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Metallic blade-stiffenedpanels are optimized for various eigenvaluemetrics of interest to the aerospace community.

This is done via solid isotropic material with penalization-based topology optimization: the stiffeners are discretized

into finite elements, and each element is assigned a design variable, whichmay vary from0 (void) to 1 (solid). A known

issue with eigenvalue-based optimization is discontinuities due to mode switching, which may be avoided through a

series of eigenvalue separation constraints, or (more challenging, but less restrictive) a bound method with mode

tracking. Both methods are demonstrated to obtain optimal stiffener topologies for panel buckling, but only the

former is used for aeroelastic panel-flutter problems. Satisfactory flutter optimal results are obtained, but the work

concludeswith a discussion of the challenges associatedwith the use of a boundmethod for aeroelastic problems, with

specific complications posed by the advent of hump modes.

I. Introduction

T HIS work considers the topological optimization of blade-
stiffened-panel structures for aerospace applications. A recent

overview of stiffened plates and shells is given by Bedair [1], who
discusses the important role these structures can play across a
broad range of engineering applications, including aircraft. We are
specifically concerned with panels subjected to a high-speed flow
over their upper surface and high temperatures from the concomitant
aerodynamic heating and/or thermal radiation (specifically, the panel
buckling that may result from such loading). Topology optimization
can be used to obtain the underlying support structure (i.e., stiffener
reinforcement), which provides a suitable compromise between
structural mass, buckling, and aeroelastic flutter metrics. Two main
issues are discussed here. The first issue is the topological parame-
terization of the underlying support structure; the second details
methods to handle eigenvalue-migration metrics (found in flutter
problems) during topology optimization.
Concerning first the issue of structural parameterization, many

papers and commercially available software packages exist for
stiffened-panel design, under the assumption that the basic topology
or layout of the underlying stiffeners is largely predetermined.
Typical design variables may include stiffener dimensions, stiffener
spacing, and basic stiffener concepts (i.e., type of stiffener), as
reviewed in [2]. Far fewer papers exist in the literature, which relax
this assumption. One option is to discretize the design domain
beneath the panel face sheet into brick finite elements, and assign
a density variable to each, as done in [3]. This is very expensive,
however, as a large finite element model and many design variables
are needed to obtain a refined topological geometry.
Alternatively, a variable-thickness panel optimization may be

undertaken, and areas of high thickness may be subsequently identi-
fied as potential stiffener locations (see Luo and Gea [4], Lam
and Santhikumar [5], and Khosravi et al. [6], for example). This
proceduremay fail if the variable-thickness design does not identify a
riblike thickness pattern, but instead converges to a structure with

large lobes of concentrated mass (as may be expected for vibration
problems). Other authors have limited the structural parameterization
specifically to the desired stiffener geometry, and used branching tree
models (Ding and Yamazaki [7]) or embedded fiber introduction
(Bojczuk and Szteleblak [8]). Although not yet used for stiffened-
plate layout design, the cellular-based topology-optimization scheme
developed by Pedro and Kobayashi [9] may be a suitable method
as well.
Having located the optimal stiffener layout, or ground structure,

the internal topology of each stiffenermay then be determined using a
standard solid isotropic material with penalization (SIMP)-based
approach, in which each stiffener is discretized into shell finite
elements, and the constitutivematerial tensor for each is attached to a
design variable [10,11]. For this work, the initial ground structure of
the stiffeners is simply predetermined. A finely detailed stiffener-
layout pattern may provide the optimizer with enough latitude to
make substantial changes to the structure. If a material is not needed
in an area where a stiffener has been allocated, the SIMP-based
optimizer can simply remove all of the material from this potential
rib. An example of this process is shown graphically in Fig. 1, for two
different stiffener layouts. More sophisticated optimization methods
(coupling the evolutionary approach of [9] for general layout design
to the SIMP-based approach for internal topologies, using a bilevel
method, for example) may be considered in the future.
The second issue listed previously is eigenvalue migration. It is

well known that optimization problems built upon eigenvaluemetrics
may have discontinuities in the design space due to mode crossings.
This issue becomesmore strenuous with aeroelastic flutter problems,
in which the flutter point is defined as the flight speed at which one of
the eigenvalues becomes dynamically unstable [12] (positive real
part). This destabilization is typically, but not always, associatedwith
the coalescence of the imaginary parts (i.e., frequencies) of two
eigenvalues. Between consecutive design iterations, two detrimental
scenarios may occur. First, the underlying flutter mechanism may
switch, but the new flutter point occurs at a very similar flight speed
to the old one. This is aC1 discontinuity in the design space: at best, it
will slow down the convergence of the gradient-based optimizer.
This change is shown graphically in Fig. 2, in which λ is an
aerodynamic pressure parameter, and g is the real part of each
eigenvalue (aeroelastic damping).
Alternatively, the flutter mechanismmay switch in such a way that

the flutter speed drastically decreases. This is seen in Fig. 3, in which
the lower flutter pointmanifests itself through a humpmode. This is a
severe C0 discontinuity in the design space, which typically renders
the gradient-based optimizer entirely ineffective. Langthjem and
Sugiyama [13] and Odaka and Furuya [14] have used a series of
frequency-separation constraints to prevent the critical flutter
mechanism from switching during the design process. For every
value of λ between 0 (wind off) and the flutter point, the imaginary
portions (frequencies) of modes 2 and 3 must always be separated by
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some buffer. The same constraint is imposed between modes 3 and 4,
modes 4 and 5, etc., up to the number of eigenvalues retained in the
analysis. This is shown graphically on the left of Fig. 4, in whichω is
the imaginary part of each eigenvalue.
Frequency separation is motivated by the frequency coalescence

discussed previously: keeping the frequencies separated can prevent
the higher-mode bifurcations seen in Figs. 2 and 3, and the associated
discontinuities. For this work, however, flutter was observed without
a strict coalescence of modes, particularly for cases with strong
preflutter aeroelastic damping (which is entirely neglected in [14]).
Mode switching could still occur in spite of large frequency
separations, slowing or preventing optimization convergence. A
second idea is discussed by Haftka [15], who enforces a series of
critical-damping constraints. For every value of λ between 0 (wind
off) and the flutter point, the real portions (damping) of modes 2, 3,
etc. must always be less than some threshold gcr (shown by a dashed
line on the right of Fig. 4). In the example of Fig. 4, the satisfaction of
this constraint is preventing the third mode from fluttering via the

hump-mode mechanism of Fig. 3, and the fourth mode from
fluttering via the mechanism of Fig. 2.
As before, however, imposition of these critical-damping

constraints is found not to be sufficient: modal frequencies (which
are not included in these constraints) could coalesce during the
optimization process, leading to strongC1 discontinuities in the λ − g
plot, and thus, in the design space as well. The obvious solution, used
here, is to enforce both frequency-separation constraints and critical-
damping constraints. A drawback of this scheme is the large number
of constraints that must be included in the optimization process. For a
system with Nm modes, Nm − 2 frequency-separation constraints
and Nm − 1 critical-damping constraints must be maintained.
The feasible design space is fairly limited by the introduction of

these constraints, which, as will be seen as follows, are aggressive
and difficult for the optimizer to satisfy, that is, they have a large
impact on the final topology. Presumably, an alternative handling of
the eigenvalue-switching issues could provide superior optimal
results. For stationary eigenvalue problems (i.e., buckling), several
methods have been proposed, for example, a bound formulation [16]
in conjunction with eigenvalue tracking. For eigenvalue-migration
problems (i.e., aeroelastic flutter), alternatives to the aforementioned
constraints are less obvious. This work demonstrates the topology
optimization of blade-stiffened panels for buckling metrics using
both separation constraints and bound techniques. For aeroelastic
flutter problems, only separation constraints are demonstrated
(specifically, the concepts of Fig. 4); this paper concludes with a
discussion of alternative schemes.

II. Numerical Formulation

The stiffened-panel structures seen in Fig. 1 are discretized into
quadrilateral facet-shell finite elements via a combination of linear
strain triangles and discrete Kirchhoff triangles [17], in which two
triangles form a single quadrilateral. A design variable, or density, xe
is attached to each. This design variable is allowed to vary
continuously between 0 (void) and 1 (solid), in which the SIMP [18]
method is used. The linear stiffness matrix, geometric stiffness
matrix, andmass matrix are computed by assembling over each finite
element (e):

K �
X
e

fKe · �xmin � �1 − xmin� · �xe�p�g (1)

Kσ �
X
e

fGTe · Se��xe�p� · Geg (2)

M �
X
e

�Me · xe� (3)

in which Ke is an elemental stiffness matrix associated with solid
elements, xmin is a small nonzero number, and p is a penalization
factor (typically greater than 2). Se is a matrix reordering of the
element stress tensor [which is proportional to �xe�p], and Ge is a
shape-function differentiation matrix [17]. Finally, Me is the
elemental mass matrix associated with solid elements.
The interpolation schemes used here are intended to prevent

localized buckling and/or vibration modes in areas of low density
[18]. It is further noted that, for thiswork, the prestresses in each finite
element, Se, are from prescribed in-plane tractions within the face
sheet. Future work may obtain these from a thermal-heat-conduction
analysis. In keepingwith the parameterization outlined in Fig. 1, only
the topology within the stiffeners is allowed to change, and so xe for
elements within the face sheet is fixed as unity. After the assembly of
Eqs. (1–3), boundary conditions are applied, in which the perimeter
of the face sheet is assumed to be simply supported.

Fig. 1 Typical stiffener topologies that may arise for two different
ground structures.

Fig. 2 Eigenvalue migration (real part): change in flutter mechanism
with benign change in flutter speed from one design iterate (left) to the
next (right).

Fig. 3 Eigenvalue migration (real part): change in flutter mechanism
with severe change in flutter point fromonedesign iterate (left) to the next

(right).

Fig. 4 Demonstration of frequency-separation constraints (left) and
critical-damping constraints (right).
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III. Buckling-Eigenvalue Problems

A buckling eigenproblem is defined as

�K� βn · Kσ� · Φn � 0 (4)

in whichΦn is the eigenvector associated with the nth eigenvalue βn,
both of which will be real. As noted previously, βn is a scalar
multiplier of the prescribed in-plane tractions within the face sheet.
The topology-optimization problem considered here seeks to
maximize the critical (first) buckling factor. This may be done by
solving

max

~x
β1 s:t::

8<
:
0 < xmin < ~xe < 1 e � 1; : : : ; Ne
vT · x ≤ V�
βn − βn−1 ≥ ε n � 2; : : : ; Nm

(5)

in which the elemental design variables are grouped into the vector ~x,
which is then passed through a linearly decaying cone-shape filter
[19] to obtain the variable densities x. Side constraints, a volume
constraint, and a series of eigenvalue separation constraints are also
imposed. The eigenvalue sensitivities needed to solve Eq. (5) are
readily computed; see [18] for details. The separation constraints
stipulate that two consecutive eigenvalues be separated by some
small amount ε, to prevent discontinuities associated with critical
mode switching. This optimization problem (along with the others
detailed as follows) may be efficiently solved with the method of
moving asymptotes [20].
The eigenvalue separation constraints of Eq. (5)may overly restrict

the design process. A better solutionmay be to remove the separation
constraints entirely, and letmode switching occur in a smoothmanner
amenable to gradient-based optimization. As noted in the Introduc-
tion, this is readily accomplished for buckling problems (or any
stationary eigenvalue problem). Equation (5) may be replaced with

max

~x; b
b s:t::

8<
:
0 < xmin < ~xe < 1 e � 1; : : : ; Ne
vT · x ≤ V�
βn ≥ b n � 1; : : : ; Nm

(6)

in which the bound b is both an objective function and a design
variable [16]. Mode tracking [21] may be employed to allow modes
to cross (without being renumbered) as the optimization proceeds,
and the likely scenario of bimodal eigenvalues (βn � βn�1) may be
accounted for as well [22]. It can be seen that Eq. (6) has one more
constraint and one more design variable than Eq. (5), but places no
restraint on what the critical buckling mode must look like.
Equation (5), on the other hand, requires that the identity of the
critical buckling mode can never change, as modes cannot switch
from their baseline ordering.
Results are given for a square aluminum panel (elastic modulus

E � 70 GPamodulus, density ρ � 2800 kg∕m3, and Poisson’s ratio
ν � 0.3), with a length a of 0.3 m on each side, simply supported
around the entire perimeter. For the entirety of this work, a supporting

ground structure of three straight stiffeners is prescribed, each with
a depth of 0.03 m. Both the stiffeners and the face sheet have a
spatially uniform thickness of t � 1.27 mm. Each edge of the panel
is discretized with 200 quadrilaterals, and 20 quadrilaterals are used
depthwise through the stiffeners. The two outer stiffeners have the
same topology, leaving 8000 total design variables within the vector
~x. A compressive in-plane loading is applied to the panel, along the
stiffener axis, to formKσ . Eigenvalue convergence histories are given
in Fig. 5, in terms of a normalized load factor Ncr � β1 · a

2 ·
12 · �1 − ν2�∕�π2 · E · t3�. The volume of the stiffeners is prescribed
to be 10% (V�) the volume of the face sheet for every case in this
paper, although it should be noted that the convergence of the
topology volume is not shown in Fig. 5.
The left plot in Fig. 5 shows the convergence of Eq. (5), in which

the critical buckling factor rapidly increases from the baseline value
until the first separation constraint becomes active at iteration 15:
β1 − β2 � ε, in which ε is set (arbitrarily) to a normalized value of
0.4. All four separation constraints are active by iteration 100, and
remain so through the end of the optimization process. The resulting
topology (and its critical buckling mode shape) is shown in the upper
right of Fig. 6. The convergence of Eq. (6), contrastingly, proceeds
much slower, and several mode crossings occur. The final optimal
topology is seen in the lower left of Fig. 6, and eigenvalues 1, 3, and 5
(referencing the baseline numbering) are nearly equal to the bound b.
The remaining two drawings in Fig. 6 show the eigensolution of an
unstiffened panel (V� � 0), and a fully stiffened panel (xe � 1,
V� � 0.3), for comparison purposes.
A common practice [18], used here, is to set the initial topology ~x

equal to a spatially uniform value that exactly satisfies this volume
constraint. For a 10% value, ~x is set to a uniform value of 0.333, an
intermediate density. This initial topology has a substantially higher
buckling factor (Ncr � 30.07) than the unstiffened panel (Ncr �
4.00), but its buckling mode (which is not shown) is qualitatively
similar to the unstiffened case. The fully stiffened panel, on the other
hand, shows a higher-order mode shape (shorter wavelength). When

Fig. 5 Buckling-optimization convergence histories for eigenvalue separation-based methods [Eq. (5)] and bound formulations [Eq. (6)].

Fig. 6 Critical buckling factors and mode shapes for an unstiffened
panel (upper left), a panel with optimized stiffeners using eigenvalue
separation (upper right), a panel with optimized stiffeners using the
bound method (lower left), and a fully stiffened panel (lower right).
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eigenvalue separation constraints are imposed [Eq. (5)], Φ1 can
never, during the course of the optimization process, look like the
buckling mode of the fully stiffened panel. The imposition of the
eigenvalue separation constraints prevents this from ever happening,
as the identity of the critical mode can never change. The bound
method [Eq. (6)] removes this requirement and results in a buckling
mode, which shows some similarity to that of the fully stiffened
panel. It should be noted, however, that this optimal topology has
several closely-spaced modes. A mode shape which resembles the
unstiffened panel’s occurs at a buckling factor only 0.04% higher
than that shown.
The expected result of Eq. (6) (Ncr � 66.45), providing a superior

optimum to Eq. (5) (Ncr � 65.95), is achieved, but not by much. The
optimal performance of the latter is a direct function of the chosen
value for ε, which is set to some arbitrarily small value (0.4) for this
work.Decreasing this valuemakes the constraint easier to satisfy, and
will increase the optimal value of Ncr (and vice versa). If the value
becomes too small, however, mode switching could still occur if the
optimizer takes too large of a step, thus ultimately slowing down the
convergence [14]. It is also noted that, although the connectivity
between the upper and lower surfaces of each stiffener differs, the two
optimal structures share many topological similarities. One may,
thus, conclude that, for this specific problem, the choice between
separation constraints and bound formulations is of minor
consequence.

IV. Flutter-Eigenvalue Problems

Next, a supersonic aeroelastic flutter eigenproblem is considered.
This is an eigenvalue-migration problem, which is substantially
more expensive than the stationary buckling-eigenvalue problems
discussed previously. To alleviate the computational cost, flutter
analyses are commonly [12] based on a reduced-order model. Free-
vibration modes of the stiffened panel are computed from

�K� βn ·M� · Φn � 0 (7)

in which the eigenvalues in this case are βn � −ω2
n, and ωn are the

natural vibration frequencies. Collecting the lowest few vibration
modes into the matrix Φ, reduced matrices may be computed as
Kr � ΦT · K · Φ, and Mr � ΦT ·M · Φ. These new reduced
matrices will be several orders of magnitude smaller than their full-
order counterparts (and diagonal as well), and are thus amenable to
repeated eigenvalue calculations with increased values of λ (as in
Fig. 4). Two new problems are introduced, however.
First, several vibration modes are dominated by the motion of the

stiffener, while the relative motion of the panel itself is much smaller.
Airflow is assumed to travel over the upper surface of the panel only,
and so does not explicitly interact with the stiffeners. Simply
removing these modes degrades the accuracy of the flutter solution,
because the vibration within the upper skin, although far smaller in
magnitude than that seen in the stiffener, is still an important mode
shape. Leaving these modes as is corrupts the generalized amplitude
of each mode, owing to the large vibration of the stiffeners. An
entirely ad hoc solution, used here, is to substructure the stiffness
matrix into panel (1) and stiffener (2) degrees of freedom:

K �
�
K11 K12

K21 K22

�
(8)

Upon the solution of Eq. (7), the stiffener degrees of freedom of each
vibration mode are overwritten as

Φ2
n � −�K22�−1 · K21 · Φ1

n (9)

The final assembledmode shapesΦn � f �Φ1
n�T �Φ2

n�T gT are then
sent through a Gram–Schmidt process to orthogonalize the set. It is
noted that, at the end of this process, neither Kr nor Mr is still
diagonal.
A second issue arising from the use of a reduced-order model

comes from the well-known issue of free-mode vs fixed-mode

derivatives. Computing the analytical gradient of Kr or Mr with
respect to the topological design variables ~x (to eventually compute
the derivative of the flutter point) requires the derivative ofΦ as well.
This is a very expensive term, due to the large number of structural
degrees of freedom, large number of designvariables, and (relatively)
large number of mode shapes. For this work, these eigenvector
gradients are simply omitted from the chain rule (fixed-mode
derivatives), although mode shapes are updated at each new design
point. Although this can, in some cases, provide fairly inaccurate
gradients [23], the optimizer is able to locate a well-defined topology
under several active constraints, as will be seen as follows. Although
exactly (or, more feasibly, approximately) accounting for these
eigenvector derivatives may improve the convergence of the opti-
mizer, it seems unlikely that the additional cost will be worthwhile.
An aeroelastic eigenvalue problem is written as

��
0 −I

Kr − λ · Ka Cr −
���
λ
p

· Ca

�
� βn ·

�
I 0
0 Mr

��
· Φn � 0

(10)

in whichCr is a reduced structural Rayleigh dampingmatrix [17],Ka
and Ca are aerodynamic stiffness and damping matrices computed
via the supersonic piston theory (see [24] for derivation), and the
dynamic pressure parameter (seen in Figs. 2–4) is defined as
λ � ρ∞ · U2

∞ · a3 · 12 · �1 − ν2�∕�E · t3 ·
�����������������
M2

∞ − 1
p

�, in which ρ∞,
U∞, and M∞ are the density, speed, and Mach number of the flow
traveling over the upper surface of the panel. Φn is the right
eigenvector associated with the nth eigenvalue βn, both of which will
be complex valued. Again, referencing Fig. 4, the eigenvalues are
given by βn � gn � i · ωn, in which only positive imaginary values
are of interest. If λ is set to 0 in Eq. (10) and Rayleigh damping is
excluded, gn becomes zero, and the imaginary portions will coincide
with the natural frequencies found in Eq. (7).
The composite damping of the system is the eigenvalue with the

largest real part: G � max

n
�gn�. The flutter point is the point in

which G � 0, and occurs at λ � λ�. The topology-optimization
problem is stated as

max

~x
λ� s:t::

8>>>>>><
>>>>>>:

0 < xmin < ~xe < 1 e � 1; : : : ; Ne
vT · x ≤ V��

min

0 ≤ λ ≤ λ�
�ωn − ωn−1�

�
≥ ε n � 3; : : : ; Nm�

max

0 ≤ λ ≤ λ�
�gn�

�
≤ gcr n � 2; : : : ; Nm

(11)

The frequency-separation constraints in Eq. (11) reflect the left part
of Fig. 4, whereas the critical-damping constraints in Eq. (11) reflect
the right part of Fig. 4. Eigenvalues are traced as a function of λ using
the mode-tracking schemes developed in [21], specifically for
nonself-adjoint systems. The precise flutter point λ� is computed
using a direct eigenvalue-tracingmethod.A sensitivity analysis of λ�,
as well as critical eigenvalues (which may occur at any value of λ
between 0 and λ�) dictated by frequency separation or critical
damping, is readily available as well. The interested reader is referred
to [25] for more details concerning these schemes.
For the flutter results, the panel geometry and material properties

are unchanged, the Mach numberM∞ is set to 10, and the mass ratio
ρ∞ · a∕�ρ · t� is set to 2. The results are given in Fig. 7, organized in a
similar manner as the previous results. The flutter point λ�, flutter
frequency, and flutter mode shape are given, in which all frequencies
have been normalized by the first natural frequency of an unstiffened
panel. The flutter point λ� for the unstiffened panel agrees with the
well-known result [26]. The optimal topology (again for a 10%
volume fraction), as would be expected, is quite dissimilar from the
buckling results. Very little connectivity is seen toward the trailing
edge of the panel, despite the fact that most of the fluttering
deformation occurs here. Unlike the buckling results, the fully
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stiffened panel substantially outperforms the optimal topology by
nearly doubling the flutter speed (although the stiffeners are three
times heavier). The tradeoff between the flutter and stiffener mass
is far stronger than between the buckling and stiffener mass.
Similar to the eigenvalue separation results of Fig. 6 (upper right), the
flutter mode qualitatively resembles that of the unstiffened panel. A
mode shape that resembles the fully stiffened panel (i.e., shorter
wavelength, at least in the spanwise direction perpendicular to the
stiffeners) is unattainable with the formulation of Eq. (12), due to
the frequency-separation constraints. As before, the identity of the
critical mode can never change. Flutter-analogous techniques to the
bound method of Eq. (6) pose a number of complications, as will be
discussed as follows.
The eigenvalue migration for the optimal topology of Fig. 7 is

shown in Fig. 8, in which the first 10 modes are included in the
analysis. Values of λ, which mark the point of lowest frequency
separation between two consecutive modes, are given on the left of
this figure. Only three of these frequency-separation constraints are
active: between modes 2 and 3 (at a very low value of λ � 300),
betweenmodes 4 and 5, and betweenmodes 6 and 7. These latter two
separation points occur at the flutter point λ�. The frequency
separation between certain modes can become very small at values of
λ greater than the flutter point, but the constraint of Eq. (7) is only
concerned with eigenvalue migration in the range 0 ≤ λ ≤ λ�. The
separation value is set (again arbitrarily) as ε � 200 rad∕s, or a
normalized value of 0.48 in the figure. As before, decreasing this
value will make the constraint easier to satisfy, and should lead to a
higher-performing optimum [25]. Decreasing it too much may cause
inadvertentmode switching (if the optimizer takes too large of a step),
and also may lead to strongC1 discontinuities in the λ − g plot if two
frequencies nearly coalesce.
Similarly, points of critical damping are indicated on the right part

of Fig. 8. Higher-order modes tend to be more stable at wind-off
conditions (λ � 0), and therefore, have a lesser impact on the design
process. This is a direct result of the choice made for the damping
matrix Cr � αc ·Mr � βc · Kr, in which αc � 20 s−1 and
βc � 10−4 s. If βc had been set to 0, the wind-off damping of each
mode would be equal, and thus, closer to the critical boundary. The
critical-damping constraint is active, however (gcr � 200 rad∕s, or a
normalized value of 0.48 in the figure), for lower modes 2, 3, and 4; a

detailed graphic of this damping behavior near the flutter point is
given in Fig. 9. The damping ofmodes 3 and 4 is equal to gcr at λ

�; the
ability of the optimizer to hold these two constraints prevents the type
of mode-switching behavior drawn in Fig. 2 (with the potential
fluttering of mode 4 the more aggressive of the two). Mode 2 is a
hump mode, and is equal to gcr slightly below the flutter point.
Holding this constraint prevents the type of behavior drawn in Fig. 3.
A significant discrepancy between the optimal buckling

topologies of Fig. 6 and the optimal flutter topology of Fig. 7 is the
comparison between the performance of the optimal designs
(V� � 0.1) and the fully stiffened panels (V� � 0.3). Despite the
large reduction in stiffener mass, the buckling optimal topologies
have only amild drop in the buckling load; for the flutter problem, the
tradeoff is far stronger. A direct comparison between the successes of
the two design processes is perhaps unfair, given the completely
different physical metrics under consideration. It seems likely,
however, that the frequency-separation and (especially) the critical-
damping constraints used during flutter optimization are preventing
the location of a superior design (even though the success of the
buckling problem proved insensitive to the imposition of these
constraints). As noted previously, one key is to allow the optimizer to

Fig. 7 Flutter points, frequencies, and mode shapes for an unstiffened panel (left), a panel with optimized stiffeners (center), and a fully stiffened panel

(right).

Fig. 8 Eigenvalue migration of the optimal topology in Fig. 7.

Fig. 9 Eigenvalue (real part) migration close to the flutter point of the
optimal topology in Fig. 7.
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transition from a simple panel mode shapeΦ1 (left of Fig. 7) to one
with a shorter wavelength (right of Fig. 7), as the latter will typically
have a higher λ�. The frequency-separation constraints of Eq. (11)
clearly prevent this in their goal of providing a smooth design space
(i.e., no mode switching).
One ad hoc solution would be to impose an initial uniform value of

~x, which violates the volume constraint V�, but provides enough
stiffness such thatΦ1 is qualitatively similar to the flutter mode of the
fully stiffened panel. A better solution would be to remove the
separation constraints entirely, and let mode switching occur in a
smooth manner amenable to gradient-based optimization. A flutter-
analogous version of the bound method is written as

max
~x; b

b s:t:

8<
:
0 < xmin < ~xe < 1 e � 1; : : : ; Ne
vT · x ≤ V�
λ�n ≥ b n � 1; : : : ; Nm

(12)

This equation is essentially the same as Eq. (6), substituting βn in the
last constraint with λ�n . This new term λ�n represents successive flutter
points, as drawn in Fig. 10. In moving from one hypothetical design
iterate (left plot) to the next (right plot), the first two flutter points
switch, with λ�2 the new critical flutter point. The two points are not
renumbered, as mode tracking [21] can again be used to place a
distinction between the modes beyondmere ordering. Both λ�1 and λ

�
2

are being pushed to higher values in these plots by an increase in the
bound value b.
With regard to flutter problems, one important drawback of this

scheme is the significantly increased computational cost. Equa-
tion (11) only requires the location of a single flutter point, whereas
Eq. (12) requires the location of several. The piston-theory aerody-
namics used here has the luxury of explicit state-space aerodynamics
(Ka,Ca), but many aerodynamic theories only exist in the frequency
domain [27] (doublet-lattice methods, or many computational fluid
dynamics-based tools used for eigenvalue-based flutter inter-
rogation), and so the solution of Eq. (10) must proceed in a tedious
and expensive iterativemanner.With these methods, only computing
the first flutter point λ�1 can be expensive in itself. Furthermore, the
advent of hump modes during the optimization process (or their
disappearance, as demonstrated with λ�3 in Fig. 10) will also cause
significant issues with Eq. (12), as the number of flutter points Nm
will change, and thus, the number of constraints will also. This occurs
during the development of the optimal structure in Fig. 7; the hump
mode of Fig. 9 is not present in the initial baseline design. The
aforementioned oscillatory aerodynamics (written in the frequency
domain) are known [27] to have entire modes suddenly appear or
disappear with increased λ, which will further stress an algorithm
like Eq. (12).
Future work may resolve these issues, as well as demonstrate a

cost–performance tradeoff between optimal topologies found via
Eqs. (11) and (12) [or a version of Eq. (12), which can handle the
noted mode-bifurcation issues]. Future work must also account for
the problems of local mode vibration (when constructing a reduced
basis Φ), and fixed- vs free-mode derivatives (accounting for the
gradient ofΦ with respect to the design variables). Both issues were
resolved with simple ad hoc methods for this work, although more
fundamental and robust solutions are obviously desirable.

V. Conclusions

This work presents the topology optimization of stiffened panels
subject to buckling and aeroelastic flutter metrics. A square metallic
skin, simply supported along its perimeter, is subject to in-plane loads
(to quantify buckling resistance), or to supersonic flow over its upper
surface (to quantify the flutter point). A network of stiffeners is
attached to the underside of the panel, discretized into a lattice of
finite elements, and SIMP-based topology optimization is used to
find the best layout of material within each. This paper restricts this
network to three straight blade stiffeners, although future work may
look at a finer andmore complex ground structure, or find the ground
structure as the result of a prior optimization.
The consideration of buckling and flutter metrics constitutes

an eigenvalue-optimization problem. This class of problem poses
several challenges, the most significant of which is the crossover
of eigenvalue roots with changes in the design variables. If left
unhandled, this behavior can lead to a discontinuous design space,
resulting in a slow (or complete lack of) convergence of the gradient-
based optimizer. For buckling problems, two methods are demon-
strated via constraints that, if satisfied, will enforce a certain level
of smoothness on the design behavior. The first imposes a buffer
between two consecutive eigenvalues, whereas the second is a
standard boundmethod (which allowsmodes to freelymigrate during
the optimization). For flutter problems, only the first method is
implemented: separation constraints are applied to both the real
(damping) and the imaginary (frequency) parts of each eigenvalue.
These constraints, although they ensure a smooth design space, also
impose a lock-in behavior of modes during the optimization process,
so that the first mode will always remain the critical mode, and no
mode crossover is allowed. Although this method performs well in
comparison to the boundmethod for buckling problems, itmay be too
restrictive for flutter problems. Unfortunately, a flutter-analogous
bound method is beset with several complicating issues, each of
which is discussed and may be considered in future work.
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