the job times of some of the tests. WNnnn and TARnnn denote a normal white noise and a threshold
autoregressive model, respectively, with ‘nnn’ sample size. The last two columns give the job execution time (in hh: mm
format) without loop scheduling (STAT) or with loop scheduling using the adaptive factoring technique (AF) [18–21]. The AF
was chosen since it is the most sophisticated technique, as it addresses all sources of load imbalance. However, the AF has a
higher overhead than other techniques, whichmay cause the AF to perform slightly less than other techniques for problems
that exhibit no load imbalance.

The job times (STAT, AF) demonstrate the dramatic reduction in simulation time achieved by the simple code
modification. For instance, running the original code for the TAR500 model on one of the processors of the Linux cluster
would take approximately 64 ∗ 15.7 h, or 42 days.

Except for WN150 and WN500, the parallelization without loop scheduling (STAT) consumed slightly lesser time than
with loop scheduling using the AF technique. This indicates that application-induced load imbalance was not a significant
issue. However, the cases of the WN150 and WN500 provide clear evidence for the influence of system-induced load
imbalance. Fig. 3 for WN150 illustrates this influence. For STAT, where each processor executed (no_reps + P − 1)/P
replications (the gray bars), the plots of the processor work times (the gray triangles) show unusually longer times for
processors 4, 12, 20 and 28. Most likely, these processors belonged to the same SMP node, and that this node had an
extraneous process. With the AF technique, system-induced imbalance was also present, as evidenced by the obviously
unequal number of replications executed by the processors. The almost flat trend line of the processor work times for the
AF technique (dark squares) indicates that the load imbalance was successfully addressed.

The cluster resources allocated to the simulationwere very efficiently utilized, as indicated in Table 2which shows that up
to 98% parallel efficiency is achievable. The lowest is 77% for WN150 with STAT, which may be attributed to severe system-
induced load imbalance. This load imbalance is successfully addressed by AF obtaining 98% efficiency for the same problem.
The speedup (Spd) and efficiency (Eff) metrics were computed as follows. Denote by tr the time spent by processor r on the
modified replication loop, and wr the workTime. A tr is the difference of the times taken just before LS_Initialize and
right after LS_Finalize. A wr is the cumulative time spent doing useful work. The parallel time tpar for the replication
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Fig. 3. Loop scheduling summary for WN150 on the Solaris cluster.

Table 2
Speedup and efficiency.

Test Id P STAT AF
Spd Eff Spd Eff

TAR30 8 7.9 0.98 7.6 0.95
TAR75 16 15.9 0.99 15.2 0.95
WN150 32 24.5 0.77 31.2 0.98
WN500 64 49.9 0.78 61.9 0.97
AR500 64 63.4 0.99 62.3 0.97

loop is tpar = max tr , and an estimate of the serial time tser is given by tser =
∑

∀r wr . This estimate for tser is accurate if the
processors are homogeneous. From P, tpar and tser, Spd=tser/tpar and Eff=tser/(P × tpar).

4. Advances in nonlinear time series

Obviously the simulations described in 3.2 could be completed on a single processor. On the other hand, if a numerical
investigation using the same parameters was run for onemodel on a single processor, the time to complete the study would
run into months, and may not be possible for the larger sample sizes. In the current statistics literature, numerical studies
of the complex behaviors described in Sections 2.2 and 2.3 are completed using 500 replications for each of two moderate
sample sizes (T = 100 and 250), three error cross-correlations (ρ = 0.0, 0.4, and 0.8), and 400 bootstrap replications.
Small studies such as these, while providing important information, are far from complete, lack precision, and possibly lack
accuracy. Consider the paper in [6]. The discussion of the numerical results indicates the behavior of the test to be quite
complex, depending upon the model, the choice of smoothing variable, the length of the series (T ), and the error cross-
correlation (ρ).

Using the parallel code with dynamic scheduling techniques presented in Section 3, a more thorough study of the
bootstrap test of Section 2.2 was conducted in a matter of days. The resulting study is not only more complete in its ability
to describe the relationship between the power of the test for varying values of T and ρ, but the precision of the results is
increased by at least a factor 20—a substantial result for numbers that are between 0 and 1. In the following paragraphs, we
illustrate the improved results by considering two models also in [6].

Consider testing a null hypothesis that specifies the model is linear vs. an alternative of non-linearity; that is, the
hypothesis in (6) are given by

H0 : f (l)(Z) = c(l) versus H1 : f (l)(Z) ≠ c(l),
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(a) Z = Y1,t−1 . (b) Z = Y2,t−1 .

(c) Z = Y1,t−2 . (d) Z = Y2,t−2 .

Fig. 4. Empirical power of bootstrap test for STARmodel when choice of smoothing variable is correct (top right panel) and incorrect choice of smoothing
variable (remaining three panels).

or the functional coefficients are constants as a function of Z . Since the distribution of the test statistics when the
null hypothesis is true is unknown, then the first numerical investigation of any hypothesis test begins by considering
probabilities of a Type I error. The null hypothesis is true under two conditions.
1. All c(l) are zero, in which case the linear model reduces to white noise. An investigation of the size of the test reveals that

the test is conservative, rejecting with a smaller probability than the specified, nominal size of α = 0.05. Moreover, it is
noted that the empirical size slowly increases as T increases, and as ρ → 1. However, it is still less than nominal.

2. Some c(l) are non-zero, resulting in a linear vector autoregressive model. In this case, the empirical size of the test is also
less than nominal, but is larger than the size of the test when the model generating the data is white noise. In this case,
the empirical size appears unaffected by sample size or error cross-correlation.

In both cases, the size does not appear to be a function of the choice of smoothing variable. While the empirical sizes of the
tests run in this simulation were slightly smaller than Harvill and Ray [6], the general conclusions are the same.

The numerical investigation of the power of the test occurs when the null hypothesis is false (i.e., the model generating
the data is not linear). One parametric nonlinear model that can easily be written in the form of an FCAR model is the
smoothed threshold autoregressive model (STAR), first introduced in [22]. The bivariate STAR considered in our study is the
same as the model considered in [6], which can be expressed in VFCAR form with Z = Y1,t−1 and functional coefficients

f (1)
1,1 (Z) = 0.6 −


1 + e−5Z−1

, f (1)
2,1 (Z) = 0.3 − 0.3


1 + e−5Z−1

,

f (2)
1,1 (Z) = 0.3 − 0.3


1 + e−5Z−1

, f (2)
2,1 (Z) = 0.6 −


1 + e−5Z−1

.

Fig. 4(a)–(d) are graphs depicting the behaviors of the empirical power of the test.
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(c) Z = Y1,t−2 . (d) Z = Y2,t−2 .

Fig. 5. Empirical power of the bootstrap test for a bilinear model when the choice of smoothing variable is correct (top right panel) and incorrect choice
of smoothing variable (remaining three panels).

A number of properties of the empirical power of the test are immediately obvious from this more thorough study that
are difficult to see in the abbreviated one. First, it is noted that for large (T = 500) and correct choice of the delay for the
smoothing variable, the empirical power of the test is extremely close to 1. The value T = 500 is problematic in terms of
memory and time on a reasonably power single processor desktopmachine. Additionally, it ismuch easier to spot interesting
behaviors not recognized in previous studies. Specifically, if the correct choice of smoothing variable in terms of time series
component (Y1,·) is chosen, then as the error cross-correlation approaches one, the empirical power of the test decreases for
the smaller sample sizes. On the other hand, when the second component Y2,· was selected as the smoothing variable, the
empirical power of the test increases as ρ → 1 for the smaller sample sizes. The shape of the empirical power curves also
suggests that the choice of delay for the smoothing variable has an influence on how quickly the power converges to one
for all values of ρ, with correct choice of d resulting in a test that had power converging to 1 much faster than an incorrect
choice of d. On the other hand, incorrectly choosing the component for the smoothing variable seemed to have little effect
on the power of the test.

Another model considered in [6] is a bivariate bilinear model. For that particular model, it is possible choose any of
Y2,t−1, Y2,t−1, ε1,t−1 or ε1,t−2 as smoothing variables. Moreover, since Y1,t is represented as a function of Yt,t−2, and Y2,t as a
function of Y1,t−1, the iterative nature of the model makes pinpointing a single smoothing variable challenging. The plots in
Fig. 5(a)–(d) are the empirical powers of the bootstrap test.

The empirical power of the test quickly goes to one with either Y1,t−1 or Y2,t−2 selected for the smoothing variable. In
fact, the power still increases to one when the incorrect variable is selected, but more slowly, andmore dependent upon the
value of the cross correlation between the error terms, probably due to the iterative nature of the model. For the bilinear
model, the empirical power of the bootstrap test appears to be greater than that of the STAR model.
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5. Conclusion

This paper presents an approach to the parallelization of simulations to investigate statistical properties of methods
using VFCAR models. The parallelization allows improved accuracy and precision of statistical results, and is based on
novel techniques for improving performance of scientific computing in parallel and distributed environments. The approach
is capable of successfully overcoming the challenge of long running times and requires very minimal revisions to an
existing sequential code. The revisions generate parallel code which incorporates dynamic load balancing. The parallel code
addresses factors that may give rise to load imbalance, such as those that may be inherent in the computations or induced
by the computing environment. Tests on a homogeneous Sun Solaris cluster and a heterogeneous Linux cluster indicate
that the parallel code achieves very high performance, even with unpredictable system-induced load imbalance, obtaining
efficiencies in the range 95%–98% for the normal white noise and threshold autoregressive model, with sample sizes up to
500 and 10000 replications, on up to 64 processors. This combination of sample size and replication count, to the best of
our knowledge, has not been previously attempted when using simulation to investigate properties of statistical methods
using VFCAR models. As illustrated in Section 4, this ability provides a more precise set. But more importantly, the ability
to numerically investigate the size and power of the test provides a much clearer picture of the effect on the empirical
size and powers of the test of the choice of model parameters when conducting the test – results that were previously
unavailable. Future work will include experiments with new models and more error correlation values. Furthermore, this
interdisciplinary research work finds application in a variety of other statistical disciplines. The authors plan to apply these
state of-the-art techniques to an important problem in astrophysics, the classification of gamma-ray bursts.
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