Assessing statistical climate variability from the TAO buoy array

NGI Project File Number: 12-NGI2-24 Pat Fitzpatrick and Yee Lau Mississippi State University

• The objective is to determine the statistical oceanographic variability in the upper 500 meters of the Central Pacific Ocean over the past two decades.

• A statistical analysis of equatorial Pacific data for 65 TAO/TRITON sites was performed to facilitate NDBC QC algorithms.

• ENSO relationships to TAO data for possible QC inclusion

- Data analyzed:
 - i. longwave radiation
 - ii. downwelling shortwave radiation
 - iii. precipitation
 - iv. surface meteorology values (air temperature, wind speed and direction, air pressure, surface water temperature, relative humidity)
 - v. subsurface salinity
 - vi. subsurface water temperature.

• Most products are embedded in PowerPoints or Excel files, and are generated using a combination of Microsoft's Visual Basic for Application (VBA) code, GMT, R, and shell scripts.

- Data plots include:
 - i. Box plots and whiskers
 - ii. Histograms
 - iii. Temporal scatterplots
 - iv. Statistical tables (lifetime, and monthly)

• ENSO relationships to Niño 3, Niño 3.4, Niño 4 Southern Oscillation Index (SOI), the Trans-Niño Index (TNI), and the Oceanic Niño Index (ONI):

- i. Overlays of El Niño Climate Indices on temporal scatterplots
- ii. Correlation matrix
- iii. Scatterplots of variables for r>|0.7|, with regression equation, confidence intervals, and prediction intervals
- iv. Spatial plots of ENSO teleconnection correlations, including depth patterns

Figure 3. Example of longwave radiation box and whisker plots for the buoy located on the equator at 165°E. An instance of daily observations with year on x axis for July is shown on the left, and two-minute observations with hour on x axis for July 2007 is shown on the right. The box ranges are from the 25th to 75th percentiles, known as the interquartile range, with a line depicting the median. The arms of the box plot extend out to all observations within 1.5 times the interquartile range above the 75th percentile, and the same distance below the 25th percentile. Points outside those bands are outliers.

(11 buoys for longwave, 23 for shortwave)

Figure 4. Example of histogram plots for rain rate (mm h⁻¹) in ten-minute intervals for the buoy located on the equator at 95°W. An instance of annual data distribution in 2007 is shown on the left, and February 2007 shown on the right. Note the contaminated negative values.

(28 buoys)

Figure 9. Examples of different types of monthly surface analysis plots for the equatorial buoy located at 95°W, all valid for 00 UTC SST data in January. Top left: Scatterplot for daily value on y axis and year on the x axis. Bottom left: Scatterplot of monthly averages of the data in the top left, superimposed with a trend line for a climate index (in this case, the Southern Oscillation Index, or SOI). Top right: histogram of frequency tallies versus SST. Bottom right: same dataset as in top left, but a box and whisker plot. Note how SOI and monthly mean SST are somewhat inversely correlated, but as will be seen, the correlation is a modest -0.26 (Fig. 10).

(65 buoys)

Statistics for lifetime of each buoy, per variable

里)	A CARAGE IS		TAO-MonthlyAvgStatistics-AllYearsAllMonthz-00-12 Microsoft Excel										
2	Home Insert	Page Layout For	mulas Data Revi	ew View Add-In	s Acrobat								
3	¥ Cut	Calibri - 11	- A' A' = =	😦 🏶 - 🛛 🚍 Wa	rap Text G	ieneral -			Σ Autos	· 27 A			
ste	-д Сору	B / U . U.	- A - E		erne & Center -		Conditional Format as Ce	i Insert Delete	Format	Sort & Find			
	Format Painter			and activity of the	and a country of the	- 10 - 10 - 4	Formatting * Table * Style	s	2 Clear	Filter * Sele			
	lipboard /*	Font	(*)	Alignment	2 L	Number	Sh/es	Cells		Edting			
_	A1 •	C fe Stat	tion Name			3423 82	- 1			14			
	A	В	С	D	E	F	G	н	1.	1			
	Station Name	Minimum (t0)	1st Qu (t0)	Median (t0)	Mean (t0)	3rd Qu (t0)	Maximum (t0)	Std Dev (t0)		Minimum			
	met0n110w	20.55	23.18	24.52	24.62	25.75	30.14	1.92		19.93			
	met0n125w	21.88	24.22	25.2	25.29	26.3	29.43	1.66		21.40			
	met0n140w	22.23	25.42	26.21	26.23	27.06	29.98	1.42		21.92			
	met0n147e	28.56	29.28	29.5	29.53	29.8	30.37	0.38		28.73			
	met0n155w	23.82	26.17	27.16	27.08	28.02	30.21	1.35		23.5			
	met0n156e	28.23	29.16	29.4	29.38	29.67	30.39	0.45		28.3			
	met0n165e	26.95	28.9	29.54	29.35	29.93	30.5	0.76		26.9			
	met0n170w	24.77	27.33	28.24	28.06	28.95	30.5	1.24		24.6			
	met0n180w	25.62	27.66	28.61	28.45	29.38	30.6	1.14		25.58			
	met0n95w	18.67	22.16	23.88	24.12	26	30,48	2.41		18.6			
	met2n110w	23.33	25.07	26.08	26.21	27.21	29.92	1.49		23.12			
	met2n125w	23.35	25.46	26.32	26.37	27.32	29.32	1.36		23.13			
	met2n137e	27.26	28,78	29.27	29.16	29.7	30.24	0.69		27.4			
	met2n140w	23.48	26.11	27.07	26.9	27.74	29.8	1.23		23.3			
	met2n147e	28.89	29.4	29.54	29.6	29.91	30.12	0.37		29.03			
1	met2n155w	24.71	27.21	27.84	27.76	28.44	29.96	1.04		24.5			
	met2n156e	27.93	28.99	29.25	29.27	29.64	30.17	0.5		28.0			
	met2n165e	27.73	29	29.41	29.34	29.79	30.47	0.6		27.74			
	met2n170w	25.21	27.48	28.22	28.16	29.03	30.36	1.14		25.1			
	met2n180w	26.04	28.01	28.76	28.69	29.44	30.71	1.02		25.99			
	met2n95w	23.7	25.65	26.46	26.65	27.61	30.72	1.36		23.58			
	met2s110w	20.67	23.3	24.82	24.95	26.44	29.74	1.97		20.16			
	met2s125w	22.61	24.76	25.81	25.89	27	29.94	1.49		22.03			
	met2s140w	22.8	26.09	26.99	26.86	27.71	30.08	1.32		22.3			
	met2s155w	24.7	27.07	27.88	27.83	28.49	30.26	1.05		24.52			
	met2s156e	28.23	29.21	29.42	29.47	29.8	30.59	0.45		28.25			
	met2s165e	27.83	29.27	29.71	29.62	30	30.81	0.54		27.87			
	met2s170w	25.4	27.91	28.77	28.6	29.3	30.73	1		25.28			
	met2s180w	26.21	28.3	29.19	28.97	29.7	30.76	0.97		26.19			
-	mat 2:05	10.3	21 84	22.22	22.07	36.45	30	3.50		17.0			

Figure 7. Portion of spreadsheet showing statistical metrics for the lifetime of the each buoy, based on monthly averages. Spreadsheet tabs exist for SST, air temperature, wind speed, zonal wind, and meridional wind. Statistical metrics include minimum, 1st quartile, median, mean, 3rd quartile, maximum, and standard deviation. Columns B through H are for 00 UTC, while columns J through P are for 12 UTC (cutoff in figure). Each station is listed in Column A, and if it's highlighted in blue, the station has at least one moderate to strong correlation to a climate index (when r>|0.7|) with the surface variable. Clicking on these highlighted names will open a PowerPoint with correlation metrics, discussed in Figure 8.

Statistics for each month per buoy, one spreadsheet per variable

A B C 0 E F G H I J K L M N O me0h700v 703/M1(0) Tog3CQL(0) Tog3CQL(0) <th></th>															
jong Man() Crig Intol (VII) Orig Stal (VIII) New King (VIII) New Mac (VIII) New Mac (VIII) New Mac (VIII) New Mac (VIIII) New Mac (VIIIII) New Mac (VIIIII) New Mac (VIIIIII) New Mac (VIIIIII) New Mac (VIIIIIII) New Mac (VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	A	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
metholize 19.79 23.85 25.64 20.06 19.1 37.2 20.48 23.45 24.52 25.54 20.84 15.7 390 metholizes 21.35 23.65 25.64 22.75 7.76 37.1 21.35 23.65 24.42 24.36 25.51 28.68 28.55 30.27 0.4 98 metholizes 23.75 23.85 23.85 23.85 23.85 30.27 0.4 98 metholizes 23.09 24.45 27.46 30.04 17 610 23.06 28.55 23.65 23.65 30.07 30.63 0.56 122 metholizes 23.33 30.16 30.63 0.58 123 28.18 23.22 29.57 28.64 28.49 20.17 30.63 0.56 37.1 metholizes 25.06 27.70 28.04 25.05 23.35 30.02 30.63 0.56 123 metholizes 27.33 23.04 1.08 42.2 20.62 23.34 24.18 24.23 25.11 23.83	tion Name	Orig Min (t0)	Orig 1st Qu (t0)	Orig 3rd Qu (t0)	Orig Max (t0)	Orig SD (t0)	Orig Size (t0)	New Min (t0)	New 1st Qu (t0)	New Median (t0)	New Mean (t0)	New 3rd Qu (t0)	New Max (t0)	New SD (t0)	New Size (
methology 213 235 254 2273 176 371 2136 2368 2442 2436 2521 2869 122 341 metholiku 2213 2466 2553 30.47 162 555 22.35 23.55 23.55 23.55 30.27 0.4 98 metholiku 23.06 24.95 23.06 24.95 23.65 23.55 23.55 30.04 1.7 610 metholike 27.93 23.31 30.16 30.63 0.58 122 23.67 23.64 26.42 27.48 30.04 1.7 610 metholike 28.12 28.13 23.65 23.33 30.02 30.86 0.86 371 metholike 24.25 28.21 27.61 28.98 30.86 165 559 metholike 24.25 26.21 27.92 27.61 28.98 30.86 165 559 metholike 20.62 23.39 20.62 23.34 24.18 24.18 24.23 25.1 28.33 133	met0n110w	19.79	23.55	25.68	30.06	1.91	372	20.48	23.54	24.63	24.52	25.54	28.84	1.57	350
metholiku 2213 2486 26.53 30.47 162 555 22.65 25.66 25.58 28.36 28.52 132 538 meth/15% 23.08 24.95 27.48 30.04 1.7 610 23.08 24.95 28.64 26.46 26.42 27.48 30.04 1.7 610 meth/15% 23.08 24.95 28.64 28.64 26.42 27.48 30.04 1.7 610 meth/16% 27.93 29.31 30.16 30.63 0.58 123 28.18 29.32 28.57 28.44 30.07 30.63 0.56 127 meth/16% 27.53 28.94 30.05 165 559 24.25 28.21 27.92 27.61 28.98 30.065 165 559 meth/16% 20.62 23.34 20.62 27.94 30.10 13.93 403 25.06 27.07 28.94 30.95 165 559 meth/16% 20.42 23.33 0.65 165 559 24.45 28.21 27.91	met0n125w	21.35	23.65	25.64	29.79	1.76	371	21.35	23.56	24.42	24.36	25.21	28.59	1.22	341
metholf/re 2875 29.06 29.86 30.27 0.4 98 28.75 29.05 29.16 29.36 29.36 30.27 0.4 98 metholf56 27.93 29.31 30.16 30.63 0.59 123 28.13 29.25 29.64 30.17 30.63 0.56 112 metholf56 27.93 29.31 30.16 30.65 0.59 123 28.13 29.25 29.64 30.17 30.63 0.56 122 metholf56 25.02 28.84 30.01 30.86 0.88 378 27.18 28.84 29.56 29.35 30.02 30.86 0.8 371 metholf50w 25.06 27.08 27.71 28.02 29.49 30.19 1.39 403 vector 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 Instant 20.62 23.84 29.67 29.57 0.46 57.6 29.13 23.13 29.72 0.78 48.6 methof56 28.38 28.2	met0n140w	22.13	24.86	26.53	30.47	1.62	565	22.35	24.83	25.66	25.58	26.36	28.5	1.32	528
methology 23.08 24.95 27.48 30.04 17 610 23.08 24.95 26.46 26.42 27.48 30.04 17 610 methologe 27.33 29.31 30.6 0.63 0.58 122 28.13 29.57 29.64 30.02 30.66 0.68 371 methologe 28.12 28.94 30.01 30.86 0.88 378 27.18 28.94 29.56 23.33 30.02 30.66 0.88 371 methologe 27.69 27.71 28.94 30.15 155 559 24.45 26.21 27.92 27.61 28.98 30.85 155 559 methologe 20.62 23.39 30.65 166 422 20.62 23.34 24.18 24.23 25.1 28.33 133 393 methologe 28.58 29.56 29.38 28.56 29.31 29.33 29.57 29.35 0.54 123 methologe 27.5 28.68 29.61 27.75 28.65 29.13 29.13<	met0n147e	28.75	29.05	29.56	30.27	0.4	98	28.75	29.05	29.16	29.35	29.56	30.27	0.4	98
meton56e 27.93 28.31 30.16 30.63 0.58 123 28.13 29.32 29.57 29.64 30.17 30.63 0.56 122 meton556 26.12 28.84 30.01 30.66 0.88 378 27.18 28.94 29.56 29.39 30.02 30.86 0.8 371 meton160w 25.06 27.08 22.43 30.19 133 403 25.06 27.08 27.71 28.02 29.49 30.19 139 403 meton50w 20.62 23.39 25.36 30.46 186 422 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 meton566 28.33 28.56 29.57 29.56 0.54 123 28.33 28.56 29.17 28.33 0.00 0.99 meton566 26.33 28.56 29.67 29.55 0.54 123 28.38 28.17 29.13 29.67 29.55 0.54 123 meton566 26.33 20.00 21.7 28.88 <td>met0n155w</td> <td>23.08</td> <td>24.95</td> <td>27.48</td> <td>30.04</td> <td>1.7</td> <td>610</td> <td>23.08</td> <td>24.95</td> <td>26.46</td> <td>26.42</td> <td>27.48</td> <td>30.04</td> <td>1.7</td> <td>610</td>	met0n155w	23.08	24.95	27.48	30.04	1.7	610	23.08	24.95	26.46	26.42	27.48	30.04	1.7	610
methol55e 26.12 28.84 30.01 30.86 0.88 378 27.8 28.94 29.56 29.39 30.02 30.86 0.88 371 medin170w 24.25 26.21 22.88 30.85 165 559 24.25 26.21 27.92 27.61 28.98 30.85 165 559 medin170w 24.02 23.39 25.36 30.46 186 422 20.62 23.34 24.18 24.23 25.1 28.33 133 403 medin176w 20.62 23.39 25.36 30.46 1.86 422 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 medin176w 20.07 21.43 23.35 0.69 915 21.45 26.62 23.31 28.57 29.55 0.54 123 medin176w 20.07 21.43 23.83 28.56 29.13 29.13 29.67 29.95 0.54 123 medin176w 20.07 25.65 23.81 28.65 29.13 29.67 29	met0n156e	27.93	29.31	30.16	30.63	0.58	123	28.13	29.32	29.57	29.64	30.17	30.63	0.56	122
methon Trow 24.25 26.21 29.88 30.85 165 559 24.25 26.21 27.92 27.61 28.88 30.85 165 559 methon Blow 25.06 27.08 27.08 27.08 27.71 28.02 29.49 30.19 1.33 403 methon Blow 25.06 23.34 24.18 24.23 25.1 28.33 1.33 403 methon Blow 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 methon Blow 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 methon Blow 20.62 23.34 24.18 24.23 25.1 28.33 1.33 393 methon Blow 20.62 23.8 24.56 23.11 24.18 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 25.1 24.23 <td>met0n165e</td> <td>26.12</td> <td>28.84</td> <td>30.01</td> <td>30.86</td> <td>0.88</td> <td>378</td> <td>27.18</td> <td>28.94</td> <td>29.56</td> <td>29.39</td> <td>30.02</td> <td>30.86</td> <td>0.8</td> <td>371</td>	met0n165e	26.12	28.84	30.01	30.86	0.88	378	27.18	28.94	29.56	29.39	30.02	30.86	0.8	371
methonBow 25.06 27.08 27.10 28.02 29.49 30.19 1.39 403 methonBow 20.62 23.33 25.36 30.46 1.86 422 20.62 23.34 24.18 24.23 25.11 28.33 1.33 403 methonBow 20.62 23.34 24.18 24.23 25.11 28.33 1.33 333 methonBow 20.07 21.43 20.07 21.43 20.07 23.33 0.00 0.05 20.46 23.34 24.18 24.23 25.11 28.33 1.33 333 methonBow 20.07 21.43 20.45 21.46 21.46 24.23 26.11 24.63 23.53 0.00	met0n170w	24.25	26.21	28.98	30.85	1.65	559	24.25	26.21	27.92	27.61	28.98	30.85	1.65	559
methodsiw 20.62 23.39 25.36 30.46 186 422 20.62 23.34 24.18 24.23 25.1 28.33 1.33 333 methodsiw c0.07 c2.045 c0.45 c0.01 c7.05 c0.45 c2.35 0.00 014 methodsis 28.38 28.56 29.67 29.35 0.00 915 c0.45 c0.11 c7.05 c0.45 c2.35 0.00 914 methodsis 28.38 28.56 29.67 29.35 0.54 123 28.38 28.56 29.13 29.13 29.67 29.95 0.54 123 methodsis 27.6 28.58 29.18 29.78 0.46 557 27.81 28.58 28.87 28.89 29.18 29.78 0.46 556 methodsis 28.07 27.5 28.03 29.07 29.54 0.61 449 27.08 28.31 28.86 29.39 29.03 29.72 0.78 446 25.09 25.61 27.1 27.65 29.45 0.61 4494	met0n180w	25.06	27.08	29.49	30.19	1.39	403	25.06	27.08	27.71	28.02	29.49	30.19	1.39	403
Participation 20.07 27.23 20.93 20.96 27.26 20.11 27.06 20.93 23.33 0.00 94 metSn1556 28.38 28.56 29.67 29.95 0.54 123 28.38 28.56 29.13 29.13 29.67 29.95 0.54 123 metSn1556 27.6 28.58 29.18 29.72 0.78 446 557 27.81 28.89 28.87 28.89 29.03 29.72 0.78 446 metSn150w 26.01 27.75 29.03 29.72 0.78 446 25.01 27.75 28.66 28.39 29.03 29.72 0.78 446 metSn150w 26.9 26.49 27.68 30.07 0.93 444 27.08 28.81 28.62 29.08 29.74 0.64 422 metSn150w 24.65 26.49 27.68 30.07 0.33 434 24.85 26.44 26.96 27.1 27.65 29.45 0.64 422 metSn150w 23.56 24.61 25.53	met0n95w	20.62	23.39	25.36	30.46	1.86	422	20.62	23.34	24.18	24.23	25.1	28.33	1.33	393
metsinifise 28.38 28.56 29.67 29.95 0.54 123 28.38 28.56 29.13 29.13 29.67 29.95 0.54 123 metsinifise 27.6 28.58 29.18 29.78 0.46 557 27.81 28.58 28.87 28.89 29.18 29.78 0.46 556 metsinifise 26.01 27.75 28.66 28.39 28.39 29.33 29.72 0.78 496 metsinifise 26.9 28.28 29.07 29.54 0.63 494 27.08 28.31 28.81 28.62 29.08 29.72 0.78 496 metsinifise 24.85 26.49 27.68 29.07 29.53 0.64 498 metsinifise 24.85 26.49 26.45 26.36 27.1 27.65 29.45 0.64 422 metsinifise 24.61 25.53 26.92 0.58 432 23.56 24.61 25.09 25.77 25.53 26.45 0.68 432 metsititow 24.04 25	metornoow	23.07	21.23	20.43	23.33	U.00	010	ZU.40	21.20	20.11	27.00	20.4J	23.33	0.00	U 14
met5n56e 28.38 28.56 29.13 29.13 29.67 29.95 0.54 123 met5n156e 27.6 28.58 29.18 29.18 29.78 0.46 557 27.81 28.58 28.67 28.89 29.18 29.18 29.78 0.46 556 met5n170w 26.01 27.75 29.03 29.72 0.78 496 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 met5n170w 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 met5n180w 26.9 28.28 28.61 28.65 28.31 28.65 29.03 29.72 0.78 496 met5n180w 24.85 26.49 27.65 29.03 29.72 0.78 434 24.85 26.48 26.96 27.1 27.65 29.45 0.61 489 met5n180w 23.55 24.61 25.53 26.54 29.33	metornoow	20.07	21.23	20.43	23.33	U.00	UID	20.40	21.20	20.11	27.00	20.43	23.33	0.00	U 14
metsnibbe 27.6 28.68 29.18 29.78 0.46 557 27.81 28.88 28.87 28.89 29.18 29.78 0.46 556 metsnibbe 26.01 27.75 29.03 29.72 0.78 496 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 metsnibbe 26.9 28.28 29.07 29.03 29.72 0.78 496 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 metsnibbe 26.9 28.28 29.07 25.54 0.63 494 27.08 28.81 28.65 28.93 29.08 29.72 0.78 496 metsnibbe 24.85 26.49 27.65 29.04 0.61 489 29.78 28.61 25.53 26.45 0.84 422 metsnibo 23.56 24.61 25.53 26.54 29.34 0.97 525 24.04 25.99 25.07 25.53 26.47 27.57 0.69 494 metsnibo 24.	meton 156e	28.38	28.55	29.67	29.95	0.54	123	28.38	28.56	29.13	29.13	29.67	29.95	0.54	123
metbr/T/W 26.01 27.75 28.03 29.72 0.78 495 26.01 27.75 28.66 28.39 29.03 29.72 0.78 496 metbr/T/W 26.9 28.28 29.07 29.54 0.63 494 27.08 28.31 28.81 28.62 29.08 29.54 0.61 489 metbr/T/W 24.85 26.49 27.63 28.01 27.75 28.66 28.31 28.62 29.08 29.54 0.61 489 metbr/T/W 24.85 26.49 27.63 28.64 29.08 29.04 25.07 25.07 25.07 26.47 27.57 0.69 494 metbr/T/W 24.04 25.39 26.41 27.3 28.67 0.68 503 26.47 27.57 0.68 503 552 25.46 27.13	met5n165e	27.6	28.58	29.18	29.78	0.46	557	27.81	28.58	28.87	28.89	29.18	29.78	0.46	556
metbn80w 26.9 28.28 29.07 29.54 0.63 494 27.08 28.31 28.81 28.62 29.08 29.54 0.61 489 metbn95w 24.85 26.49 27.68 30.07 0.93 434 24.85 26.48 26.96 27.1 27.65 29.45 0.84 422 metbs10w 23.56 24.61 25.53 26.42 0.84 25.07 25.53 26.45 0.84 422 metbs125w 24.04 25.45 26.54 29.35 24.61 25.09 25.07 25.53 26.45 0.88 431 metbs125w 24.04 25.45 26.54 29.35 26.47 27.77 0.69 434 metbs140w 24.82 25.46 27.13 28.61 26.89 26.91 27.3 28.67 0.68 503 metbs1540w 24.62 25.65 31.41 112 552 25.46 27.13 27.77 27.93 28.95 31.41 112 552 metbs155w 25.46 27.13 <t< td=""><td>met5n1/Uw</td><td>26.01</td><td>27.75</td><td>29.03</td><td>29.72</td><td>0.78</td><td>496</td><td>26.01</td><td>27.75</td><td>28.66</td><td>28.39</td><td>29.03</td><td>29.72</td><td>0.78</td><td>496</td></t<>	met5n1/Uw	26.01	27.75	29.03	29.72	0.78	496	26.01	27.75	28.66	28.39	29.03	29.72	0.78	496
metsofsw 24.85 26.49 27.88 30.07 0.93 434 24.85 26.48 26.96 27.1 27.85 29.45 0.84 422 metsof10w 23.56 24.61 25.07 25.07 25.33 26.45 0.58 431 metsof10w 23.56 24.04 25.99 25.07 25.33 26.45 0.58 431 metsof2510w 24.04 25.39 25.08 25.9 26.47 27.77 0.69 444 metsof2510w 24.64 25.39 25.65 26.92 26.47 0.68 503 metsof40w 24.82 25.46 27.13 28.77 27.37 0.69 503 metsof55w 25.46 27.13 26.71 27.33 28.67 0.68 503 metsof55c 28.24 29.26 30.13 31.3 0.62 20.66 28.24 29.26 29.64 29.7 30.13 31.3 0.62 20.66 metsof55c 28.37 29.4 30.01 31.23 0.45 494 28.59	met5n180w	26.9	28.28	29.07	29.54	0.63	494	27.08	28.31	28.81	28.62	29.08	29.54	0.61	489
metes110w 23.56 24.61 25.03 26.53 26.45 0.58 431 metes110w 23.56 24.04 25.09 25.07 25.53 26.45 0.58 431 metes125w 24.04 25.45 26.45 0.97 525 24.04 25.39 25.86 25.9 26.47 27.57 0.69 494 metes140w 24.82 26.52 27.39 31.27 1.05 544 25.23 26.51 26.89 26.91 27.3 28.67 0.68 453 metes150bw 25.46 27.13 28.95 31.41 1.12 552 25.46 27.13 27.77 27.93 28.95 31.41 1.12 552 metes15be 28.24 29.26 30.13 31.3 0.62 20.66 28.24 29.64 29.7 30.13 31.3 0.62 206 metes165e 28.37 29.4 30.01 31.23 0.45 494 28.59 29.4 29.68 29.7 30.13 31.3 0.62 206 metes1	met5n95w	24.85	26.49	27.68	30.07	0.93	434	24.85	26.48	26.96	27.1	27.65	29.45	0.84	422
metestbw 24.04 25.45 26.54 29.34 0.97 525 24.04 25.39 25.86 25.9 26.47 27.57 0.69 494 metestbw 24.82 26.52 27.39 31.27 1.05 544 25.23 26.51 26.91 27.3 28.67 0.69 494 metestbs 25.46 27.13 28.95 31.41 1.12 552 25.46 27.13 27.77 27.93 28.95 31.41 1.12 552 25.46 27.13 27.77 27.93 28.95 31.41 1.12 552 26.47 29.64 29.7 30.13 31.3 0.62 206 mets/s165e 28.37 29.4 30.01 31.23 0.45 494 28.59 29.4 29.68 29.7 30.13 31.3 0.62 206 M January March April May June September October November December Sheet1 I I I I	met5s110w	23.56	24.61	25.53	26.92	0.58	432	23.56	24.61	25.09	25.07	25.53	26.45	0.58	431
metes 140w 24.82 26.52 27.39 31.27 105 544 25.23 26.51 26.89 26.91 27.3 28.67 0.68 503 metes 155w 25.46 27.13 28.95 31.41 112 552 25.46 27.13 27.77 27.93 28.95 31.41 112 552 metes 156e 28.24 29.26 30.13 31.3 0.62 20.6 28.24 29.26 29.7 30.13 31.3 0.62 20.6 metes 155e 28.37 29.4 30.01 31.23 0.45 494 28.59 29.4 29.68 29.7 30 30.9 0.44 490 January February March April May June July August September October November December Sheet1 Sh	met5s125w	24.04	25.45	26.54	29.34	0.97	525	24.04	25.39	25.86	25.9	26.47	27.57	0.69	494
metssbbw 25.45 27.13 28.95 31.41 112 552 25.46 27.13 27.77 27.93 28.95 31.41 112 552 metssbbw 28.24 29.26 30.13 31.3 0.62 206 28.24 29.26 29.64 29.7 30.13 31.3 0.62 206 metssbbw 28.37 29.4 30.01 31.23 0.45 494 28.59 29.4 29.68 29.7 30 30.9 0.44 490 b January February March April May June July August September October November December Sheet1 I <	met5s140w	24.82	26.52	27.39	31.27	1.05	544	25.23	26.51	26.89	26.91	27.3	28.67	0.68	503
metssbbe 28.24 29.26 30.13 31.3 0.62 206 28.24 29.26 29.64 29.7 30.13 31.3 0.62 206 metssbbe 28.37 29.4 30.01 31.23 0.45 494 28.59 29.4 29.68 29.7 30 30.9 0.44 490 M January February March April May June July August September October November December Sheet1 I I I	met5s155w	25.46	27.13	28.95	31.41	1.12	552	25.46	27.13	27.77	27.93	28.95	31.41	1.12	552
mets/sboe 28.37 29.4 30.0 30.9 0.44 490 > M January February March April May June July August September October November December Sheet1 II III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	met5s156e	28.24	29.26	30.13	31.3	0.62	206	28.24	29.26	29.64	29.7	30.13	31.3	0.62	206
January / Peruary / March / April / May / June / Juny / August / September / October / November / December / Sheet1 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	met5s165e	28.37	29.4	30.01	31.23	0.45	494	28.59	29.4	29.68	29.7	30	30.9	0.44	490
	Janu	ary _ rebruary	/ _ March _ A	vprii ∠ may ∠ Ju	une 🖉 July 🖉 A	lugust 🖉 Septe			r ∠ December	Z Sneet1 ZI					

[all data][outliers removed

00Z is for columns B-O 12Z is for columns Q-AD

El Nino relationships

MonthlyAvgCICorrelation.SST.00, for met0n95w

Figure 10. Correlation matrix for the equatorial buoy located at 95°W, valid for 00 UTC monthly averaged SST data. Scatterplots are shown in lower left of matrix for all pairs of datasets, and include a regression line and correlation ellipse. In general, the narrower the ellipse, the stronger is the relationship. Histograms of the relationship are shown along the matrix diagonal, with a curve to qualitatively ascertain if the association is Gaussian. The correlation coefficient of all pairs is shown in the upper right of the matrix. When available, overlapping Niño regions and/or ONI will also be shown in other columns.

Statistics for lifetime of each buoy, per variable

里)	A CARAGE IS		TAO-MonthlyAvgStatistics-AllYearsAllMonthz-00-12 Microsoft Excel										
2	Home Insert	Page Layout For	mulas Data Revi	ew View Add-In	s Acrobat								
3	¥ Cut	Calibri - 11	- A' A' = =	😦 🏶 - 🛛 🚍 Wa	rap Text G	ieneral -			Σ Autos	· 27 A			
ste	-д Сору	B / U . U.	- A - E		erne & Center -		Conditional Format as Ce	i Insert Delete	Format	Sort & Find			
	Format Painter			and activity of the	and a country of the	- 10 - 10 - 4	Formatting * Table * Style	s	2 Clear	Filter * Sele			
	lipboard /*	Font	(*)	Alignment	2 L	Number	Sh/es	Cells		Edting			
_	A1 •	C fe Stat	tion Name			3423 82	- 1			14			
	A	В	С	D	E	F	G	н	1.	1			
	Station Name	Minimum (t0)	1st Qu (t0)	Median (t0)	Mean (t0)	3rd Qu (t0)	Maximum (t0)	Std Dev (t0)		Minimum			
	met0n110w	20.55	23.18	24.52	24.62	25.75	30.14	1.92		19.93			
	met0n125w	21.88	24.22	25.2	25.29	26.3	29.43	1.66		21.40			
	met0n140w	22.23	25.42	26.21	26.23	27.06	29.98	1.42		21.92			
	met0n147e	28.56	29.28	29.5	29.53	29.8	30.37	0.38		28.73			
	met0n155w	23.82	26.17	27.16	27.08	28.02	30.21	1.35		23.5			
	met0n156e	28.23	29.16	29.4	29.38	29.67	30.39	0.45		28.3			
	met0n165e	26.95	28.9	29.54	29.35	29.93	30.5	0.76		26.9			
	met0n170w	24.77	27.33	28.24	28.06	28.95	30.5	1.24		24.6			
	met0n180w	25.62	27.66	28.61	28.45	29.38	30.6	1.14		25.58			
	met0n95w	18.67	22.16	23.88	24.12	26	30,48	2.41		18.6			
	met2n110w	23.33	25.07	26.08	26.21	27.21	29.92	1.49		23.12			
	met2n125w	23.35	25.46	26.32	26.37	27.32	29.32	1.36		23.13			
	met2n137e	27.26	28,78	29.27	29.16	29.7	30.24	0.69		27.4			
	met2n140w	23.48	26.11	27.07	26.9	27.74	29.8	1.23		23.3			
	met2n147e	28.89	29.4	29.54	29.6	29.91	30.12	0.37		29.03			
1	met2n155w	24.71	27.21	27.84	27.76	28.44	29.96	1.04		24.5			
	met2n156e	27.93	28.99	29.25	29.27	29.64	30.17	0.5		28.0			
	met2n165e	27.73	29	29.41	29.34	29.79	30.47	0.6		27.74			
	met2n170w	25.21	27.48	28.22	28.16	29.03	30.36	1.14		25.1			
	met2n180w	26.04	28.01	28.76	28.69	29.44	30.71	1.02		25.99			
	met2n95w	23.7	25.65	26.46	26.65	27.61	30.72	1.36		23.58			
	met2s110w	20.67	23.3	24.82	24.95	26.44	29.74	1.97		20.16			
	met2s125w	22.61	24.76	25.81	25.89	27	29.94	1.49		22.03			
	met2s140w	22.8	26.09	26.99	26.86	27.71	30.08	1.32		22.3			
	met2s155w	24.7	27.07	27.88	27.83	28.49	30.26	1.05		24.52			
	met2s156e	28.23	29.21	29.42	29.47	29.8	30.59	0.45		28.25			
	met2s165e	27.83	29.27	29.71	29.62	30	30.81	0.54		27.87			
	met2s170w	25.4	27.91	28.77	28.6	29.3	30.73	1		25.28			
	met2s180w	26.21	28.3	29.19	28.97	29.7	30.76	0.97		26.19			
-	mat 2:05	10.3	21 84	22.22	22.07	36.45	30	3.50		17.0			

Figure 7. Portion of spreadsheet showing statistical metrics for the lifetime of the each buoy, based on monthly averages. Spreadsheet tabs exist for SST, air temperature, wind speed, zonal wind, and meridional wind. Statistical metrics include minimum, 1st quartile, median, mean, 3rd quartile, maximum, and standard deviation. Columns B through H are for 00 UTC, while columns J through P are for 12 UTC (cutoff in figure). Each station is listed in Column A, and if it's highlighted in blue, the station has at least one moderate to strong correlation to a climate index (when r>|0.7|) with the surface variable. Clicking on these highlighted names will open a PowerPoint with correlation metrics, discussed in Figure 8.

MonthlyAvgLinearRegression.NINO3.SST.00

8

8

38 y (SST) 24

8

8

24

25

22.6	18.66837	16.11382	21.22291
22.8	18.98726	16.43922	21.53530
23.0	19.30615	16.76424	21.84806
23.2	19.62504	17.08888	22.16120
23.4	19.94393	17.41314	22.47472
23.6	20.26282	17.73702	22.78862
23.8	20.58171	18.06051	23.10292
24.0	20.90060	18.38361	23,41760
24.2	21.21949	18.70632	23.73267
24.4	21.53839	19.02863	24.04814
24.6	21.85728	19.35056	24.36400
24.8	22.17617	19.67208	24.68025
25.0	22,49506	19.99321	24.99690
25.2	22.81395	20.31395	25.31396
25.4	23.13284	20.63428	25.63140
25.6	23.45173	20.95421	25.94925
25.8	23.77062	21.27375	26.26750
26.0	24.08951	21.59288	26.58615
26.2	24.40841	21.91161	26.90520
26.4	24.72730	22.22994	27.22465
26.6	25.04619	22.54787	27.54450
26.8	25.36508	22.86541	27.86475
27.0	25.68397	23.18254	28.18540
27.2	26.00286	23.49927	28.50645
27.4	26.32175	23.81561	28.82789
27.6	26.64064	24.13155	29.14973
27.8	26.95954	24.44710	29.47197
28.0	27.27843	24.76225	29.79460
28.2	27.59732	25.07702	30.11762
28.4	27.91621	25.39139	30.44103
28.6	28.23510	25.70538	30.76482
28.8	28.55399	26.01898	31.08900
29.0	28.87288	26.33220	31.41357
29.2	29.19177	26.64504	31.73851

Lower

Prediction

Upper

Prediction

correlations in which r> [0.7]. In this case, the equatorial buoy located at 95°W has a correlation coefficient of 0.85 between SST and the Niño 3 region at 00 UTC. The corresponding linear regression equation is SST =1. 5945 $Ni\tilde{n}o3 - 17.3663$. The green line on the scatterplot on the left shows the confidence interval at the 95% confidence level. The red lines indicate the prediction level. A table showing the database range of Niño 3 values is shown in the first column, the linear regression computed value of SST in column 2, and the confidence level range in columns 3 and 4. These 4 columns can provide quality control guidance if an observation is highly correlated to ENSO patterns. In this example, SST at 12 UTC also possessed strong correlations to Niño 3, and was contained in Slide 2 of the PowerPoint (not shown). Some buoys can be moderately to highly correlated to multiple climate indices or regions, such as the buoy at 2°N and 170°W in which SST is correlated to ONI, Niño 3, and Niño 3.4 (not shown).

Figure 8. Example of a PowerPoint image initiated by clicking on "met0n95w" in Row 11 in Fig. 7. This shows all

met0n95w r= 0.85

Air and water temperature generally correlated best with their respective Niño regions, as well as ONI in the western half (consistent with its ONI Niño 3.4 definition)

Most wind correlations occur in the center of the domain from 180°W to 170°W, with correlations to their respective Niño regions, SOI, or ONI. The correlations are for wind speed or zonal wind, with only a single meridional wind value correlated to SOI on the far western edge of the domain. It is likely that physical relationships regarding ongoing ENSO events with these wind variables exist, and should be explored in follow-up research.

Figure 12. All buoys in which the correlation are r> [0.7], color-coded for ONI, SOI, TNI, Niño 3, Niño 3.4, and Niño 4. Side by side symbols indicate multiple climate indices are r> [0.7].

Correlation Values of SST and AIRT vs Climate Indices at hour 0 (> 0.7 only)

Figure 6. Comparison of 00 UTC SST and air temperature correlations for the 63 cases when r>[0.7]. On average, $(\overline{r_{SST}} - \overline{r_{Tatr}}) = 0.02$, indicating that SST has 2% higher correlation on average than air temperature. $r_{SST} > r_{air}$ in 54 of the 64 cases. 12 UTC gives similar results (not shown).

Figure 13. Color-coded depths at which the correlations reach r> 0.7 .

The ENSO signal penetrates deepest at the equator, from 125°W to 140 m. From 180°W to 140°W, the ENSO signal reaches from 50 to 105 m. The ENSO correlation is shallow on the far eastern and western edge of the TAO domain.

Other ENSO tidbits

- ONI's correlation with SST is on average 0.08 less than the peak Niño region correlation
- No correlations with air or water temperature met the r>|0.7| threshold for SOI or TNI
- No RH-ENSO relationship was noted based on the r>0.7 threshold except for a single buoy located at 125°W and 0°N (r=-0.72 with ONI)
- No TNI relationship is found with RH, wind, or salinity.
- Some ENSO correlations are seen with salinity profiles, but in most cases the data sample is limited so the significance of the relationship is unclear. Example for 140°W, 0°N is shown below. The threshold was met down to 60 m.

s0n140w_5m_MonthlyAvgLinearRegression.ONI.S_41

Figure 14. As in Fig. 8, but an example of a salinity correlation to ONI for the equatorial buoy located at 140°W. Note that the sample size is smaller, though.