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Physically-based plasticity models such as the BCJ model include internal state variables that represent
the current state of the material and allow capturing strain rate and temperature history effects as well as
the coupling of rate- and temperature-dependence with material hardening. However, the inclusion of
internal state variables increases significantly the number of unknown material constants that need to
be found through fitting of the model to experimental stress–strain data at different strain rates and tem-
peratures. This makes the fitting process extremely challenging and increases the uncertainty in the
material constants. The paper presents a physics-guided numerical fitting approach that reduces the
associated difficulties and uncertainties involved in determining the material constants of the BCJ plas-
ticity model. The approach uses experimental data from monotonic and reverse loading stress–strain
curves at different temperatures and strain rates to determine the 18 material constants of the model.
An evidential uncertainty quantification approach is used to determine uncertainties rooted in experi-
mental data, selection of stress–strain curves at different loading conditions, variability of material prop-
erties, numerical aspects of the fitting method and mathematical formulations of the BCJ model. The
represented uncertainty of the BCJ material constants based on mathematical tools of evidence theory
is propagated through Taylor impact simulations of a 7075-T651 aluminum alloy cylinder. Uncertainty
quantification results verify the presented numerical fitting approach for the BCJ model and its potential
applicability to other similar material models.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Several plasticity and coupled plasticity-damage models have
been developed and used to simulate the large inelastic deforma-
tion of solids and structures subjected to different loading rates
and temperatures. Simple empirical models, such as the power
law, Johnson–Cook [1,2] and modified Johnson–Cook [3] models,
as well as physically-motivated models, such as Zerilli–Armstrong
[2,4] and Usui [5] models are equation-of-state models that repre-
sent the flow stress as a unique function of total strain, strain rate,
and temperature, independent of the loading path. More accurate
representation of material behavior have been developed
using physically-based plasticity models that include history
dependent internal state variables (ISVs) representing the current
state of the material and capturing strain rate and temperature his-
tory effects as well as the coupling of rate- and temperature-
dependence with material hardening. Among these models are
the Bammann–Chiesa–Johnson (BCJ) model [6–8], the BCJ-damage
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model [9], and the Evolving Microstructural Model of Inelasticity
(EMMI) [10].

All plasticity models cited above include a number of material
constants that capture different aspects of the material properties,
and as such, take different values depending on the material con-
sidered. The calculation of these unknown constants for any spe-
cific material requires fitting the plasticity model to experimental
stress–strain curves obtained under various loading paths (com-
pression, tension and torsion) and at different strain rates and tem-
peratures. However, for a given material constant, the fitting
process may yield different values as a result of the existing uncer-
tainty in the experimental procedure, different selection of stress–
strain curves covering a range of strains, temperatures and rates as
well as existing uncertainty in the numerical aspects of the fitting
process such as selection of different starting point and numerical
method. Such existing uncertainty in material constants can prop-
agate into a simulation response and jeopardize the accuracy of the
simulation results. In a recent study at Los Alamos National Lab.,
Gray et al. [11] examined both Johnson–Cook [1,2] and Zerilli–
Armstrong [2,4] constitutive models and recognized that fitting
these models using different sets of data can result in quite differ-
ent values of the material constants. This issue is more critical for
ISV plasticity models, such as the BCJ model [6–9], as the number
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Table 1
Relationship between parameter functions and material
constants of the BCJ plasticity model.

V(T) = C1 exp (�C2/T) rs(T) = C11 exp (�C12/T)
Y(T) = C3 exp (C4/T) Rd(T) = C13 exp (�C14/T)
f(T) = C5 exp (�C6/T) H(T) = C15 exp (C16/T)
rd(T) = C7 exp (�C8/T) Rs(T) = C17 exp (�C18/T)
h(T) = C9 exp (C10/T)
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of unknown material constants can increase considerably. In fact,
the task of fitting the large number of material constants in ad-
vanced plasticity models is more difficult and burdened by greater
uncertainty.

Because of their non-physical nature, traditional fitting ap-
proaches [12], which rely heavily on the numerical aspects of fit-
ting, are incapable of dealing with the existing uncertainty when
computing the material constants for advanced plasticity models.
Such difficulties are addressed in this paper by introducing a phys-
ics-guided numerical fitting approach that can help to reduce the
existing uncertainty through physical interpretation of the fitting
process. The determination of the material constants for the BCJ
plasticity model is considered for this purpose. At first, the ap-
proach uses experimental data on forward-to-reverse yield of
7075-T651 aluminum alloy to determine those material constants
representing strain hardening effects with consideration of Baush-
inger effects. Then, four stress–strain curves at high and low tem-
peratures and rates are used to determine material constants of
flow rule in BCJ plasticity model. An evidence based uncertainty
quantification approach is also employed to model uncertainty of
material constants.

This study is organized into two parts. The first part presents
the constitutive equations of the BCJ plasticity model along with
the proposed fitting approach for computing the corresponding
material constants. The second part deals with different aspects
of uncertainty quantification (representation, propagation and
measurement) as applied to the BCJ model using the framework
of evidence theory.

2. Constitutive equations of BCJ plasticity model

The BCJ plasticity model, developed by Bammann et al. [6–8], is
a dislocation-based ISV model that describes the rate- and temper-
ature-dependent finite deformation behavior of ductile metals. The
complete version of the model is envisioned to have a number of
ISVs that should represent such material features as dislocation
hardening, void-induced damage, plastic anisotropy, recrystalliza-
tion and grain growth, as well as deformation-induced phase trans-
formations. The particular version of the model used in this work
mainly accounts for the plasticity aspects of the material response,
i.e., the kinetics of plastic flow and dislocation hardening. In es-
sence, this particular version of the model (a) introduces a dynamic
yield surface whose evolution is governed by temperature, strain
rate and stress state; and (b) contains two plastic state variables
representing isotropic and kinematic hardening which model,
respectively, the size and location of the dynamic yield surface.
The evolution equations of these variables assume that the mate-
rial hardening processes such as storage of dislocations (isotropic
hardening) and formation of cells and cell boundaries (kinematic
hardening) are balanced by recovery processes such as dislocation
cross slip and dislocation climb.

The basic formulation of the plasticity and temperature aspects
of the model relies on an extended description of the large defor-
mation kinematics using the multiplicative decomposition of the
deformation gradient into thermal, plastic and elastic components.
This kinematics coupled with a thermodynamic approach with
ISVs, as proposed by Coleman and Gurtin [13], gives the formula-
tion of BCJ a strong mathematical basis that relies upon very well
known principles of continuum mechanics. The 3-D model equa-
tions defined by Eqs. (1)–(5) below describes the kinematics, the
elastic law, and the plasticity (flow rule and hardening laws), and
are valid for small elastic strains (typical in metals).

r� ¼ _r�Werþ rWe ¼ ktrðDeÞI þ 2lDe ð1Þ

De ¼ D� Din � Dth; We ¼W �WP ð2Þ
Din ¼
ffiffiffi
2
3

r
_�epN; _�ep ¼ f ðTÞ sinh

�r� ðRþ YðTÞÞ
VðTÞ

� �
ð3Þ
ao ¼ a�Weaþ aWe ¼ hðTÞDin � ½rdðTÞ _�ep þ rsðTÞ�
ffiffiffi
2
3

r
kaka ð4Þ

_R ¼ HðTÞ _�ep � ½RdðTÞ _�ep þ RsðTÞ�R2 ð5Þ

where �r ¼
ffiffi
3
2

q
knk; N ¼ n

knk ; n ¼ r0 � 2
3 a; r0 ¼ r� rmI.

with rm = 1/3rkk. In Eq. (1), r� is an objective stress rate, k and l
are the Lamés constants, r is the Cauchy stress, We is the elastic
spin, I is the identity tensor, and tr(d) is the trace operator. Decom-
posing the skew symmetric and symmetric parts of the velocity
gradient into elastic and plastic parts, one derives Eq. (2) that is

written for the elastic stretching De and the elastic spin We. In this

equation, Din is the deviatoric inelastic strain rate, Dth is the

stretching rate due to the thermal expansion, and WP is the plastic

spin assumed to be zero here. Here, D and W denote the total
deformation and spin which are defined by the boundary condi-

tions. As shown by Eq. (3), the deviatoric inelastic flow rule Din that
encompasses the regimes of creep and plasticity is a function of the

kinematic and isotropic ISVs a and R, respectively, and the func-
tions f(T), V(T) and Y(T) which have an Arrhenius-type temperature

dependence. The evolution equations of a and R are presented in a
hardening-minus-recovery format by Eqs. (4) and (5) in which h(T)
and H(T) are the hardening moduli, rd(T) and Rd(T) are the functions
describing dynamic recovery, rs(T) and Rs(T) are the functions rep-
resenting static recovery, and k(�)k is the norm operator. The tem-
perature dependence of these material functions are summarized
in Table 1, where the Ci, i = 1, 18 are material constants or param-
eters. Note that these parameters include sources of uncertainty
reflecting indirectly the variability and incertitude in the material
microstructure. The BCJ plasticity model is implemented in LSDY-
NA as MAT_051 with the material constants in Table 1 defined as
input parameters.

3. BCJ equations for the case of uniaxial stress

The unknown material constants of the BCJ model shown in
Table 1 are determined by comparing model predictions to exper-
imental data from specimens under uniform stress states (e.g.
uniaxial stress–strain curves) at constant temperatures and strain
rates. For the case of uniaxial stress (tension or compression) under
isothermal conditions, the BCJ model equations reduce to

_r ¼ Eð _e� _epÞ ð6Þ

_ep ¼ f ðTÞ sinh
jr� aj � R� YðTÞ

VðTÞ

� �
signðr� aÞ ð7Þ

_a ¼ hðTÞ _ep � rdðTÞj _epj þ rsðTÞ½ �a2signðaÞ ð8Þ

_R ¼ HðTÞj _epj � ½RdðTÞj _epj þ RsðTÞ�R2 ð9Þ



Fig. 1. Quantification of rf, rr, ry from experimental stress strain curve [14].
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where r is the only non-vanishing component of the Cauchy stress
tensor; a, _e, and _ep are the normal components along the principal
axis of tensors a, D, and Din, respectively.

Here, we assume that shortly after the yield point, the plastic
strain rate _ep can be reasonably approximated by the total strain
rate _e, i.e., _e � _ep (viscoplasticity). Also, for each experimental
stress–strain curve, the temperature T and strain rate _e are con-
stant; hence, the variables are mainly functions of strain e. Consid-
ering this fact and employing the chain rule of differentiation, one
can show that for each experimental strain–stress curve, the time
derivatives of a and R can be expressed as: _a ¼ da

dt ¼
_eda
de ;

_R ¼ dR
dt ¼

_edR
de .

Considering these assumptions, Eqs. (7)–(9) can then be written as

_e ¼ f sinh
jr� aj � R� Y

V

� �
signðr� aÞ ð10Þ

_e
da
de
¼ h _e� ½rdj _ej þ rs�a2signðaÞ ð11Þ

_e
dR
de
¼ Hj _ej � ½Rdj _ej þ Rs�R2 ð12Þ

The integration of Eqs. (11) and (12), with the initial values of a and
R set to zero, yields

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _e

ðrd _eþ rsÞ

s
tanh

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _eðrd _eþ rsÞ

p
_e

 !
ð13Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H _e

ðRd _eþ RsÞ

s
tanh

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H _eðRd _eþ RsÞ

p
_e

 !
ð14Þ

By inverting the flow rule in Eq. (10) and substituting Eqs. (13) and
(14), one obtains

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _e

ðrd _eþ rsÞ

s
tanh

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _eðrd _eþ rsÞ

p
_e

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H _e

ðRd _eþ RsÞ

s

� tanh
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H _eðRd _eþ RsÞ

p
_e

 !
þ Y þ Vsinh�1 _e

f

� �
ð15Þ

Eq. (15) describes the stress as a function of the ISVs, strain rate and
temperature.

4. The new physics-guided fitting approach

The ability of the BCJ plasticity model to predict the mechanical
behavior of metals under different temperatures and strain rates is
strongly dependent upon the correct determination of its eighteen
material constants. Recently, Guo et al. [12] determined the BCJ
material constants for Ti–6Al–4 V titanium, AISI 52100 steel, and
6061-T6 aluminum alloy through nonlinear least-squares fitting
of the BCJ model to experimental stress–strain data of the respec-
tive materials. One observation they made was that the arbitrary
choice of starting values for the constants in the nonlinear fitting
procedure does not guarantee the best fit. Considering that no
physical bounds have been established for the eighteen material
constants of BCJ plasticity model, the task of finding the best fit
can be very tedious and present a source of uncertainty. To address
this challenging task, Guo et al. [12] began by fitting approximately
three constants at a time while holding the others fixed, and mon-
itored the fitting improvement by checking the maximum and
average residual (fitting errors) as a reference to tune the constants
in each attempt until a satisfactory fit was obtained. However, that
fitting approach is tedious, nonphysical, and relies heavily on the
numerical aspects of fitting. In fact, all constants can be fitted
simultaneously with stress–strain data at different temperatures
and strain rates with no physical interpretation of the fitting
procedure. That approach also requires a large number of stress–
strain curves, which may not be practical when faced with scarcity
of data for a particular material. In this section, we introduce a
physics-guided numerical fitting approach to address the difficul-
ties in determining the constants of BCJ plasticity model.

For stress–strain curves at a constant temperature, the parame-
ter functions of the BCJ model in Table 1 will have a fixed value for
temperature. The proposed fitting approach suggests fitting of the
parameter functions with two separate sets of stress–strain curves
at low and high temperatures. While reducing the unknown con-
stants from eighteen to nine, this procedure requires the duplica-
tion of the fitting process for sets of stress–strain curves at two
different temperatures. Suppose that for an arbitrary parameter
function Y(T) of the same general form as those in Table 1, i.e.,
Y(T) = C1exp(C2/T), two values (say Y1 and Y2) are known through
fitting the model with two different sets of stress–strain curves
of various strain rates at low temperature T1 and high temperature
T2. Then, constants C1 and C2 can be easily determined using the
following equations:

C2 ¼
T1T2

T2 � T1
ln

Y1

Y2

� �
ð16aÞ
C1 ¼ Y1 exp
�T2

ðT2 � T1Þ
ln

Y1

Y2

� �� �
ð16bÞ

Hence, using the above formulations, material constants that
represent the material behavior at different temperatures and
strain rates can be determined. This decreases uncertainty in the
traditional fitting approach by considering the material behavior
at different temperatures and reducing the number of constants
that need to be fitted simultaneously.

In addition, as will be explained, the proposed fitting method
suggests fitting the unknown constants of the evolution equations
for the hardening variables (Eqs. (11) and (12)) and the equation
for the flow stress (inverse of Eq. (10)) separately in different
stages while keeping the physical link and flow of information
among them. This reduces the fitting of nine parameters to three
at a time in three stages, easing the process of fitting. Details of
the physics-guided numerical fitting approach are provided below.
4.1. Evaluation of hardening parameters

Loading and unloading experiments on many ductile materials
have shown that the flow stress in reverse direction softens sooner
than that of forward direction, as shown in Fig. 1, resulting in the
reduction of reverse flow, a phenomenon known as Baushinger ef-
fect [14]. This behavior is mainly because the mechanical response
of metals in plastic deformation is affected by deformation history
in addition to the current stress state. The physics-guided fitting
approach considers such effects in computing the hardening con-
stants through experimental evaluation of the ISVs a and R using



Table 2
Evaluation of state variables a and R at different strains, temperatures and strain
rates.

e ry (MPa) rf (MPa) rr (MPa) a (MPa) R (MPa)

T = 297 K, _e ¼ 0:1
0.01 454 521 �439 41 26
0.03 454 549 �390 79.5 15.5
0.05 454 583 �363 110 19

T = 673 K, _e ¼ 0:01
0.04 60.3 65.3 �60.3 2.5 2.5
0.31 60.3 63.3 �61.4 0.95 2.05
0.55 60.3 61.8 �59.2 1.3 0.2
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forward-to-reverse yield data of materials at different tempera-
tures and strain rates.

The experimental values of ISVs a and R can be found through
definition of the von-Misses yield surface for both forward and re-
verse loading as given by

jrf � aj � R� ry ¼ 0 ð17Þ

jrr � aj � R� ry ¼ 0 ð18Þ

where rf, rr, ry are the forward yield, reverse yield, and initial yield
stress, respectively (see Fig. 1). As rf � a > 0 and rr� a < 0 (rr < 0),
one can derive from the Eqs. (17) and (18) the expressions fora and R as

a ¼ rf þ rr

2
ð19Þ

R ¼ rf � rr

2
� ry ð20Þ

The constants of the hardening evolution equations are derived as
follows:

� Step 1: Collect forward-to-reverse yield data of material at dif-
ferent strains and strain rates at a low temperature T1.
� Step 2: Quantify experimental values of hardening parameters a

and R using Eqs. (19) and (20) and the collected data in Step 1.
� Step 3: Fit Eqs. (13) and (14) individually using the a and R val-

ues found in Step 2 and the nonlinear least-squares fitting
approach to determine values of the hardening functions h, rs,
rd, H, Rs and Rd for T1.
� Step 4: Repeat Steps 1–3 for a high temperature T2; and
� Step 5: Use Eqs. (16a) and (16b) along with the derived param-

eters of the evolution equations at temperatures T1 and T2 to
solve for the corresponding material constants (C7–C18).

4.2. Evaluation of flow parameters

After computing the 12 hardening constants, the additional six
constants for the flow rule are determined using four stress–strain
curves under monotonic loading: two (low and high strain rates) at
a low temperature and the other two (also low and high strain
rates) at a high temperature. Note that the parameters of the hard-
ening evolution equations in Eq. (15) are known from the fitting
procedure above. Then, the unknown parameters to be fitted in
Eq. (15) are Y, V and f. The step-by-step procedure to determine
the constants of flow rule equation is as follows:

� Step 1: Fit Eq. (15) with two stress–strain curves of high and low
strain rates simultaneously using a genetic algorithm-based
multi-functional nonlinear least-squares fitting at low temper-
ature T1 to determine unknown parameters of Y, V and f.
� Step 2: Repeat Step 1 for high temperature T2.
� Step 3: Use Eqs. (16a) and (16b) along with derived parameters

of flow rule equation at temperatures T1 and T2 to solve for the
corresponding material constants (C1–C6).

4.3. Determination of BCJ constants for AL 7075-T651

As an illustrative example of the presented fitting approach, the
material constants of 7075-T651 aluminum alloy are determined
using the experimental data provided in [14–17]. Forward-
to-reverse yield of this alloy at different strains, temperatures,
and strain rates as shown by Table 2 are used to estimate the
experimental values of a and R. Fitting the hardening evolution
equations of the BCJ model using the data in Table 2 yields the
corresponding material constants C7–C18 as shown in Table 3.
The material constants C1–C6 of the flow rule are computed using
four stress–strain curves at different strain rates and temperatures
(see Fig. 2). Fig. 2 compares the generated stress–strain curves by
the BCJ model using the derived constants in Table 3 with experi-
mental data that are used in the fitting process. As expected, the
generated curves and those from the experiments match very well.
As an additional check, the computed constants in Table 3 are used
to predict the experimental stress–strain curves at other tempera-
tures and strain rates. The predicted and experimental response
curves are shown in Fig. 3. As observed, there is a fairly good agree-
ment between experimental and predicted curves. This verifies the
accuracy of the BCJ material constants using the presented fitting
approach.
5. Uncertainty in BCJ plasticity model

As shown in Table 4, depending on the selected sets of stress–
strain curves at different strain rates and temperatures, the pro-
posed fitting approach produces different values for some of the
BCJ material constants for 7075-T651 aluminum alloy. Note that
for all sets of material constants in Table 4, experimental data pro-
vided by Table 2 is used for determination of hardening constants
(i.e., C7–C18) that take the same values as those in Table 3. How-
ever, different sets of stress–strain curves as shown in Table 5
are used to fit the constants of BCJ flow equation, resulting in dif-
ferent sets of constants (i.e., C1–C6) in Table 4. This variability in the
calculated material constants is mainly because of the uncertainty
in the experimental procedure used to obtain the stress–strain
curves, inherent variability in material properties, existing uncer-
tainty in the numerical nonlinear least-squares fitting process,
and incertitude or lack of knowledge in accurate modeling of the
dynamic behavior of the material using the mathematical formula-
tion of the BCJ plasticity model.

Considering the impact of BCJ material constants on simulation
responses associated with a large deformation process (i.e., deep
drawing, vehicle crash), it is necessary to quantify their uncer-
tainty. Probability theory has been used in several investigations
to model variability when sufficient information exists for defining
each uncertain variable by a specific probability density function
(PDF). Recently, modern approaches such as evidence theory
[18,19], possibility theory [20], interval analysis [21] and imprecise
probability theory [22] have been developed to quantify uncer-
tainty when available knowledge of the problem is imprecise. Klir
and Smith [23] give a detailed classification of these theories by
levels of their generality and show that evidence theory is more
general than the classical probability and possibility theories. Evi-
dence theory offers a framework for modeling both incertitude
(i.e., epistemic uncertainty) and random variability (i.e., aleatory
uncertainty) through a more flexible representation of uncertainty.
Evidence theory has attracted considerable interest in the fields of
artificial intelligence, expert systems, and information fusion since
the 1980s and is gaining increasing recognition in engineering
applications [24–27].



Table 3
Calculated BCJ material constants for 7075-T651 aluminum alloy.

C1 (MPa) C2 (K) C3 (MPa) C4 (K) C5 (1/s) C6 (K) C7 (MPa�1) C8 (K) C9 (MPa)

312.86 154.78 27.2 818.26 6914.10 233.39 9.00 1632.34 148.36

C10 (K) C11 (s/MPa) C12 (K) C13 (MPa�1) C14 (K) C15 (MPa) C16 (K) C17 (s/MPa) C18 (K)

942.28 100.67 2517.12 98.53 171.56 8950.63 279.18 7363.75 3316.82

Fig. 2. Comparison of the fitted curves and the corresponding experimental data.

Fig. 3. Comparison of the predicted curves and the corresponding experimental
data.

Table 4
BCJ material constants for 7075-T651 aluminum alloy obtained using different sets of
stress–strain curves.

No. C1 (MPa) C2 (K) C3 (MPa) C4 (K) C5 (s�1) C6 (K)

1 312.86 154.78 27.21 818.26 6914.10 233.39
2 406.37 182.63 22.67 890.84 7025.54 215.31
3 276.89 67.17 148.32 322.39 5829.39 155.30
4 304.34 167.24 31.88 670.20 7847.90 291.88
5 282.30 169.66 201.96 118.12 6697.24 249.90
6 368.68 247.98 178.41 250.38 8064.66 269.79
7 262.77 87.46 69.57 520.44 6229.10 186.33
8 339.31 205.59 137.33 317.34 6819.30 256.35
9 340.20 180.33 90.16 427.97 7532.25 293.39

10 333.46 167.69 35.31 736.58 7136.29 254.78
11 280.73 216.85 32.62 748.36 7398.12 258.42

Table 5
Testing conditions for the collected experimental data.

Curve No. Ref. No. Temperature (K) Strain rate (s�1)

1 16 297 3100
2 16 297 2400
3 16 297 1300
4 14 297 0.1
5 15 573 10
6 15 573 1
7 15 573 0.1
8 15 573 0.01
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Here, the available data for the BCJ material constants (see Ta-
ble 4) is insufficient for assigning a particular PDF to each one,
and our knowledge of the constants and modeling the dynamic
material behavior of metals is imprecise. Hence, based on the nat-
ure of uncertainty in the BCJ plasticity model and the capabilities of
evidence theory, we adopted this theory for uncertainty modeling
of the BCJ plasticity model.

6. Evidential uncertainty reasoning of BCJ plasticity model

Before applying evidence theory for uncertainty modeling of BCJ
plasticity model, a brief introduction is provided in this section. Evi-
dence theory is also known as the Dempster–Shafer theory due to
the fundamental work by Dempster [18] and Shafer [19]. For the
sample space defined by the finite universal set X = {x1,x2 , . . . ,xn},
the frame of discernment represents all the possible propositions
that can be expressed as the power set of X or P(X) = 2X =
{£, {x1}, {x2} , . . . , {xn}, {x1,x2}, . . . , {x1,xn} , . . . , {x1,x2 , . . . ,xn}}, where
£ is the null set. The degree of belief in a particular proposition
or element of P(X) is quantified by the corresponding basic belief
assignment (BBA) function m such that the three axioms (i.e., I.
m(Ø) = 0, II. m(A) P 0 for A e P(X), and III.

P
AeP(X) {m(A) = 1}) are

satisfied. The focal elements in P(X) with m – 0 describe the so-
called belief structure of x. In evidence theory, the total degree of
belief in proposition B is described by belief and plausibility func-
tions expressed as

BelðBÞ ¼
X
A # B

mðAÞ for all B # X ð21Þ

PlðBÞ ¼
X

A\B–;
mðAÞ for all B # X ð22Þ

where A represents different elements in P(X). Epistemic uncer-
tainty is measured as the gap between plausibility and belief with
probability of proposition B bounded as BelðBÞ 6 PðBÞ 6 PlðBÞ. In
contrast to probability theory, evidence theory suggests that the
belief of a hypothesis and its complement plus the level of igno-
rance equals one or simply Pl(B) + Bel(qB) = 1.

Here, the evidential uncertainty reasoning approach success-
fully applied to uncertainty quantification (UQ) of Johnson–Cook
plasticity model [28] is employed for quantification of uncertainty
in BCJ plasticity model. The UQ framework is outlined by Fig. 4 and
involves three necessary steps (uncertainty representation, propa-
gation and measurement). As it can be realized, for uncertainty
Curve No. Ref. No. Temperature (K) Strain rate (s�1)

9 15 673 10
10 15 673 1
11 15 673 0.1
12 15 673 0.01
13 15 723 10
14 15 723 1
15 15 723 0.1
16 15 723 0.01



Fig. 4. Three stages of UQ of material models.

Fig. 5. Data distribution and the corresponding belief structure for constant C5.
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representation purpose, the UQ framework uses all possible ob-
tained values of BCJ material constants provided by Table 4 in con-
structing separate belief structures for material constants. Then,
metamodels and global optimization methods is used for propaga-
tion of the represented uncertainty through Taylor impact simula-
tions of an AL7075-T651 cylinder using BCJ material model in
finite element analysis. Finally, observed evidence on simulation
responses are used in determination of target propositions to esti-
mate uncertainty measures. Detailed explanation of UQ procedure
with corresponding results is provided here.

6.1. Uncertainty representation

For the purpose of uncertainty representation of BCJ material
constants using evidence theory, separate belief structures for each
uncertain parameter (six material constants of BCJ flow equation)
should be constructed. Here, the derived data for material con-
stants of BCJ plasticity model (see Table 4) reflecting uncertainty
in behavior of the 7075-T651 aluminum alloy is used as available
evidence in the construction of belief structures. The hardening
constants of the model are treated as deterministic since only
one data set (see Table 2) is available for their determination.

Salehghaffari and Rais-Rohani [28] developed a general meth-
odology that can extract the necessary information from available
data, knowledge, and expert opinions for uncertain parameters and
express them in the mathematical framework of evidence theory.
The methodology involves two principal steps (1) representation
of uncertain parameters in interval form using all available data
and expert opinions through drawing bar charts of existing evi-
dence; and (2) categorization of different types of relationship be-
tween all adjacent intervals of uncertainty and determination of a
suitable belief structure that explains correctly the observed rela-
tionship in the context of evidence theory (see Fig. 5 as an exam-
ple). Based on the developed methodology, two adjacent
intervals can be identified as having ignorance, conflict, or agree-
ment relationship. The distinction depends on the number of data
points in each interval. For example, the belief structures for igno-
rance (number of data points in one interval is far greater than
those in its adjacent interval) and conflict (number of data points
in each interval is large enough to support that interval) relation-
ships take the form of Eqs. (23) and (24), respectively.

mðfI1gÞ ¼
D1

D1 þ D2
ð23aÞ

mðfI1; I2gÞ ¼
D2

D1 þ D2
ð23bÞ

mðfI1gÞ ¼
D1

D1 þ D2
ð24aÞ

mðfI2gÞ ¼
D2

D1 þ D2
ð24bÞ

where D1 and D2 are the number of data points in adjacent intervals
I1 and I2, respectively. When two adjacent intervals have nearly
equal number of data points, they are said to be in agreement and
the two intervals are combined into a single one. The BBA expres-
sions in Eqs. (23) and (24) indicate how the degree of belief in
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one or more intervals would be calculated. The reader is referred to
[28] for further details on representation of uncertain parameters in
intervals with assigned BBA.

Following this methodology, a separate belief structure for each
uncertain material constant is constructed for 7075-T651 alumi-
num alloy (see Table 6) using the data provided in Table 3. As an
example, the dataset used to construct a belief structure for con-
stant C5 along with the corresponding belief structure is shown
in Fig. 5.

6.2. Uncertainty propagation

A nonlinear finite element analysis (FEA) of Taylor impact test
of a 7075-T651 aluminum alloy solid cylinder is used for propaga-
tion of the represented uncertainty in Table 6. Simulation re-
sponses of large deformation process are affected by all material
constants of BCJ plasticity model. To determine the effects of all
uncertain material constants, a joint belief structure of their repre-
sented uncertainty should be constructed before the uncertainty
can be propagated. A joint belief structure is similar in nature to
the joint probability density function in probability theory
[24,25], and is obtained by Cartesian products of the constructed
belief structures of all uncertain parameters [24–27] (see Table 6).
This considers all possible combinations of intervals for six mate-
rial constants of the BCJ flow equation in separate propositions of
the joint belief structure. In fact, each joint proposition includes
six intervals corresponding to constants C1–C6. The BBA of each
joint proposition is obtained by multiplication of the final BBA
found for each interval of one material constant with those of
the other material constants involved in the Cartesian product.

In the context of evidence theory, uncertainty propagation
means determination of bounds (intervals) of structural response
in each proposition of the joint belief structure. To propagate the
represented uncertainties of BCJ constants, final deformed length
and radius of the selected cylinder, which are the two main mea-
sures of plastic deformation, are considered as structural response.

Unlike the joint probability density function, a joint belief struc-
ture cannot be expressed by an explicit function as it includes a
number of disjoint propositions, each of which gives one possible
combination of intervals for uncertain variables. Propagation of
the joint belief structure requires the evaluation of system re-
sponse for every combination of uncertain parameter values with-
in each joint proposition with the aim of finding the corresponding
bounds of the structural response. Performing a nonlinear FEA for
every point within each joint proposition is impractical. To reduce
the computational cost, we rely on design and analysis of computer
experiments and use the following steps for uncertainty propaga-
tion as outlined by Fig. 4:

1. Latin hypercube sampling (LHS) technique is adopted to gener-
ate 60 separate samples (training points) for material constants
C1–C6 of BCJ plasticity model. The universal set that spans over
the constructed belief structures for all six uncertain material
Table 6
Belief structures of material constants of BCJ flow equation for 7075-T651 aluminum allo

Interval No. C1 C2

Range BBA Range

1 [262.03, 310.17] 5/11 [127.89
2 [310.17, 358.31] 4/11 [67.95,
3 [310.17, 406.45] 2/11 [187.83

C4 C5

1 [633.9,890.34] 5/11 [6574.7
2 [375.85,890.34] 2/11 [7319.6
3 [118.6,375.85] 4/11 [5829.9
constants of BCJ flow equation as shown in Table 6 are consid-
ered in selecting the bounds for generation of the random sam-
ples (uncertain material constants).

2. For each training point, we performed FE simulation of Taylor
impact test on the cylinder with a 30-mm length and 4.85-
mm radius colliding with a velocity of 267 m/s into a rigid plate
using an explicit nonlinear FE code LS-DYNA, v 971. The derived
hardening constants of BCJ plasticity model (constants C7–C18)
in Table 3 are used in all FE simulations while flow constants
(C1–C6) are determined by the generated training points.

3. With 60 training points and their responses identified in steps 1
and 2, accurate surrogate models based on Radial Basis Func-
tions (RBFs) are developed to establish an explicit relationship
between material constants of BCJ flow equation and the final
deformed radius and length. RBF has been used successfully
in several investigations for fitting a wide range of response
functions with different forms of nonlinearly and dimensional-
ity [29,30]. Since RBF is an interpolation model, ten randomly
selected design points (different from any of the training points)
within the global bounds of the material constants of BCJ flow
equation are used as test points for the evaluation of error sta-
tistics to ensure sufficient accuracy of the constructed RBF-
based surrogate models.

4. Finally, with each joint proposition providing the bounds or side
constraints for material constants of flow equation for BCJ plas-
ticity model, a global optimization (i.e., Genetic Algorithm)
technique is applied to the constructed RBF metamodels to find
the minimum and maximum values of structural response
(radius and length of the deformed cylinder). This procedure
is repeated for all the joint propositions of material constants
to find the corresponding belief structure for deformed radius
and length of cylinder. Hence, the propagated belief structure
for structural response is obtained.

6.3. Uncertainty measurement

In the context of evidence theory, uncertainty quantification re-
quires assessment of uncertainty measures (belief, plausibility) for
a defined target proposition set using the obtained propagated be-
lief structure. Konokman et al. [31] reported an experimental de-
formed length of 26.40 mm and radius of 5.76 mm for the
cylinder with the same material and geometric properties as those
used here for Taylor impact simulations. Here, we define 90% and
95% precision intervals for experimental deformed length and ra-
dius of the cylinder and consider them as target proposition set
for estimation of uncertainty measures.

To quantify the uncertainty of the BCJ plasticity model, we add
BBA of those propagated intervals covered by experimental preci-
sion intervals to find belief and add BBA of those intervals inter-
secting the experimental precision interval to determine
plausibility according to Eqs. (21) and (22), respectively. The esti-
mated belief and plausibility for 90% and 95% experimental preci-
sion intervals for both deformed radius and length are provided in
y.

C3

BBA Range BBA

,187.83] 6/11 [22.30,81.94] 6/11
187.83] 2/11 [22.30,141.57] 2/11
,247.77] 3/11 [141.57,201.21] 3/11

C6

,7319.6] 5/11 [241.26,291.49] 7/11
,8064.4] 4/11 [155.81,291.49] 4/11
,7319.6] 2/11



Table 7
Estimated belief and plausibility for experimental precision intervals of deformed length and radius.

Precision (%) Deformed length (mm) Deformed radius (mm)

Bel Pl Bel Pl

90 0.004 0.928 0.001 0.897
95 0.002 0.899 0.001 0.891
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Table 7. As indicated, the estimated values of belief and plausibility
for experimental precision intervals of deformed length are slightly
higher than those of the deformed radius. Also as expected, for
both deformed length and radius, the estimated values of uncer-
tainty measures of 90% precision intervals are higher than those
of 95% precision intervals. The gap between belief and plausibility
for experimental precision intervals is indicative of epistemic
uncertainty embedded in the BCJ plasticity model. The high esti-
mated values of plausibility for precision intervals (target proposi-
tion sets) indicate that the presented approach is valid for
determination of the BCJ material constants. It also verifies the
accuracy of the model to simulate a large deformation process.

7. Conclusions

A physics-guided numerical fitting approach was presented for
determination of the material constants of the BCJ plasticity model.
The suggested approach relies on the underlying physics at differ-
ent stages of the fitting process. The approach used experimental
data on forward-to-reverse yield of 7075-T651 aluminum alloy to
determine the material constants of the hardening equations while
considering the Baushinger effects. Four stress–strain curves at dif-
ferent strain rate and temperature ranges were used to derive the
material constants of the flow equation. Moreover, an evidential
uncertainty quantification method was employed to quantify the
uncertainty in the model as well as the presented numerical fitting
approach. Different groups of stress–strain curves were used to ob-
tain all possible values of material constants for the flow equation.
The data obtained were used to represent existing uncertainty in
the material constants that were propagated through FE Taylor im-
pact simulations of 7075-T651 aluminum alloy cylinder. Based on
the results of this study, the following conclusions are drawn:

� The proposed fitting method considers the underlying physics
in finding the constants of BCJ material model.
� By separating the fitting process into separate stages, the pro-

cess of fitting the material constants was simplified.
� The predicted stress–strain curves at different temperatures

and strain rates showed good agreement with the experimental
data.
� The evidential reasoning approach provided the necessary

framework for uncertainty quantification of material constants
in BCJ material model by considering both aleatory and episte-
mic uncertainties.

Uncertainty quantification results indicated the validity of the
presented numerical fitting approach and the capability of the
model to simulate large deformation processes.
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