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Monte Carlo simulations of two-dimensional fermion systems with string-bond states
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We describe an application of variational Monte Carlo to two-dimensional fermionic systems within the
recently developed tensor-network string-bond state ansatz. We use a combination of variational Monte Carlo
and stochastic optimization to optimize the matrix-product state matrices representing the ground state. We
present results for a two-dimensional spinless fermion model including nearest-neighbor Coulomb interactions
and determine using finite-size scaling the phase boundary between charge-ordered insulating and metallic
phases. This approach can treat frustrated systems and be easily extended to fermion models with spin.
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I. INTRODUCTION

The properties of two-dimensional (2D) and frustrated
quantum many-body models play an important role in con-
densed matter physics. Numerical methods including quantum
Monte Carlo (QMC) [1] and the density matrix renormaliza-
tion group (DMRG) [2–4] have been essential in understanding
the ground-state and thermodynamic properties of interacting
electron and spin systems. These two classes of methods have
well-known limitations, however, the fermion sign problem
severely limits the systems that can be studied by QMC, and
DMRG methods are largely limited to one-dimensional (1D)
or quasi-1D systems.

Underlying DMRG methods is a matrix product state
(MPS) representation of the quantum state. If each config-
uration in the wave function is written as |s1, . . . ,sN 〉 where
si denote local quantum degrees of freedom such as the spin
Sz

i on the ith lattice site and N is the total number of sites in
the lattice, a MPS representation for the wave function |�〉 is
written as

|�〉 =
∑

s1,...,sN

Tr
[
A1

s1
· · ·AN

sN

]|s1, . . . ,sN 〉. (1)

In Eq. (1) the weight of each configuration is given by the
trace of a product of D × D matrices Ai

jk The advantage of
using a MPS representation is that it can provide an accurate
representation of the ground state of a 1D quantum system
with only moderate [5,6] values of D. Equation (1) can be
used to represent a 2D system by simply numbering the lattice
sites in two dimensions sequentially [as in Fig. 1(a)], but
favorable scaling with the matrix size D is then lost because the
MPS ansatz can only describe entanglement along the chain
direction. Nevertheless, despite the exponential scaling of the
number of states that must be kept (m) with the transverse
lattice size, DMRG has been used to study 2D systems [7].

A recent innovation is the use of Monte Carlo sampling to
evaluate expectation values of the Hamiltonian as well as other
operators within MPS-type trial states [8–11]. By sampling
the physical states of the system rather than contracting the
matrices, the computational scaling in D can be reduced in
some cases, particularly for systems with periodic boundaries
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[8,9]. Derivatives of the energy with respect to the matrix
elements can also be calculated and then used to optimize
[8,10] the matrix elements Ai

jk . The use of QMC sampling
brings the computational advantage of trivial parallelization of
Monte Carlo averages. While most applications have been to
quantum spin models, this approach has successfully been used
for more complicated quantum models such as the 1D Hubbard
model where each site has four rather than two degrees of
freedom [12].

Many variations of the MPS ansatz have been suggested
to generalize it to 2D systems. The most natural extension
to higher dimensions is to replace the matrices in Eq. (1)
by tensors and the trace by a more general contraction over the
tensor indices. A number of tensor-product state ansatzes have
been proposed [13–18] (see Refs. [19] and [20] for reviews).
One promising generalization of MPS are projected entangled
pair states (PEPS) [18]. PEPS have been successfully applied
to 2D frustrated spin models [21–23]. A variation (iPEPS) has
also been proposed for evaluating thermodynamic (infinite
lattice) quantities [24–26]. The main limitation in applying
tensor-product ansatzes to numerical calculations is the poor
computational scaling in the tensor size (typically proportional
to D12 for PEPS [19]). A variety of other approaches use
the same ansatz states as PEPS but different approximate
algorithms to evaluate expectation values. Examples include
the second renormalization of tensor networks (SRG) method
[27,28] and the tensor-renormalization group (TRG) method
[29,30]. Another generalization of MPS is the multiscale
entanglement renormalization ansatz (MERA) [31,32]. MERA
can be exactly contracted in polynomial time with somewhat
worse scaling in D compared to PEPS algorithms (proportional
to D16 for the algorithm proposed in Ref. [32]).

Applications to fermionic systems bring additional chal-
lenges to tensor network methods. In an occupation number
representation the sign of each configuration necessarily
depends on the ordering of the fermionic creation operators.
While trivial in one dimension where the Jordan-Wigner
transformation can be used to map fermionic operators to local
spin operators, such a mapping is not usually possible in two
dimensions. We note that this does not necessarily lead to
long-range entanglement in the quantum state however. One
of the key questions is whether it is possible to come up with
an effectively local tensor network scheme for fermions and to
what degree the difficulty of doing this depends on the model in
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(b)(a)

FIG. 1. Contraction patterns for (a) string SA composed of A

matrices and (b) string SB of B matrices, illustrated for a 4×3 lattice.

question. Several approaches have nevertheless been proposed
to treat fermionic systems by making the required tensor
operations local. Examples include the modification of MERA
by introducing fermionic swap gates [33,34] and fermionic
versions of PEPS [35–38]. These modifications in general only
modify the prefactor in the computational complexity scaling
with D of the bosonic algorithms, so the principal disadvantage
to using these methods for practical calculations remains the
poor scaling of the bosonic algorithm.

An alternate approach to PEPS or MERA is to use a
somewhat more restricted ansatz that can be more easily
computationally evaluated. The promise is that one can trade
some complexity of the representation by increasing the
number of variational parameters. In this paper we will explore
a generalization of one such approach, the string-bond states
(SBS) ansatz, where several one-dimensional MPS strings of
matrices are placed in different directions on the 2D lattice
[9,10]. Other methods closely related to SBS are correlator
product states [39] (CPS) and complete-graph tensor network
states [40] (CGTN). The advantage of this class of methods
is that the computational scaling in matrix size D remains
small while potentially avoiding the exponential scaling in D

with transverse size in DMRG calculations. The disadvantage
is that the additional parameters lead to a more challenging
optimization problem. We will show that in practice good
results for 2D fermionic systems on significant lattice sizes
(up to 12×12) can be reached within the SBS approximation.

The paper is organized as follows. Details of our SBS-QMC
method are discussed in Sec. II. In Sec. III we show results for
a 2D interacting spinless fermion system, followed by further
discussion in Sec. IV.

II. METHOD

For a generic Hubbard-type model we decompose the
Hamiltonian into two terms,

H = H0 + H1, (2)

where diagonal H0 and off-diagonal H1 terms are given by

H0 = U
∑

i

ni↑ni↓ +
∑
〈i,j〉

Vijninj , (3)

H1 = −
∑
〈i,j〉σ

tij (c†jσ ciσ + c
†
iσ cjσ ). (4)

In Eqs. (3)–(4), c
†
iσ (ciσ ) create (annihilate) an electron of

spin σ on site i, niσ = c
†
iσ ciσ , and ni = ni↑ + ni↓. We assume

here that the nearest-neighbor sites in H1 are those on a
conventional square lattice, although as discussed later, it is

possible to generalize this to other periodic lattices. U and
Vij are on-site and intersite Coulomb interactions. The weight
of a configuration in the SBS approximation is represented in
terms of overlaps defined on a set of operator strings {S}:

〈Cn|�〉 =
∏
S

Tr

[∏
i

Si

]
, (5)

where |Cn〉 is a state in a local (e.g., occupation number)
basis and the index n runs over all possible configurations. In
Eq. (5) Si are D × D real symmetric matrices. The assumption
of symmetric matrices implies a reflection symmetry about the
center of each string [8]. Many possible string patterns can be
used for the SBS ansatz [9,10]. As shown in Fig. 1 we use a
set of two strings {SA,SB} to cover the lattice, each of which
corresponds to the usual snake generalization conventionally
used to adapt a MPS state to a 2D geometry. The string SA

(SB) follows the hopping integrals aligned along x (y). The
matrices for these two strings are labeled A and B. The SBS
representation for the wave function |�〉 is written as

|�〉 =
∑

n

W (Cn)|Cn〉, (6)

where W (Cn) = ∏
S WS(Cn). The weights WS(Cn) for the two

strings are given by

WA(Cn) = Tr
N∏

i∈SA

Ai = Tr
L∏

ix=1

⎛
⎝ M∏

iy=1

AM(ix−1)+iy

⎞
⎠ , (7)

WB(Cn) = Tr
N∏

i∈SB

Bi = Tr
M∏

iy=1

⎛
⎝ L∏

ix=1

BM(ix−1)+iy

⎞
⎠ , (8)

where ix and iy correspond to the x and y coordinates of
site i = (ix,iy) for a L × M rectangular lattice with the total
number of lattice sites N .

The variational Monte Carlo (MC) method we use to
evaluate the energy and other correlation functions is based
on the method of Ref. [8]. We have previously shown that
this method can be generalized to 1D fermionic systems [12],
where the weight of a configuration is given by a MPS, i.e.,
a single string. Configurations |Cn〉 are sampled according to
the weight W (Cn)2. MC updates consist of interchanges of
electrons of a given spin between neighboring sites. Updates
are attempted first along the path of string SA and then along the
direction of string SB . In this manner, a system of left and right
matrices can be used to efficiently perform the MC sampling
[8]. We create a series of left matrices L

ix,iy
A = AiL

ix,iy+1
A

and L
iy,ix
B = BiL

iy,ix+1
B for ix = 1, . . . ,L and iy = 1, . . . ,M .

Sequentially visiting the site i = (ix,iy) in either the horizontal
x (for SA) or vertical y (for SB) direction, we attempt
to interchange electrons between that site and its nearest
neighbor j = (jx,jy) until we have arrived at site N = (L,M).
If an update is accepted (or rejected) according an accep-
tance probability p(Cn → Cn′ ) = min[W 2(Cn′)/W 2(Cn),1],
the right matrices R

ix,iy
A = R

ix,iy−1
A Ai and R

iy,ix
B = R

iy,ix−1
B Bi

are advanced, respectively. Once the R matrices for a given
string have been stored, measurements of the energy and

075101-2



MONTE CARLO SIMULATIONS OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 89, 075101 (2014)

derivatives of the energy are implemented by traversing the
string in the reverse direction [8].

The energy estimator for the configuration Cn is

E(Cn) =
∑
Cn′

W (Cn′)

W (Cn)
〈Cn′ |H |Cn〉. (9)

In Eq. (9), the diagonal part of the energy 〈H0〉 can simply
be measured as an average over the configurations visited.
Interchanges of electrons give contributions to the off-diagonal
terms 〈H1〉. In calculating the matrix element in Eq. (9) a sign
due to fermion exchange must be included.

Within the MPS representation the derivative of the energy
with respect to the each of the matrix elements can easily be
calculated. For the A matrices of SA this derivative is

∂E

∂Ak
ij

= 2

〈
E(Cn) − 〈E(Cn)〉

WA(Cn)

∂WA(Cn)

∂Ak
ij

〉
, (10)

where the derivatives of each trace can be written as

∂WA(Cn)

∂Ak
ij

= 1

1 + δij

[
QA

ij (k) + QA
ji(k)

]
, (11)

using QA(k) = ∏
i 	=k Ai . An identical expression is used for

derivatives of the energy with respect to the B matrices.
The matrix elements Ak

ij and Bk
ij for k = 1, . . . ,N are

first initialized to random numbers in the interval [− 1
2 , 1

2 ].
We normalize the matrices so that their Frobenius norm is
unity, i.e., 1

D
Tr(AAT ) = 1. MC measurements for the energy,

derivatives, and other correlation functions are block averaged
as usual. After each block, matrix elements are updated using
a stochastic optimization scheme [8]. Each matrix element Ak

ij

is modified by a random amount in the direction indicated by
the derivative of the energy,

Ak
ij → Ak

ij − δ · R · sgn

(
∂E

∂Ak
ij

)
θ

(∣∣∣∣ ∂E

∂Ak
ij

∣∣∣∣ − α

)
. (12)

Here R is a random number in the interval [0,1), sgn(x) is
the signum function of a real number x, and θ (x) is the unit
step function. The parameter δ sets the maximum change for
a matrix element. The parameter α restricts changes to only
the matrix elements that have the most significant effect on
the energy, those with the largest magnitude derivatives, and
helps to reduce unwanted stochastic noise as optimization
proceeds. We found some improvement in the performance
of the stochastic optimization with a suitable choice of α.

Several MC blocks each followed by the update in Eq. (12)
are then combined into one step labeled by the index k of the
optimization algorithm. At each successive k the parameters
δ and α are decreased by a multiplicative factor Q. For
the results here, we typically used Q = 0.9. δ and α were
initially chosen as 0.5. Simultaneously the number of MC
blocks per step, G(k), and samples per block, F (k), are
increased linearly, We typically used F (k) = 5000–10000 and
G(k) = 250–500. This procedure gives an annealing procedure
that for a sufficiently large k should approach the global
minimum energy. The MC sampling was parallelized using
an embarrassingly parallel’ algorithm. The results presented
here used up to 192 processors.

III. RESULTS

A. Model

We consider spinless fermions interacting with a nearest-
neighbor Coulomb repulsion. The Hamiltonian is given by

H = −t
∑
〈ij〉

(c†i cj + H.c.) + V
∑
ij

ninj . (13)

In Eq. (13), c
†
i creates a fermion on site i and ni = c

†
i ci ; sites

i and j in 〈ij 〉 are nearest-neighbor pairs on a 2D square
(M = L) lattice of N = L2 sites with periodic boundary
conditions. All energies will be given in units of t . We consider
the half-filled case with N/2 particles. For this density, the
V interaction causes a checkerboard pattern charge-ordered
(CO) insulating phase. In the 1D limit the model may be
transformed via the Jordan-Wigner transformation to a spin- 1

2
XXZ Heisenberg model and it can be shown exactly that the
CO phase occurs when V > Vc with [41] Vc = 2. In two
dimensions Vc is not known exactly. Analytical work using a
slave-boson approximation was done for a model with SU(N )
fermions [42]. For the case of a 2D square lattice and taking
N = 2 (corresponding to spin- 1

2 ) the corresponding Vc =
0.69. This model was also previously studied using finite-
temperature determinantal QMC [43] down to temperatures of
order T ∼ 0.5. These numerical results were also compared
with the mean-field RPA predictions [43]. If one extrapolates
the strong-coupling RPA result from reference [43] to T = 0,
Vc ≈ 1/

√
3 ≈ 0.58. The finite-temperature QMC results for

Vc appear to be consistent with this limit if an almost-linear
extrapolation in the T -V plane is assumed, but could not rule
out the possibility that Vc → 0 as T → 0. As shown below,
our present results are consistent with a nonzero Vc.

B. Method verification

In this section we show a number of benchmarks of the
SBS-QMC method, which demonstrate that (i) the stochastic
optimization technique detailed above performs successfully
for a range of model parameters, including the challenging
region close to the quantum phase transition in Eq. (13);
(ii) the SBS approximation itself scales favorably with the
matrix size D, with the error of the method decreasing as a
power law in D; and (iii) the results of SBS-QMC compare
favorably to other methods, specifically DMRG.

An order parameter for the CO phase at half filling is the
charge structure factor S(q) at q = (π,π ). S(q) is defined as

S(q) = 1

N

∑
j,k

eiq·rjk

〈(
nj − 1

2

)(
nk − 1

2

)〉
, (14)

where rjk is the vector between lattice sites j and k. Figure 2
shows how the relative error in the ground-state energy, 	E =
|(EQMC − Eexact)/Eexact|, and similarly the relative error in
the charge structure factor, 	S(π,π ), change as a function
of algorithm steps k and matrix size D for a 4×4 lattice. The
interaction strength V = 0.45 chosen here is close to the CO
transition, which is expected to be the most computationally
challenging parameter region of the model. Here and in our
following results each value of D is a separate calculation,
each starting with different random initial matrix elements.
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FIG. 2. (Color online) Relative error of the (a) ground-state
energy and (b) charge structure factor at S(π,π ), as a function of
the number of algorithm steps k (see text) and matrix size D for a
4×4 periodic lattice with eight particles and V = 0.45.

As can be seen in Fig. 2, due to the stochastic nature of the
optimization technique, we find at certain k sudden decreases
in the error, which correspond to the method finding its way
out of a local minima. In subsequent results presented below,
on of order 100 algorithm steps k were needed to converge the
energy and other observables. We also found that it was useful
to occasionally restart the optimization process to verify that
the final results were adequately converged and not trapped in
local minima.

Figure 3 summarizes the performance of SBS-QMC for
16, 24, and 32 site lattices as a function of matrix size D.
Two different V are shown, V = 0.45 and V = 4. The slight
scatter of the points rather than following a smooth decrease
with D shows that some further small improvement to the
optimization can be made. V = 4 is well within the CO
phase of the model. As is expected for methods using a MPS
ansatz, the method performs better in the gapped CO phase
[19]. This is especially seen in the charge structure factor
results in Fig. 3(b), which require significantly smaller D

for comparable accuracy in the CO phase compared to the
parameter region near the phase boundary.

At V = 0 the model is exactly soluble and in a metallic
phase. Metallic phases present a large entanglement in real
space and provide a challenging test for the method. Figure
4 shows the relative energy error for V = 0 and lattices from
16 to 64 sites. In all of the test cases we examined, we found
that provided D is large enough, the accuracy of the SBS
approximation decreases as a power law in D. From Figs. 3 and
4 we estimate that the error decreases as approximately D−2.

Despite its shortcomings DMRG remains a powerful and
widely used method for strongly correlated systems. Figure 5
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FIG. 3. (Color online) Relative error of the (a) ground-state
energy and (b) of the charge structure factor as a function of matrix
size D for V = 0.45 (open symbols) and V = 4 (filled symbols).
Circles, squares, and diamonds are for 4×4, 6×4, and 8×4 lattices,
respectively.

compares SBS-QMC to DMRG calculations performed using
the ALPS software package [44–46]. In the DMRG calcu-
lations we used cylindrical boundary conditions on L × M

rectangular lattices, which were periodic in the transverse
direction and open in the longitudinal direction [7]. With
cylindrical boundaries, the number of DMRG states required
(m) to reach a given accuracy scales exponentially with the
length of the transverse lattice dimension M . In the results
in Fig. 5 we used m of up to 2600 for the largest (M = 10)
lattices; the maximum longitudinal lengths were L = 24 for
M = 4, 6, and 8, and L = 22 for M = 10. The DMRG

2 4 8 16 32 64
D

10
-4

10
-3

10
-2

10
-1

10
0

ΔE

FIG. 4. (Color online) Relative error of the ground state energy as
a function of matrix size D for V = 0. Circles, squares and diamonds
are for 4×4, 6×6 and 8×8 lattices, respectively.
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E
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FIG. 5. (Color online) Comparison of SBS-QMC and DMRG
finite-size scaling for V = 0.45. Diamonds (circles) are from SBS-
QMC (DMRG). SBS-QMC simulations are on periodic L × L

lattices, while points for DMRG are the extrapolated energies of
infinite-length cylinders of width L. Lines are fits to the data (see
text).

calculations were performed on a single CPU; somewhat larger
transverse widths can be reached with parallel DMRG codes
[7,47]. For each DMRG calculation we first performed a linear
extrapolation in the DMRG truncation error ε followed by a
linear extrapolation in 1/L over several lattices of the same
width [7]. The energies of these infinite-length cylinders are
plotted in Fig. 5 as a function of 1/M . The SBS-QMC energies
were similarly extrapolated to infinite D (see below). In
general we found the extrapolation in D to be smooth and well
behaved.

In Fig. 5 we show fits to the data using a quadratic function
for the SBS-QMC data, and the form a + bM−3 for the
DMRG data [7]. Both methods give nearly the same energy
extrapolated to the thermodynamic limit.

0 0.02 0.04 0.06 0.08
1/D

0.06

0.07

0.08

S(
π,

π)
/N

FIG. 6. The charge structure factor S(π,π ) as a function of matrix
size D on a 12×12 lattice for V = 0.8. The line is a quadratic
fit.
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FIG. 7. (Color online) Finite-size scaling of the charge structure
factor S(π,π ) versus 1/L for spinless fermions on square periodic
lattices at half-filling. SBS-QMC simulations were performed for up
to 12×12 systems; S(π,π ) for the 4×4 lattice was calculated exactly.

C. Phase diagram

In the CO phase of Eq. (13) S(π,π )/N converges to a
finite value in the thermodynamic limit. In order to precisely
determine the Vc separating the metallic and CO phases of this
model we calculated S(π,π ) over a range of V and system
sizes. For each system we took D up to 64 and performed an
extrapolation to D → ∞. An example of this extrapolation
in D is shown in Fig. 6 for the largest system studied,
12×12, with V = 0.8. Finally, Fig. 7 shows the finite-size
scaling of S(π,π )/N . The results in Fig. 7 clearly show
that a finite critical coupling Vc for the CO phase exists. By
plotting the extrapolated S(π,π )/N versus V , we estimate that
Vc = 0.45 ± 0.02

IV. DISCUSSION

In this paper we have presented numerical results using
the SBS ansatz applied to a 2D fermionic model. In order
to simulate a fermionic system we have used stochastic
optimization to optimize both the sign and amplitude of a
general SBS wave function. Because the computational scaling
of the method is relatively small, this brute force optimization
is successful for reasonably large fermionic systems, for
example here up to N = 144. As the method is not restricted
to unfrustrated lattices, we expect it will provide a useful way
to study frustrated Hubbard-type models on lattice sizes out of
reach of exact diagonalization.

In the SBS ansatz there are many possible choices for the
form of the strings. For the form chosen here, two perpendicu-
lar snakes oriented in the transverse and longitudinal directions
of the lattice, the scaling of the method is proportional to
NMD3 where M is the width of the lattice [8]. Our results
indicate that with this string choice, the error in the SBS
ansatz scales as approximately D−2. An interesting question
for future study is to determine the optimal string pattern—for
example, the SB string here can be taken not perpendicular
to the SA string, but oriented along the diagonal direction
of the lattice. Because the QMC sampling involves particle
exchanges along the string directions, sampling acceptance
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rates and efficiency can also be influenced by the choice of the
strings. Because this can improve the derivatives of the energy,
such changes would also change the overall efficiency of the
optimization.

Our comparison with DMRG provides further verification
of the SBS-QMC method—both methods when extrapolated to
the thermodynamic limit give comparable results. Comparing
the two methods, DMRG benefits from being able to reach a
large m and many years of algorithm refinements; it is clearly
preferable for use on rectangular lattices of large aspect ratio
provided M is not too large. One advantage of SBS-QMC is
that square periodic lattices are in some cases easier to perform
finite-size scaling on. Current DMRG calculations are limited
to about M = 12, the same size reached in our SBS-QMC
calculations. While available computer power will increase,
the exponential scaling in the required m will make it difficult
to push DMRG to larger lattices. Our results confirm that the
SBS ansatz does not suffer from a similar limitation in scaling
on M . Rather, the current limitation with calculations using
the SBS ansatz is in how well the matrices can be optimized
in practice. Further improvements to the algorithm presented
here can certainly be made, particularly in the stochastic
optimization of the matrix elements. For example, in applying
SBS to 2D spin systems, it was noticed that the initial choice

for the matrix elements could make a large difference in the
convergence [10]. Here we have only used random starting
matrices; using a mean-field or other approximate solution as
the initial starting state could potentially improve the results
significantly.

While we have presented data here for a spinless fermion
model, we have tested the method for 2D Hubbard models
including spin. Incorporating spin simply increases the number
of states per site, and initial results show that this simply
requires a larger D to obtain comparable accuracy in the energy
and correlation functions.
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[5] S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
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