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Abstract 

For purposes relating to the U.S. Army’s need for materials modeling and 
force protection, this work provides justification for assigning effective 
equivalence between two commonly used fluid simulation methods—
namely the Navier-Stokes (NS) and Lattice Boltzmann methods. The 
Lattice Boltzmann Method (LBM) has become increasingly popular as an 
alternative approach to traditional NS-based techniques for modeling 
various incompressible fluid flow applications. The LBM has recently 
increased its range of applicability to include numerous fields of interest 
including those involving multiphase and thermo-fluid structure 
interactions. This report documents a comparison/validation effort 
accompanying the development of a standard Lattice Boltzmann solver 
with immersible moving boundaries. The primary goal is to validate the 
model by comparing it with various laminar, incompressible flow cases 
simulated using a finite volume-based NS solver. Simulations involving 
four standard benchmark studies were analyzed: (1) the flow through a 
rectangular channel, (2) the flow through a lid-driven cavity, (3) the flow 
over a back-step, and (4) the flow over a stationary circular cylinder. For 
the specific applications and Reynolds numbers simulated, the results 
showed excellent agreement between the two cases. Disparities were 
observed only when the theoretical constraints of the LBM were exceeded. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Notation 

Acronyms/Symbols 

• AR: aspect ratio  
• BGK: Bhatnagar-Gross-Krook 
• CAVS: Center for Advanced Vehicular Systems 
• CFD: computational fluid dynamics 
• DEM: discrete element method 
• FDM: finite difference method 
• FEM: finite element method 
• FVM: finite volume method 
• IMB: immersible moving boundary 
• Kn: Knudsen number 
• LBM: Lattice Boltzmann method 
• Ma: Mach number 
• MRT: multiple relaxation time 
• NS: Navier-Stokes method 
• PISO: pressure implicit with splitting operator 
• Re: Reynolds number 

Notation 

• 𝑓𝑒𝑞: equilibrium distribution function 
• 𝜌: fluid density 
• 𝑐𝑠: speed of sound 
• 𝑢�⃗ : fluid velocity 
• 𝑐: lattice velocity 
• 𝑝: pressure 
• 𝑇: temperature 
• 𝐸: energy (internal) 
• 𝑡: time 
• �⃗�: position coordinate 
• 𝜅: thermal conductivity 
• 𝑰: identity matrix 
• 𝑺: strain rate tensor 
• 𝝉: deviatoric stress tensor 
• 𝜇′: bulk viscosity 
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• 𝜈: kinematic viscosity 
• 𝜇: dynamic (shear) viscosity 
• 𝑅: gas constant 
• 𝑤𝑖: lattice weights 
• 𝑙: mean free path 
• 𝜖:  Knudsen number (𝐾𝑛 = 𝑙/𝐿)  
• 𝜔��⃗ : angular velocity 
• 𝜀: volume fraction of a lattice cell (used in IMB approach) 
• 𝐵𝑛: weighting function (used in IMB approach) 
• 𝜏: relaxation time 
• 𝜔: relaxation frequency (1/𝜏) 
• Ω𝑖𝑠: collision operator (used in IMB approach) 
• Ω𝑖𝐵𝐺𝐾: Bhatnagar-Gross-Krook (BGK) collision operator 
• 𝐿: domain length 
• 𝐻: domain height 
• 𝐴: area 
• 𝛿: Kronecker function (𝛿𝑖𝑗 = 1 𝑖𝑓 𝑖 = 𝑗, 𝑒𝑙𝑠𝑒 𝛿𝑖𝑗 = 0) 
• 𝑁: number of lattice sites (𝐿�/𝛿𝑥) 
• 𝛿𝑥: spatial discretization step 
• 𝛿𝑡: temporal discretization step 
• �⃗�: external force 
• �⃗�: acceleration due to gravity 
• 𝐶𝑣: Specific heat at constant volume 
• Cd: Coefficient of drag 

Operations 

• ∇��⃗ : gradient operator 
• �⃗� ∙ 𝑏�⃗ : scalar product (�⃗� ∙ 𝑏�⃗ = ∑ 𝑎𝑖𝑏𝑖𝑖 ) 
• ∇2: Laplace operator 
• 〈 〉: Average operation 

Subscripts 

• 𝛼,𝛽, 𝛾: coordinate indices 
• cm: center of mass 
• i: lattice cell index 
• p: reference point 
• e, w, n, s: directional indices (used in Finite Volume discretization) 
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Superscripts 

• � : related to lattice quantities (i.e., 𝛿𝑥 is the lattice spatial discretization 
step) 
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1 Introduction 

1.1 Background 

The Lattice Boltzmann method (LBM) is becoming increasingly popular as 
an alternative approach to traditional techniques for modeling various flu-
id flow applications. More traditional approaches such as the Navier-
Stokes (NS)-based finite difference method (FDM), the finite element 
method (FEM), or the finite volume method (FVM) are founded on the 
discretization of macroscopic equations at the continuum level. By con-
trast, the LBM is based on distribution functions describing the kinetic be-
havior of particles that are characteristic of microscale and mesoscale 
simulations (Griebel; et al. 1997; Al-Jahmany 2004; Zienkiewicz et al. 
2005; Canuto et al. 1988). 

The use of the LBM approach for numerically simulating secondary 
(amorphous) phase constituents (most often represented as a laminar, in-
compressible fluid) within the context of material science-based applica-
tions is, for our purposes, strategically based on two primary motivations. 
The first of these motivations, and possibly the most dominant, relates to 
the omnipresent problem of spatiotemporal scale compatibility and recon-
ciliation, wherein one attempts to make macroscale material decisions 
based on microscale or nanoscale performance criteria. The second moti-
vation relates to concerns over mesh quality and the ability of the method 
being used to accurately resolve the flow over complex shapes. 

With respect to scale compatibility, the LBM is derived from a strictly at-
omistic (though probabilistic) parent method. Known as the Boltzmann 
equation, the parent method describes the phenomenological properties of 
microscale, particulate systems via the use of a phase space distribution 
function. Particularly attractive, is the fact that the method allows for the 
direct computation of macroscopic variables (e.g., velocity, density, pres-
sure) through a system of moment-based equations, as well as information 
at the microscale, vis-à-vis direct interpretation of the distribution func-
tion. The LBM derivation parallels its parent method in every particular, 
except that it allows for a more simplified estimation of the probability dis-
tribution function via a set of discrete velocities situated on a structured 
lattice framework. Multiscale applicability is thus also an inherent feature 
within this method, as it has successfully demonstrated its capacity to 
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solve a number of problems at both the micro and continuum scales 
(Raabe 2004; Succi et al. 1993). The more traditional methods (e.g., Euler, 
NS, Burnett), though arguably more ubiquitous in their usage (owing to 
their extended level of maturity, and familiarity), are nevertheless derived 
strictly from a continuum-based assumption. Apart from a few exceptions 
(e.g., the use of slip wall boundary conditions to extend the NS method in-
to regimes of larger Knudsen number [Kn]), these methods are quite lim-
ited for purposes of spatiotemporal scaling.  

The second argument in support of using the LBM approach concerns the 
issue of accurately resolving the flow field dynamics surrounding complex 
shapes. Grain structures (static, dynamic, isotropic, anisotropic), structur-
al asperities, irregular flow channels, inclusions, etc. are common features 
found in many material science applications. Most traditional methods re-
ly on highly resolved (unstructured) grid approaches to model these com-
plex geometries. Unfortunately, these traditional methods are subject to 
several potential drawbacks, including:  

• Computational costs due to the large volume of elements required to 
adequately resolve “small tight spaces” and areas of large flow gradi-
ents. 

• Concerns over mesh quality, which inevitably occur in conjunction with 
the computation cost drawback just above and include such items as 
negative element volumes, highly skewed elements, and improper sur-
face normal assignments. 

• Time and resource costs due to the excessive labor requirements to im-
plement quality grid(s). (This often-underestimated concern consumes 
the vast majority of a researchers’ time and resources, often resulting 
in the separate hire of a “meshing expert”). 

The LBM approach is effectively immune from these drawbacks due in 
large part to the development of the immersible moving boundary (IMB) 
method (Owen et al. 2011). While the LBM does utilize a simple structured 
regular lattice, the IMB method operates in a manner that is completely 
independent and distinct from the underlying mesh density. The IMB 
method is based on the adaptation of the LBM collision operator which 
accounts for the limited area or volume fraction of a lattice cell, subject to 
an intruding surface or volume. While it is still necessary to provide a reli-
able method for the computation of the said area or volume fraction (de-
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pending on the prescribed level of accuracy), there are typically a variety of 
proven methods that are readily practicable.  

Additional advantages of the LBM over the more conventional approaches 
include the following: 

• The LBM is relatively simple to implement. Unlike other solvers, LBM 
models flow fields explicitly. Each time step can be split into a stream-
ing step and a collision step involving no matrix inversion processes. 
The development of the standard Bhatnagar-Gross-Krook (BGK) colli-
sion operator (Higuera and Jimenez 1989; Koelman 1991) further eases 
implementation by providing a dramatically simplified alternative to 
the cumbersome integrodifferential collision operator of the standard 
Boltzmann equation.  

• The LBM provides excellent scalability for large, parallel applications. 
All interactions in the LBM are strictly local. In the collision step, the 
updated distribution function at a given lattice site is computed by in-
volving only the information at the same node. In the propagation step, 
each lattice site must exchange information only with its nearest-
neighbor lattice sites.  

• The convection term in the LBM is linear. In contrast to the second-
order non-linear convection term in the NS equations, the linearity of 
the LBM convection term results in significant time savings. The LBM 
recovers the same second-order accuracy as the NS equations through 
a relaxation process involving particle interactions.  

• Unlike NS-based solutions, an explicit solution for the pressure dynam-
ics is not required in the LBM approach. The pressure in the LBM is 
computed from the ideal gas law. The NS approach involves a separate 
iterative solution involving the Poisson equation. This calculation is 
one of the most time-consuming operations of the NS method.  

As a consequence of these recent advances, the LBM has extended its 
range of applicability to include:  

• simulations of turbulent flows (Eggels 1996),  
• suspension of colloidal particles (Ladd 2001),  
• porous media (Gunstensen et al. 1991),  
• multiphase and multicomponent flows (Grunau et al 1993; Shan and 

Chen 1993), and  
• magnetohydrodynamics (Chen et al. 1991).  
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Other LBM-based research efforts that have been specifically conducted at 
ERDC include:  

• simulation of viscous flow through a column of glass beads (Maier et al. 
1998),  

• investigations involving the effects of pore geometry on transport 
mechanisms to better characterize constitutive relationships in multi-
phase flows (Maier et al. 1996), and 

• simulations involving the accuracy of the LBM as relating to Mach 
number, spatial resolution, boundary conditions and the lattice mean 
free path (Maier and Bernard 1997).  

Additionally, or in many cases complementary to the aforementioned list-
ing, the LBM has recently been developed for thermofluid structure inter-
action applications via hydrodynamic and/or thermal coupling 
mechanisms. This latest development has, for example, facilitated the use 
of coupled discrete element method (DEM)/LBM models that can be used 
in a large variety of applications of interest, including those relating to: po-
rous media flows (Han and Cundall 1997) (including fines migration appli-
cations), geologic deformation (shear) band permeability evolution (Sun et 
al. 2013), gas-fluidized beds (Third and Müeller 2013), and liquid phase 
sintering (Varnick et al. 2013).  

Despite the increased progress and stated advantages of the LBM over 
conventional approaches, the total number of publications resulting from 
LBM research is substantially in the minority, compared to more conven-
tional approaches. This paucity in LBM research is likely due to its relative 
novelty, but it may also be attributable to various difficulties relating to 
implementation issues, including: the indirect method of applying bound-
ary conditions (i.e., prescribing distribution functions in lieu of explicitly 
providing Dirichlet or Neumann conditions involving precise macroscopic 
variables), the need to prescribe aspect ratio and Reynolds number (Re) 
equivalence when making model comparisons, the use of lattice units as 
compared with physical (Re) units, or the numerical instabilities that can 
arise for violations of compressibility or laminar restraints. Additional lia-
bilities of the LBM include (Mohamad 2011): 

• The difficulty in simulating high Mach number (Ma) flows (in excess of 
the incompressible limit – e.g., Ma > 0.3). 
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• Local violations of the Kn. which are particularly likely for flows with 
strong velocity gradients.  

• The limitations associated with uniform square grids. As opposed to 
conventional FVM, FEM, or FDM approaches, the LBM is primarily re-
stricted to square lattices. Refinement meshing and/or the application 
of curved grids have proven difficult to implement. 

• The LBM is subject to numerical instabilities particularly when the lat-
tice viscosity (�̂�) becomes too small.  

1.2 Objective  

While there is currently no debate concerning the theoretical equivalence 
of the LBM and NS for low Ma flows with negligible density fluctuation 
(the Chapman-Enskog expansion conclusively proves this, as discussed in 
Chapter 4); in practice however, negligible density fluctuations can be dif-
ficult to achieve. This difficulty is particularly true for imposed pressure 
boundary conditions. In fact, regardless of the imposed boundary condi-
tions, the spatial density variation is never completely zero in LBM simula-
tions. Other potential problems underlying the traditional LBM are 
associated with local stability issues, particularly those brought on by local 
flow gradients.  

In light of the aforementioned concerns, this report documents a compari-
son/validation effort accompanying the development of a standard LBM 
solver complemented with the IMB method. For validation purposes, con-
ventional NS methods are utilized. In particular, comparison studies will 
involve four standard benchmark cases including, the flow through a rec-
tangular channel, the flow inside a lid driven cavity, the flow over a back-
step, and the flow over a stationary circular cylinder. Each case will be 
simulated over a variety of different input conditions and associated 
Reynolds numbers.  

1.3 Approach 

This report first presents the incompressible, laminar, NS equations 
(including the continuity equation). The need to include the Poisson 
equation is demonstrated for purposes of closure. For illustration 
purposes, a simple one-dimensional convection-diffusion example is 
presented and discretized in accordance with the FVM of solution. Second, 
the theoretical background for the LBM is presented with origins derived 
from the standard Boltzmann equation. In lieu of the complex 
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integrodifferential collision operator of the standard Boltzmann equation, 
the standard BGK approximation is used (Higuera and Jimenz 1989; 
Koelman 1991). Third, assuming negligible density variation, the analytical 
equivalence between the LBM and NS is shown using the Chapman-
Enskog expansion method. Finally, the aforementioned benchmark 
comparison studies are described and analyzed.  
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2 Navier-Stokes Equations 

In general, the state of most fluids can be described by using the following 
macroscopic variables: 

𝑢�⃗ ,               𝑓𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝜌,                𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑝,
𝑇,
𝐸,

   
   𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

           𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑒𝑛𝑒𝑟𝑔𝑦

 

The applicable governing equations for these variables can be derived from 
statistical mechanics using the microscopic equations of motion. Alterna-
tively, they can be obtained through conservation laws. In divergence 
form, the conservation of mass (Eq. 1), momentum (Eq. 2), and energy 
(Eq. 3) can be expressed as: 

Mass:  𝜕𝜌
𝜕𝑡

+ ∇��⃗ ∙ (𝜌𝑢�⃗ ) = 0                                                                         (1) 

Momentum:  𝜕
𝜕𝑡

(𝜌𝑢�⃗ ) + ∇��⃗ ∙ (𝜌𝑢�⃗ 𝑢�⃗ + 𝑝𝑰 − 𝝉) = 𝜌�⃗�                                           (2) 

Energy:   𝜕
𝜕𝑡
𝐸 + ∇��⃗ ∙ �(𝜌𝐸 + 𝑝)𝑢�⃗ − 𝜅∇��⃗ 𝑇 − (𝑢�⃗ ∙ 𝝉)𝑇� = 𝜌(𝑞 + �⃗� ∙ 𝑢�⃗ )        (3) 

 
where: 

  ∇��⃗   =  gradient operator � 𝜕
𝜕𝑥𝛼

� 

 �⃗�  =  acceleration due to gravity 
  𝑞  =  internal heat source 
  𝜅  =  thermal conductivity 
  𝑰  =  identity matrix 
  𝝉  =  deviatoric stress in the fluid.  

For a Newtonian fluid, 𝝉 has the following form (Eq. 4): 

 𝜏 = −𝜇′𝜌�∇��⃗ ∙ 𝑢�⃗ �𝑰 + 2𝜌𝜇𝑺  (4) 
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Where 𝜇 and 𝜇′ represent the dynamic (shear) and bulk viscosity respec-
tively, and S (the strain rate tensor) is defined by Eq. 5: 

 𝑺 = 1/2 �∇��⃗ 𝑢�⃗ + �∇��⃗ 𝑢�⃗ �
𝑇
�  (5) 

As written, for an n-dimensional space, Eq. 1–3 represent a system of 
n + 2 equations for n + 4 unknowns. To close the system, two additional 
equations of state are required: one relating the pressure and temperature 
and the other temperature and energy. For example, for a perfect gas, 
these equations are: 𝑝 = 𝜌𝑅𝑇 and 𝐸 = 𝐶𝑣𝑇, respectively. 

2.1 Isothermal and incompressible flows 

For an isothermal, incompressible flow, the effects of the temperature are 
neglected, and the density is assumed constant (𝜌 = 𝜌0). The conservation 
law for the mass is simplified and states that the velocity field is diver-
gence free (solenoidal), shown by Eq. 6: 

  ∇��⃗ ∙ 𝑢�⃗ = 0  (6) 

The conservation law for the momentum is also simplified and leads to the 
incompressible NS equations: 

 𝜕𝑡𝑢�⃗ + �𝑢�⃗ ∙ ∇��⃗ �𝑢�⃗ = − 1
𝜌0
∇��⃗ 𝑝 + 𝜈∇2𝑢�⃗   (7) 

To find the value of pressure, p, one takes the divergence of Eq. 7. Making 
use of Eq. 6, this yields the Poisson equation (Eq. 8): 

 ∇2𝑝 = −𝜌0�∇��⃗ 𝑢�⃗ �: �∇��⃗ 𝑢�⃗ �
𝑇
 (8) 

For implementation purposes, Eq. 8 is solved via an iterative procedure at 
each time step. The correct value of pressure is obtained in a way that en-
sures the velocity field remains divergence-free. 

2.2 Finite volume discretization 

While there are many methods that can be used to discretize the above 
conservation equations, for this work we implement the FVM (Versteeg 
and Malalasekera 1995). For illustration purposes, the FVM discretization 
pertaining to a steady-state flow involving one-dimensional convection 
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and diffusion of a quantity (𝜑), is demonstrated for the control volume 
(Figure 1).  

Figure 1. One-dimensional control volume used in the FVM. 

 

For a diffusion coefficient (Γ), Eq. 6 and Eq. 7 become: 

 𝑑
𝑑𝑥

(𝑢) = 0 (9) 

 𝑑
𝑑𝑥

(𝑢𝜑) = 𝑑
𝑑𝑥
�Γ 𝑑𝜑

𝑑𝑥
� (10) 

Integration of Eq. 9 and Eq. 10 over the control volume gives us Eq. 11 and 
Eq. 12: 

 (𝑢𝐴𝜑)𝑒 − (𝑢𝐴𝜑)𝑤 = 0 (11) 

 (𝑢𝐴𝜑)𝑒 − (𝑢𝐴𝜑)𝑤 = �ΓA 𝑑𝜑
𝑑𝑥
�
𝑒
− �ΓA 𝑑𝜑

𝑑𝑥
�
𝑤

 (12) 

where: 

e and w represent directional indices as shown in Figure 1, and A is the 
control volume cross-sectional area.  

As customary, we define the variables (𝐹𝑒, 𝐹𝑤, and 𝐷𝑒, 𝐷𝑤) to correspond to 
convection and diffusion in the east and west directions in Eq. 13 and 
Eq. 14, respectively: 

 𝐹𝑒 = (𝑢)𝑒 ,         𝐹𝑤 = (𝑢)𝑤   (13) 
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 𝐷𝑤 = Γ𝑤
𝛿𝑥𝑊𝑃

,           𝐷𝑒 = Γ𝑒
𝛿𝑥𝑃𝐸

  (14) 

Here the indices W, P, and E correspond to the respective node locations 
shown in Figure 1.  

Substituting Eq. 13 and Eq. 14 into Eq. 11 and Eq. 12, and assuming that all 
cross-sectional areas are equivalent (i.e., 𝐴𝑤 = 𝐴𝑒 = 𝐴), we have Eq. 15 and 
Eq 16: 

 𝐹𝑒 − 𝐹𝑤 = 0 (15) 

 𝐹𝑒𝜑𝑒 − 𝐹𝑤𝜑𝑤 = 𝐷𝑒(𝜑𝐸 − 𝜑𝑃) − 𝐷𝑤(𝜑𝑃 − 𝜑𝑊)  (16) 

Finally, the convection terms on the left-hand side of Eq. 16 may be treat-
ed with an upwind differencing scheme, which takes into account the di-
rection of the flow. For positive flows (streaming from left to right), we 
have Eq. 17: 

  𝜑𝑤 = 𝜑𝑤,       𝑎𝑛𝑑  𝜑𝑒 = 𝜑𝑃   𝑓𝑜𝑟:      𝑢𝑤 > 0, 𝑎𝑛𝑑 𝑢𝑒 > 0  (17) 

and for negative flows (right to left), we have Eq. 18: 

    𝜑𝑤 = 𝜑𝑃,       𝑎𝑛𝑑  𝜑𝑒 = 𝜑𝐸    𝑓𝑜𝑟:      𝑢𝑤 < 0,𝑎𝑛𝑑 𝑢𝑒 < 0  (18) 

This completes the discretization process for this simple, one-dimensional, 
convection-diffusion case. 
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3 Lattice Boltzmann Equation 

As its name suggests, the Lattice Boltzmann (LB) equation may be regard-
ed as a limited version of the generalized Boltzmann equation. The Boltz-
mann equation describes the phenomenological properties of particulate 
systems via the use of the phase space distribution function, 𝑓(�⃗�, 𝑐, 𝑡). The 
phase space distribution function represents the number of particles at 
time t, positioned between �⃗� and �⃗� + 𝑑�⃗�, with velocities between 𝑐 and 
𝑐 + 𝑑𝑐. As shown in Figure 2, if we impose an external force (𝐹����⃗ ) to a parti-
cle of unit mass, this force will result in a change in position and velocity, 
equivalent to:  �⃗� + 𝑐𝑑𝑡 and 𝑐 + �⃗�𝑑𝑡, respectively.  

Figure 2. Position and velocity vectors resulting from an external force. 

  

For the idealized case in which there are no collisions between particles, 
we may equate the particle distribution at time (t) with that of time 
(𝑡 + 𝑑𝑡), to get Eq. 19:  

 𝑓��⃗� + 𝑐𝑑𝑡, 𝑐 + �⃗�𝑑𝑡, 𝑡 + 𝑑𝑡�𝑑�⃗�𝑑𝑐 − 𝑓(�⃗�, 𝑐, 𝑡) = 0 (19) 

If collisions are included, it is clear that some particles, initially at (�⃗�, 𝑐, 𝑡), 
will not arrive at ��⃗� + 𝑐𝑑𝑡, 𝑐 + �⃗�𝑑𝑡, 𝑡 + 𝑑𝑡� simply because they have been 
diverted from their original path. Analytically, this may be represented as 
Eq. 20: 

  𝑓(�⃗� + 𝑐𝑑𝑡, 𝑐 + �⃗�𝑑𝑡, 𝑡 + 𝑑𝑡)𝑑�⃗�𝑑𝑐 − 𝑓(�⃗�, 𝑐, 𝑡)𝑑𝑟𝑑𝑐 = Ω(f)𝑑�⃗�𝑑𝑐𝑑𝑡  (20) 
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where we have used Ω(𝑓) to represent the collision operator (physically 
representing the difference from the idealized streaming case). Dividing 
Eq. 20 by 𝑑�⃗�𝑑𝑐𝑑𝑡 and taking the limit as 𝑑𝑡 → 0 yields Eq. 21: 

 𝑑𝑓
𝑑𝑡

= Ω(f) (21) 

Since f is a function of �⃗�, 𝑐, and t, the total rate of change of f may be writ-
ten as Eq. 22: 

 𝑑𝑓 = (∇��⃗ 𝑥𝑓)𝑑�⃗� + (∇��⃗ 𝑐𝑓)𝑑𝑐 + 𝜕𝑓
𝜕𝑡
𝑑𝑡 (22) 

Dividing by dt and applying Eq. 21, we obtain the familiar Boltzmann 
equation shown as Eq. 23 or Eq. 24: 

 𝑑𝑓
𝑑𝑡

= 𝜕𝑓
𝜕𝑡

+ �∇��⃗ 𝑥𝑓�𝑐 + �∇��⃗ 𝑐𝑓��⃗�/𝑚 = Ω(f) (23) 

OR: 

 𝜕𝑓
𝜕𝑡

+ (𝑐 ∙ ∇��⃗ 𝑥 + �⃗�
𝑚
∙ ∇��⃗ 𝑐 + 𝜕𝑡)𝑓 = Ω(f) (24) 

Where ∇��⃗ 𝑥 (for the two dimensional, Cartesian coordinate system shown in 
Figure 2) is � 𝜕

𝜕𝑥
, 𝜕
𝜕𝑦
�  and ∇𝑐 is � 𝜕

𝜕𝑢
, 𝜕
𝜕𝑣
�. 

The LB equation is easily derived from Eq. 24. By neglecting external forc-
es (�⃗�), normalizing the mass to unity, and limiting the velocity (𝑐) to a dis-
crete set of vectors (in conformance with a prescribed lattice), the 
distribution function can be written as 𝑓𝑖(𝑡, �⃗�) with no loss of information 
(Mohamad 2011). With time discretization, we have: Ω𝑑𝑡 → Ω𝑖(𝑟, 𝑡), and 
the LB equation can be written as Eq. 25: 

 𝑓𝑖�𝑡 + 𝛿𝑡, �⃗� + 𝑐𝑖�̂�𝑡� − 𝑓𝑖(�⃗�, 𝑡) = Ω𝑖(x�⃗ , t) (25) 

This equation has been written in lattice units, such that the time interval 
from one iteration to the next is 𝛿𝑡 and the spacing between two adjacent 
lattice nodes is 𝛿𝑥, where 𝛿𝑥 = 𝑐𝑖�̂�𝑡. 

As stated previously, one of the main problems in solving the Boltzmann 
equation (Eq. 24) is the complicated nature of the integrodifferential colli-
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sion term (Allen 2006) The current practice within the context of the LBM 
is to use the BGK relaxation approximation for the collision term (Higuera 
and Jimenez 1989; Koelman 1991). The BGK approximation involves re-
laxation dynamics (with relaxation parameter 𝜔) towards local equilibri-
um, to produce Eq. 26: 

 Ω𝑖𝐵𝐺𝐾 = −𝜔�𝑓𝑖 − 𝑓𝑖
𝑒𝑞�  (26) 

As shown in Figure 3, the D2Q9 particle velocity model is used in this 
work (Qian et al. 1992). As shown, the particle velocities consist of a rest 
particle (𝑐0) and eight moving particles (𝑐1, 𝑐2, … 𝑐8). 

Figure 3. Lattice velocities corresponding to the D2Q9 configuration. 

 

The local equilibrium distribution function (𝑓𝑖
𝑒𝑞)is obtained from a series 

approximation (see Appendix) and defined (up to second order) as Eq. 27: 

 𝑓𝑖
𝑒𝑞 = 𝜌�𝑤𝑖 �1 + 𝑐𝑖𝛼𝑢𝛼

𝑐𝑠2
+ (𝑐𝑖𝛼𝑢𝛼)2

2𝑐𝑠4
− 𝑢2

2𝑐𝑠2
�  (27) 

The speed of sound constant (𝑐𝑠) and the lattice weighting coefficients (𝑤𝑖) 
are determined such that a system of moment summations are satisfied. 
For a D2Q9 lattice configuration (Qian et al. 1992), these include Eq. 28–
31): 

 ∑ 𝑓𝑖
𝑒𝑞 = 𝜌�𝑖   (28) 

 ∑ 𝑓𝑖
𝑒𝑞𝑐𝑖𝛼 = 𝜌�𝑢𝛼𝑖   (29) 
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 ∑ 𝑓𝑖
𝑒𝑞𝑐𝑖𝛼𝑐𝑖𝛽 = 1

3
𝜌�𝑐𝑠2𝛿𝛼𝛽 +𝑖 𝜌�𝑢𝛼𝑢𝛽 (30) 

 ∑ 𝑓𝑖
𝑒𝑞𝑐𝑖𝛼𝑐𝑖𝛽𝑐𝑖𝛾 = 1

3
𝜌�𝑐𝑠2�𝛿𝛼𝛽𝑢𝛾 + 𝛿𝛽𝛿𝑢𝛼 + 𝛿𝛾𝛼𝑢𝛽�𝑖  (31) 

Where the subscript indices (𝛼,𝛽, … ) represent the spatial components of 
the vectors, 𝑐𝑠 is the lattice speed of sound, and 𝛿 is the Kronecker delta.   

Satisfying Eq. 28-31, a value of 𝑐𝑠2 = 1/3 is often used, with weighting coef-
ficients as shown in Eq. 32: 

 𝑤𝑖 = 4
9

(𝑖 = 0),        𝑤𝑖 = 1
9

(𝑖 = 1,2,3,4),      𝑎𝑛𝑑 𝑤𝑖 = 1
36

(𝑖 = 5,6,7,8)   (32) 

The macroscopic density (𝜌�) and velocity (𝑢𝛼) are calculated from moment 
summations using the distribution function, as shown in Eq. 33 and Eq. 
34, respectively: 

  𝜌� = ∑ 𝑓𝑖𝑖  (33) 

 𝜌�𝑢𝛼 = ∑ 𝑓𝑖𝑐𝑖𝛼𝑖  (34) 
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4 Lattice Boltzmann/Navier-Stokes 
Equivalence using the Chapman-Enskog 
Expansion 

Under the assumption of negligible density fluctuations (e.g., incompress-
ible flow), the Chapman-Enskog expansion (Chapman and Cowling 1970) 
can be used to show LBM equivalence to the NS equations. To summarize, 
the basic idea behind the Chapman-Enskog expansion is to separate the 
distribution function into multiple scales with respect to the order of 
Knudsen number (𝜖). Physical properties of the macroscopic variables, 
such as the density and momentum, are automatically separated out from 
the different scales.  

In detail, the process begins first with the distribution function written as 
an asymptotic series expanded over the Knudsen number (𝜖), as in Eq. 35: 

 𝑓𝑖 = 𝑓𝑖
(0) + 𝜖𝑓𝑖

(1) + 𝜖2𝑓𝑖
(2) + ⋯  (35) 

The functions (𝑓𝑖
(𝑘)) are defined in such a way as to progressively and in-

dependently tend toward zero with increasing powers of epsilon (which 
necessarily assumes that epsilon is a very small quantity consistent with 
the continuum assumption). Since the main objective of the Chapman-
Enskog expansion is to provide a consistent definition for 𝑓𝑖

(𝑘), preliminar-
ily this means satisfying Eq. 33 and Eq. 34 as Eq. 36 and Eq. 37 by requir-
ing that the first two moments of the zeroth approximation reproduce 
macroscopic density and velocity. The corresponding moments of the 
higher-order terms are set to zero: 

 ∑ 𝑓𝑖
(0) = 𝜌�;                ∑ 𝑓𝑖

(0)𝑐𝑖𝛼 =𝑖 𝜌�𝑢𝛼   𝑖  (36) 

 ∑ 𝑓𝑖
(𝑘) = 0;               𝑖 ∑ 𝑓𝑖

(𝑘)𝑐𝑖𝛼 =𝑖 0;       𝑓𝑜𝑟  𝑘 > 0 (37) 

Using the BGK approximation, the LB equation may be written as Eq. 38: 

𝑓𝑖(𝑡 + ∆𝑡, �⃗� + 𝑐𝑖𝛿𝑡) − 𝑓𝑖(𝑡, �⃗�) = −1
𝜏
�𝑓𝑖(𝑡, �⃗�) − 𝑓𝑖

𝑒𝑞(𝑡, �⃗�)�, (𝑖 = 0 …𝑁) (38) 
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Applying a Taylor series expansion (𝑡, �⃗�) to the first term of Eq. 38 yields 
Eq. 39: 

 

𝑓𝑖(𝑡 + 𝛿𝑡, �⃗� + 𝑐𝑖𝛿𝑡) = 𝑓𝑖 + 𝛿𝑡 �
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖 + 𝛿𝑡
2

2
� 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2
𝑓𝑖 + 𝑂�𝛿𝑡

3�  (39) 

 
Where 𝑓𝑖(𝑡, �⃗�) is simplified to 𝑓𝑖 for convenience, and: 

 � 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2
𝑓𝑖 ≡ � 𝜕

2

𝜕𝑡2
+ 2𝑐𝑖𝛼

𝜕2

𝜕𝑡𝜕𝑥𝛼
+ 𝑐𝑖𝛼𝑐𝑖𝛽

𝜕2

𝜕𝑥𝛼𝜕𝑥𝛽
� 𝑓𝑖   (40) 

Substituting Eq. 39 into Eq. 38 and dividing by 𝛿𝑡 yields Eq. 41: 

 � 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖 + 𝛿𝑡
2
� 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2
𝑓𝑖 + 1

𝛿𝑡𝜏
�𝑓𝑖 − 𝑓𝑖

𝑒𝑞� = 𝑂�𝛿𝑡
2� (41) 

Since 𝜖 and 𝛿𝑡 are approximately the same magnitude (for 𝑐𝑠 = 𝑂(1)), the 
distribution function 𝑓𝑖 can be expanded in the asymptotic series shown in 
Eq. 42: 

  𝑓𝑖 = 𝑓𝑖
𝑒𝑞 + 𝛿𝑡𝑓𝑖

(1) + 𝛿𝑡
2𝑓𝑖

(2) + ⋯ (42) 

 
Inserting Eq. 4) into Eq. 41, we have Eq. 43: 

�
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� �𝑓𝑖
𝑒𝑞 + 𝛿𝑡𝑓𝑖

(1) + 𝛿𝑡
2𝑓𝑖

(2) + ⋯� 

+
𝛿𝑡
2
�
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2

�𝑓𝑖
𝑒𝑞 + 𝛿𝑡𝑓𝑖

(1) + 𝛿𝑡
2𝑓𝑖

(2) + ⋯� 

 + 1
𝛿𝑡𝜏

�𝑓𝑖
𝑒𝑞 + 𝛿𝑡𝑓𝑖

(1) + 𝛿𝑡
2𝑓𝑖

(2) + ⋯− 𝑓𝑖
𝑒𝑞� = 𝑂(𝛿𝑡

2) (43) 

Organizing terms according to the order of 𝛿𝑡 we have Eq. 44: 

��
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
𝑒𝑞 +

1
𝜏
𝑓𝑖

(1)� 

+𝛿𝑡 ��
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
(1) + 1

2
� 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2
𝑓𝑖
𝑒𝑞 + 1

𝜏
𝑓𝑖

(2)� = 𝑂(𝛿𝑡
2) (44) 
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To obtain the Euler expression (the inviscid form of NS), the first term of 
Eq. 44 is assumed zero, creating Eq. 45: 

 

 � 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
𝑒𝑞 + 1

𝜏
𝑓𝑖

(1) = 0 (45) 

Taking the summation Σ𝑖 on Eq. (45) and using Eq. 28, Eq. 29, and Eq. 36, 
we obtain the equation for the conservation of mass in Eq. 46: 

���
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
𝑒𝑞 +

1
𝜏
𝑓𝑖

(1)�
𝑖

 

=
𝜕
𝜕𝑡
�𝑓𝑖

𝑒𝑞

𝑖

+
𝜕
𝜕𝑥𝛼

�𝑓𝑖
𝑒𝑞

𝑖

𝑐𝑖𝛼 +
1
𝜏
�𝑓𝑖

(1)

𝑖

 

  = 𝜕
𝜕𝑡
𝜌 + 𝜕

𝜕𝑥𝛼
(𝜌𝑢𝛼) = 0  (46) 

Taking the summation  ∑ 𝑐𝑖𝛼𝑖  on Eq. 45 and using Eq. 29, Eq. 30, and 
Eq. 37, we obtain Euler’s equation for the conservation of momentum (Eq. 
48): 

�𝑐𝑖𝛼 ��
𝜕
𝜕𝑡

+ 𝑐𝑖𝛽
𝜕
𝜕𝑥𝛽

� 𝑓𝑖
𝑒𝑞 +

1
𝜏
𝑓𝑖

(1)�
𝑖

 

=
𝜕
𝜕𝑡
�𝑓𝑖

𝑒𝑞𝑐𝑖𝛼
𝑖

+
𝜕
𝜕𝑥𝛽

�𝑓𝑖
𝑒𝑞

𝑖

𝑐𝑖𝛼𝑐𝑖𝛽 +
1
𝜏
�𝑓𝑖

(1)𝑐𝑖𝛼
𝑖

 

 = 𝜕
𝜕𝑡

(𝜌𝑢𝛼) + 𝜕
𝜕𝑥𝛽

�1
3
𝜌𝑐2𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽� = 0 (47) 

Next the contribution from the second term of Eq. (44) is evaluated.  Ap-
plying the differential operation � 𝜕

𝜕𝑡
+ 𝑐𝑖𝛼

𝜕
𝜕𝑥𝛼

� on Eq. (45) we have Eq. 48: 

 � 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2
𝑓𝑖
𝑒𝑞 + 1

𝜏
� 𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
(1) = 0 (48) 
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Inserting Eq. 48 into the second term of Eq. 44 to eliminate the squared 
differentiation results in Eq. 49: 

𝛿𝑡 ��
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�𝑓𝑖
(1) +

1
2
�
𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

�
2

𝑓𝑖
𝑒𝑞 +

1
𝜏
𝑓𝑖

(2)� 

 = 𝛿𝑡 ��1 − 1
2𝜏
� � 𝜕

𝜕𝑡
+ 𝑐𝑖𝛼

𝜕
𝜕𝑥𝛼

� 𝑓𝑖
(1) + 1

𝜏
𝑓𝑖

(2)� (49) 

Taking the summation Σ𝑖 on Eq. 49 and using Eqs. 36 and 37, we have Eq. 
50: 

�𝛿𝑡 ��1 −
1

2𝜏
� �

𝜕
𝜕𝑡

+ 𝑐𝑖𝛼
𝜕
𝜕𝑥𝛼

� 𝑓𝑖
(1) +

1
𝜏
𝑓𝑖

(2)�
𝑖

 

 = 𝛿𝑡 ��1 − 1
2𝜏
� � 𝜕

𝜕𝑡
∑ 𝑓𝑖

(1)
𝑖 + 𝜕

𝜕𝑥𝛼
∑ 𝑓𝑖

(1)
𝑖 𝑐𝑖𝛼� + 1

𝜏
∑ 𝑓𝑖

(2)
𝑖 � = 0  (50) 

Taking the summation ∑ 𝑐𝑖𝛼𝑖 on Eq. (49) and inserting Eq. 37 yields Eq. 51: 

�𝑐𝑖𝛼𝛿𝑡 ��1 −
1

2𝜏
� �

𝜕
𝜕𝑡

+ 𝑐𝑖𝛽
𝜕
𝜕𝑥𝛽

� 𝑓𝑖
(1) +

1
𝜏
𝑓𝑖

(2)�
𝑖

 

= ∆𝑡 ��1 −
1

2𝜏
� �

𝜕
𝜕𝑡
�𝑓𝑖

(1)𝑐𝑖𝛼
𝑖

+
𝜕
𝜕𝑥𝛽

�𝑓𝑖
(1)

𝑖

𝑐𝑖𝛼𝑐𝑖𝛽� +
1
𝜏
�𝑓𝑖

(2)𝑐𝑖𝛼
𝑖

� 

 = 𝛿𝑡 �1 − 1
2𝜏
� 𝜕
𝜕𝑥𝛽

∑ 𝑓𝑖
(1)

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽   (51) 

From Eq. 45, the distribution 𝑓𝑖
(1) is shown in Eq. 52: 

 𝑓𝑖
(1) = −𝜏 �𝜕

𝜕𝑡
+ 𝑐𝑖𝛽

𝜕
𝜕𝑥𝛽

� 𝑓𝑖
𝑒𝑞 (52) 

Therefore the term ∑ 𝑓𝑖
(1)

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽 in Eq. 51 is transformed to Eq. 53, using 
Eq. 30 and Eq. 31: 

�𝑓𝑖
(1)

𝑖

𝑐𝑖𝛼𝑐𝑖𝛽 = −𝜏��
𝜕
𝜕𝑡

+ 𝑐𝑖𝛾
𝜕
𝜕𝑥𝛾

�
𝑖

𝑓𝑖
(𝑒𝑞)𝑐𝑖𝛼𝑐𝑖𝛽 

= −𝜏 �
𝜕
𝜕𝑡
�

1
3
𝜌𝑐2𝛿𝛼𝛽 + 𝜌𝑢𝛼𝑢𝛽� +

𝜕
𝜕𝑥𝛾

�
1
3
𝜌𝑐2�𝛿𝛼𝛽𝑢𝛾 + 𝛿𝛽𝛾𝑢𝛼 + 𝛿𝛾𝛼𝑢𝛽��� 

= −𝜏 �1
3
𝑐2𝛿𝛼𝛽

𝜕
𝜕𝑡
𝜌 + 𝜕

𝜕𝑡
�𝜌𝑢𝛼𝑢𝛽� + 𝜕

𝜕𝑥𝛾
�1
3
𝜌𝑐2�𝛿𝛼𝛽𝑢𝛾 + 𝛿𝛽𝛾𝑢𝛼 + 𝛿𝛾𝛼𝑢𝛽��� (53) 
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Applying the product rule to the term 𝜕
𝜕𝑡
�𝜌𝑢𝛼𝑢𝛽� of Eq. 53 yields Eq. 54: 

 𝜕
𝜕𝑡
�𝜌𝑢𝛼𝑢𝛽� = 𝑢𝛽

𝜕
𝜕𝑡

(𝜌𝑢𝛼) + 𝑢𝛼
𝜕
𝜕𝑡
�𝜌𝑢𝛽� + 𝑢𝛼𝑢𝛽

𝜕
𝜕𝑡
𝜌 (54) 

Using Eq. 46 and Eq. 47 for 𝜕
𝜕𝑡
𝜌 and 𝜕

𝜕𝑡
(𝜌𝑢𝛼), respectively, we have Eq. 55: 

 ∑ 𝑓𝑖
(1)

𝑖 𝑐𝑖𝛼𝑐𝑖𝛽 = −𝜏 �1
3
𝜌𝑐2 �𝜕𝑢𝛼

𝜕𝑥𝛽
+ 𝜕𝑢𝛽

𝜕𝑥𝛼
� − 𝜕

𝜕𝑥𝛾
�𝜌𝑢𝛼𝑢𝛽𝑢𝛾�� (55) 

Summing Eq. 47 and Eq. 51 with Eq. 55 and neglecting 𝜕
𝜕𝑥𝛾

�𝜌𝑢𝛼𝑢𝛽𝑢𝛾� as a 

small quantity results in the momentum equation (Eq. 56) in the NS equa-
tions: 

𝜕
𝜕𝑡

(𝜌𝑢𝛼) +
𝜕
𝜕𝑥𝛼

�
1
3
𝜌𝑐2� +

𝜕
𝜕𝑥𝛽

�𝜌𝑢𝛼𝑢𝛽� 

 − 𝜕
𝜕𝑥𝛽

�𝛿𝑡 �𝜏 −
1
2
� 1
3
𝜌𝑐2 �𝜕𝑢𝛼

𝜕𝑥𝛽
+ 𝜕𝑢𝛽

𝜕𝑥𝛼
�� = 0 (56) 

Where the pressure (P) and viscosity (𝜇) are expressed as Eq. 57 and Eq. 
58, respectively: 

 𝑃 = 1
3
𝜌𝑐2 (57) 

 𝜇 = 𝛿𝑡 �𝜏 −
1
2
� 1
3
𝜌𝑐2 (58) 
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5 Implementation Issues 

As shown in the previous section, the incompressible NS equations can be 
derived from the LB equation through the Chapman-Enskog procedure if 
the density fluctuation is assumed negligible. In practice however, this 
last assumption is never completely true. Indeed, the spatial density varia-
tion is never completely zero in LBM simulations. This is particularly true 
for flow applications wherein a pressure gradient is imposed at the bound-
aries. Although there have been recent efforts to reduce or completely 
eliminate the compressible effect in the LBM, the results have not been en-
tirely satisfactory, particularly for unsteady flows (Frisch et al. 1987; Alex-
ander et al. 1992; Zou et al. 1995).  

Despite its intrinsic compressibility, the LBM is applicable only to the low 
Mach number (𝑀𝑎 = 𝑢/𝑐𝑠) flow applications. As shown in the previous 
section, this is because a small velocity expansion is (implicitly) used with-
in the Chapman-Enskog expansion. This low Mach number approximation 
is equivalent to the incompressible limit (i.e., 𝑀𝑎 < 0.3). 

To correctly simulate incompressible flow in practice, one must ensure 
that the Mach number, and the density variation, 𝛿p, are sufficiently small, 
of order O(𝜖) and O(𝜖2), respectively, where the Knudsen number may be 
approximated as 𝜖 = (𝑐𝜏)/𝐿. Quantitatively, this can be assured from the 
expression of the Mach number as a function of the Reynolds number. 
Since the fluid viscosity is related to the relaxation frequency (𝜔 = 1/𝜏), 
we have Eq. 59: 

 𝜈 = 𝛿�𝑥
2

3𝛿�𝑡
(𝜔 − 0.5) (59) 

The Mach number, Ma, can be obtained by dividing both sides of equation 
x by UL. This action yields Eq. 60: 

 𝑀𝑎 =  𝛿
�𝑥
𝐿�√3

(𝜔 − 0.5)𝑅𝑒 (60) 

In Eq. 60 𝐿�/𝛿𝑥 is the number of lattice sites, N, in the direction of the 
characteristic length (normally perpendicular to the flow direction), and 
Re is the Reynolds number (Re = 𝑈�N/ �̂�). Since 𝛿𝑥 is normally assigned a 
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value of unity (for purposes of convenience) to keep Ma small (Ma < 0.3), 
then 𝜔, N, and 𝑈� should be selected accordingly. In practice, 𝑈� is generally 
prescribed values on the order of 0.1. Since Reynolds number similarity 
must also be enforced between the macroscale and lattice environments, 
this enforcement places an additional constraint on the selection of 𝜔 and 
N. 

In addition to the aforementioned constraints, additional stability issues 
may arise due to the presence of parasitic oscillations in the vicinity of 
sharp gradients in the flow. These sharp gradients may be caused by shock 
waves travelling through the fluid or by excessively thin shear layers. 
While conventional methods allow for a certain amount of numerical, arti-
ficial diffusion to mitigate impending instabilities of this sort, this mitiga-
tion is not the case for the traditional LBM. Indeed, as shown in Eq. 26, 
the traditional BGK collision approximation involves only a single, con-
stant-valued relaxation time. While several novel “dissipative” methods 
have recently attempted to address this stabilization issue, including colli-
sion operations involving multiple relaxation times (MRTs) (d’Humieres 
1994; d’Humieres et al. 2002), these methods have demonstrated only 
limited success. This lack of success is largely due to the fact that although 
the dissipative methods can provide substantial (or complete) oscillatory 
suppression, accuracy is compromised. However, due to the low Mach 
number used in this work in incompressible flow restraints, this type of 
stability issue is of negligible concern.   
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6 Lattice Boltzmann and Navier-Stokes 
Benchmark Applications 

The following benchmark applications were selected for their ubiquity in 
the scientific and engineering literature, relative ease to set-up, and com-
putational efficiency. All of the simulations were run in two dimensions 
and in serial using a Dell Precision 490 desktop machine with two Dual-
Core Xeon 64 bit processors. Post processing was facilitated using VTK*-
formatted output files and Paraview† (Henderson 2007). 

The Navier-Stokes simulations were conducted using the finite volume 
solver, OpenFOAM version 2.1.‡ In particular, the incompressible laminar 
flow equations (Eq. 6-8) were solved in conjunction with the pressure im-
plicit with splitting operator (PISO) algorithm (Issa 1986). Discretization 
of diffusion and convective terms was carried out using standard second-
order central differencing and upwinding schemes, respectively. Since the 
OpenFOAM code is inherently transient, steady-state conditions were ob-
tained over extended time periods, as quantified by residual values of less 
than 10-6. Specifically, the steady-state condition was checked by calculat-
ing the residual (Res) of the x-component of velocity at each time step, in 
accordance with the following equation: 

 𝑅𝑒𝑠 = ∑ ∑ �|𝑢(𝑥,𝑦)𝑡+1−𝑢(𝑥,𝑦)𝑡|
|𝑢(𝑥,𝑦)𝑡+1| �𝐿𝑋

𝑥=1
𝐿𝑌
𝑦=1  (61) 

The LBM code routines were developed in-house by ERDC and pro-
grammed in FORTRAN 90 using much of the prescribed content in Chap-
ter 3. Collaborations with Mississippi State University’s Center for 

                                                                 

* The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer 
graphics, image processing and visualization. 

† Paraview is an open-source multiple-platform application for interactive, scientific visualization, which 
began in 2000 as a collaborative effort between Kitware and Los Alamos National Laboratory. 

‡ OpenFOAM is a free, open-source computational fluid dynamics software developed by OpenCFD Ltd. 
of the ESI Group and distributed by the Open Foam Foundation. More information is available at 
openfoam.org/version 2.1.1. 
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Advanced Vehicular Systems (CAVS) were of significant benefit in the code 
development process. A two-dimensional square lattice with nine lattice 
velocities (D2Q9) was used (Qian et al. 1992). Boundary conditions (in 
particular the bounce back, velocity inlet/outlet conditions, and pressure 
conditions), were implemented in accordance with those prescribed by 
Zou and He (1997). In addition to the standard LBM, the implementation 
of the IMB method (Owen et al. 2011) was also incorporated for the case of 
the flow over a circular cylinder. Implemented in accordance with Owen et 
al. (2011), this method better represents the intersection of the fluid with 
the curved cylinder walls. While the exact details are omitted in this report 
for reasons of scope, Eq. 62–65 outline the basic procedure. 

The standard LBM equation (Eq. 38) is modified according to Eq. 62: 

𝑓𝑖(�⃗� + 𝑒𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(�⃗�, 𝑡) = (1 − 𝐵𝑛) �𝛿𝑡
𝜏
�𝑓𝑖

𝑒𝑞(�⃗�, 𝑡) − 𝑓𝑖(�⃗�, 𝑡)�� + 𝐵𝑛Ω𝑖𝑠 (62) 

Where 𝐵𝑛 is an empirically derived weighting function of the area (or vol-
ume) fraction (𝜀) of lattice cell (i) that is occupied by the cylinder, the re-
sult is Eq. 63: 

 𝐵𝑛(𝜀) = 𝜀(𝜏−1/2)
(1−𝜀)+(𝜏−1/2)

  (63) 

Where Ω𝑖𝑠is a collision operator representing the change of momentum due 
to collisions with the cylinder, we have Eq. 64:  

 Ω𝑖𝑠 = �𝑓𝑖′(�⃗�, 𝑡) − 𝑓𝑖′
𝑒𝑞�𝜌, �⃗�𝑝�� − �𝑓𝑖(�⃗�, 𝑡) − 𝑓𝑖

𝑒𝑞�𝜌, �⃗�𝑝��  (64) 

Where 𝑖′ represents the direction opposite 𝑒𝑖, and �⃗�𝑝 is the velocity at the 
surface of the cylinder at point p (located at close proximity to lattice node 
i), we have Eq. 65: 

  �⃗�𝑝 = �⃗�𝑐𝑚 + 𝜔��⃗ × 𝑟𝑝/𝑐𝑚 (65) 

Where �⃗�𝑐𝑚 is the velocity of the cylinder’s center of mass, 𝜔��⃗  is the angular 
velocity, and 𝑟𝑝/𝑐𝑚 is the position vector at p relative to the center of mass 
of the cylinder.  
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6.1 Rectangular channel flow 

6.1.1 Problem description and setup 

The incompressible flow through a rectangular channel represents a com-
mon computational fluid dynamics (CFD) benchmark problem. The flow is 
typically driven by either a constant inlet velocity condition or by means of 
a pressure gradient. In this particular application, water flows between 
two parallel plates of length (𝐿 = 0.5 𝑚), height (𝐻 = 0.02 𝑚) and of aspect 
ratio, AR = 25. Prescribed velocity /pressure gradient conditions are ap-
plied at the inlet and outlet boundaries, while no-slip (zero velocity) condi-
tions are applied along the walls. 

For the velocity inlet condition, three different Reynolds numbers are in-
vestigated using both the LB and NS methods. These cases correspond to 
Re=200, Re=400, and Re=800. The pressure gradient condition is also 
examined using both methods, but only for Re = 10. The corresponding 
input parameters are shown in Table 1, with a constant lattice/grid resolu-
tion of 1000x40 maintained throughout. 

Table 1. Simulation parameters used for the rectangular channel flow problem. 

Case Inlet Vel. (𝑼𝒊𝒏), 
Nav-Stokes 
[m/s] 

Inlet Vel. (𝑼𝒍𝒂𝒕) 
LB [�̂�/𝒕�] 

Kin. Visc. (𝝂), 
Nav-Stokes 
[m2/s] 

Kin. Visc. 
(𝝂�), LB 
[�̂�2/𝒕�] 

∆𝑷 

Re = 10 — — 1.0E-6 0.16667 1.0E-5 

Re = 200 0.01 0.3 1.0E-6 0.01 — 

Re = 400 0.02 0.2 1.0E-6 0.02 — 

Re = 800 0.04 0.1 1.0E-6 0.01 — 

 

6.1.2 Results  

The velocity profiles comparing the results of the LBM and NS method 
when using various velocity inlet conditions are shown in Figure 4. As ex-
pected, the velocity distribution along the downstream direction progres-
sively evolves into a characteristic parabolic profile as the flow reaches a 
state of steady equilibrium. Also as expected, increasing the Reynolds 
number results in higher velocity profiles along each of the downstream 
positions (X/H = 0.1L, X/H=0.2L, and X/H=0.5L). Comparisons between 
the LBM and NS methods show excellent agreement. 
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The velocity profiles comparing the results of the LBM and NS method 
when using a pressure gradient boundary condition are shown in Figure 5. 
Unlike Figure 4, the imposed pressure gradient results in a uniform veloci-
ty distribution along each of the downstream sampling locations. Like Fig-
ure 4, the comparisons between the LBM and NS methods again show 
excellent agreement. 

Finally, Figure 6 shows a representative time history of the convergence 
error in accordance with Eq. 61. As indicated, the residual for x-
component of velocity becomes fully convergent (reaches a steady-state 
condition) at approximately 2,000 iterations. 

Figure 4.  Velocity profiles comparing the results of the LBM and NS corresponding to 
the flow through a rectangular channel (a) Re = 200, (b) Re = 400, and (c) Re = 800). 

A velocity inlet condition is used. As indicated, the velocities were sampled at three 
downstream locations corresponding to X/L = 0.1, X/L = 0.2 and X/L = 0.5. 

(Lattice/grid resolution = 1000x40). 

 

(a) Re = 200 
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(b) Re = 400 

 

(c) Re = 800 
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Figure 5. Velocity profiles comparing the results of the LBM and NS corresponding to 
the flow through a rectangular channel (Re = 200, Re = 400, and Re = 800). A 

pressure gradient condition is used. As indicated, the velocities were sampled at 
three downstream locations corresponding to X/L = 0.1, X/L = 0.2 and X/L = 0.5. 

(Lattice/grid resolution = 1,000x40). 

 
 

Figure 6.  Representative velocity convergence error per Eq. 61 for the flow through a 
rectangular channel. As shown, approximately 2,000 LBM iterations were required for 

fully steady-state conditions. 

 



ERDC TR-14-6  28 

 

6.2 Flow through a lid-driven cavity 

6.2.1 Problem description and setup 

The lid-driven cavity represents another common CFD benchmark prob-
lem. The moving lid creates a strong vortex in the center of the domain, 
and a series of weaker, secondary vortices in the lower left and right cor-
ners are typical of successively higher Reynolds numbers. In this particular 
application, a square cavity with unit aspect ratio (𝐿 = 𝐻 = 2𝑚) is filled 
with engine oil at 15oC (𝜈 = 1.2E-3 m2/s). The lid is set in motion (provid-
ing a fluid momentum source), and zero velocity (no-slip) boundary condi-
tions are maintained along the remaining walls. 

For this problem, three different Reynolds numbers are investigated 
(Re=100, Re=1,000, and Re=3,000), and the corresponding input param-
eters are shown in Table 2 for both the LBM and NS methods. A constant 
lattice/grid resolution of 100x100 is maintained for each case. 

Table 2. Simulation parameters used for lid-driven cavity problem. 

Case Lid Vel. (𝑼𝒍𝒊𝒅), 
Nav-Stokes [m/s] 

Inlet Vel. 
(𝑼𝒍𝒂𝒕) LB [�̂�/𝒕�] 

Kin. Visc. (𝝂), Nav-
Stokes [m2/s] 

Kin. Visc. (𝝂�), LB 
[�̂�2/𝒕�] 

Re = 100 0.6 0.1 1.2E-3 0.1 

Re = 1000 6 0.1 1.2E-3 0.01 

Re = 3000 18 0.01 1.2E-3 0.01 

 

6.2.2 Results  

Comparisons of the velocity contours are shown in Figure 7. As indicated 
for the prescribed simulated conditions, both methods show remarkable 
qualitative agreement and reveal the presence of a large central vortex 
which tends to migrate to the upper right corner for decreasing Reynolds 
numbers. Also observed is the presence of two secondary (counter-
rotating) vortices located near the lower left and right of the domain. As 
shown, these tend to increase in size with increasing Reynolds number. 
For Re = 3,000, an additional secondary vortex develops along the upper 
left side.  

Quantitative comparisons of velocity results between the LBM and N-S 
method are shown in Figure 8. The results correspond to the three afore-
mentioned Reynolds numbers, and mesh/lattice resolutions of 100x100. 
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As expected, in the vertical direction (Figure 8(a)), the general x-velocity 
profiles show maximum positive velocities near Y/H =1, a direction change 
at approximately Y/H=0.5, and maximum negative x-velocities for 
0.1 ≤ 𝑌/𝐻 ≤ 0.2. Correspondingly, in the horizontal direction (Figure 
8(b)) the y component of velocity shows maximum positive velocities for 
0.1 ≤ 𝑋/𝐿 ≤ 0.2, a change in direction near X/L = 0.5, and maximum neg-
ative velocities at approximately 0.89 ≤ 𝑋/𝐿 ≤ 0.95. Comparisons between 
the two methods, along the vertical and horizontal centerlines, are in gen-
eral excellent and reveal minimal differences, particularly for Re = 100, 
and Re=1,000. For Re=3,000 however, some disparity is observed particu-
larly along the upper and lower limits of Y/H. This is likely the result of the 
increased compressibility effects associated with larger Reynolds numbers 
and the limitations of the LBM in handling these cases (as described in 
Chapter 5). 

Figure 7.  Velocity contours comparing the results of the LBM and Navier-Stokes for 
flow through a lid-driven cavity (Re = 100, Re = 1,000 and Re = 3,000). As shown, 

the presence of a large central vortex is observed for each case,  
as well as several secondary vortices (lattice/grid resolution:100x100). 

  

(a) NS; Re=100 (b) LBM; Re=100 
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(c) NS; Re=1,000 (d) LBM; Re=1,000 

  

(e) NS; Re=3,000 (f) LBM: Re=3,000 
   



ERDC TR-14-6  31 

 

Figure 8.  Velocity profiles comparing the results of the LBM and NS for flow through 
a lid-driven cavity (Re = 100, Re = 1,000 and Re = 3,000). As indicated, the x-
component and y-component of velocity were sampled along the vertical and 

horizontal domain centerlines, respectively. 

  

(a) Vertical centerline (b) Horizontal centerline 
 
 

6.3 Rectangular channel flow with back-step 

6.3.1  Problem description and setup 

A third CFD benchmark problem investigated in this report involves the 
laminar incompressible flow over a back-step. In contrast to turbulent 
flows (wherein a single recirculation zone is created just aft of the step), 
laminar flows exhibit various recirculation zones occurring downstream of 
the step. Flow separation occurs when adverse pressure gradients act on 
the fluid. For a low-to-moderate initial Reynolds number, the first region 
of separation occurs just aft of the step along the bottom wall. With in-
creasing Reynolds number, a second region of separation occurs along the 
top wall. Further increases in the Reynolds number create yet a third sepa-
ration region downstream of the first recirculation region along the bot-
tom wall. In fact, recirculation zones will continue to develop downstream 
in this manner as long as the Reynolds number continues to increase and 
the flow remains laminar. Of course this is rarely observed, as the flow 
eventually becomes turbulent (Jongebloed 2008).  

The benchmark problem used in this study consists of a channel with a 
backward-facing step at the entry (Figure 9). As shown, the height of the 
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back-step is half that of the channel, and extends one channel height (H = 
0.02 m) before it opens to the flow. The length of the channel (L=25H) is 
long enough for the flow to become fully developed (as determined from 
the rectangular channel flow discussion in Section 6.1). The flow is driven 
by a constant inlet velocity condition with no-slip (zero velocity) condi-
tions at the upper and lower walls. 

For this problem, comparisons between the LB and NS methods are con-
ducted for three different Reynolds numbers (Re = 200, Re = 400, and Re 
= 800). An additional simulation is conducted for Re = 1,000 (using solely 
the LBM) to illustrate the vortex evolution (via contour plots) associated 
with increasing Reynolds numbers. The corresponding input parameters 
are equivalent to the rectangular channel flow of Section 6.1, and are 
shown in Table 3. A constant lattice/grid resolution of 1,000x40 is main-
tained for each case. 

Figure 9. Geometry corresponding to the flow over a back-step. 

 

Table 3. Simulation parameters used for the back-step channel flow problem. 

Case Inlet Vel. (𝑈𝑖𝑛), 
Nav-Stokes 
[m/s] 

Inlet Vel. (𝑈𝑙𝑎𝑡) 
LB [𝑙/�̂�] 

Kin. Visc. (𝜈), 
Nav-Stokes 
[m2/s] 

Kin. Visc. (�̂�), LB 
[𝑙2/�̂�] 

Re = 200 0.01 0.05 1.0E-6 0.01 

Re = 400 0.02 0.20 1.0E-6 0.02 

Re = 800 0.04 0.10 1.0E-6 0.005 

Re = 1,000 — 0.10 — 0.004 
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Figure 10.  Velocity contours for Re = 200 (a), Re = 400 (b), Re = 800 (c), and 
Re=1000 (d) were conducted using the LBM. The contours show a large vortex aft of 
the back-step (as well as a secondary circulation zone for Re = 1,000) that increases 

in size with increasing Reynolds number (lattice/grid resolution:100x100). 

 

(a) Re = 200 
 

 

(b) Re = 400 
 

 

(c) Re = 800 
 

 

(d) Re = 1000 
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Figure 11.  Velocity profiles comparing the results of the LBM and NS corresponding 
to the flow over a back-step (Re = 200 (a), Re = 400 (b) and Re = 800 (c)). As 

indicated, the velocities were sampled at three downstream locations corresponding 
to X/L = 0.1, X/L = 0.2 and X/L = 0.5 (lattice/grid resolution = 1,000x40). 

 

(a) Re = 200 

 

(b) Re = 400 
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(c) Re = 800 

 

 

 

Figure 12.  Reattachment distance as a function of Reynolds number. Results using 
the LBM are compared with the experiments conducted by Le and Moin (1994). 
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6.3.2 Results  

The velocity contours conducted with the LBM are shown in Figure 10 and 
correspond to Re = 200, Re = 400, Re = 800 and Re = 1,000. As shown, 
the presence of an initial recirculation zone just aft of the back-step is evi-
dent for each case. A shear layer divides this zone from the upper stream-
lines as shown. The recirculation zone tends to increase in size (along the 
X-direction) with increasing Reynolds number. Also shown, for Re = 1000, 
is the presence of a secondary vortex forming on the upper wall with cen-
ter at approximately X = 0.3L. As previously stated, this accumulation of 
downstream vortices is a characteristic of all laminar incompressible back-
step flows as long as the Reynolds number continues to increase.  

The velocity profiles comparing the results of the LBM and Navier-Stokes 
method are shown in Figure 11. The results correspond to Re = 200, Re = 
400 and Re = 800. As shown, the velocity distribution along the down-
stream direction progressively evolves into a characteristic parabolic pro-
file as the flow becomes fully developed.  In the upstream region (for X = 
0.1L), the presence of the back-step is evident as the velocity profile be-
comes asymmetric particularly for Y/H < 0.3.  

Comparisons between the LBM and NS method are good, particularly at 
lower Reynolds numbers (Re = 200, and Re = 400). At Re = 800, some 
disparity between the methods is observed at X/L = 0.2L, corresponding 
to the circulation region just short of the reattachment point, as seen in 
Figure 11(c).  

Additional comparisons with the experimental work of Le et al. (1997) 
were made with respect to the reattachment point.  As illustrated in Figure 
9, this point is defined as the X location, where the dividing streamline (lo-
cated between the shear layer and the recirculation zone) reattaches to the 
lower channel wall. As shown in Figure 12, the present work agrees well 
with that of Le et al. (1997). We note that Le et al. used a Reynolds number 
based on the maximum velocity (e.g., 𝑢𝑚𝑎𝑥 = 3𝑢�/2), and the appropriate 
adjustments were made here. 
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6.4 Flow over a stationary circular cylinder 

6.4.1 Problem description and setup 

The final benchmark problem involves the laminar incompressible flow 
over a stationary circular cylinder. This particular flow is one of the most 
widely studied in the CFD literature, and is well known for its ability to il-
lustrate the transition from steady to unsteady flow behavior as a function 
of Reynolds number. As shown in Figure 13, at very low Reynolds number 
(Re <<1) the flow is steady with no boundary layer separation. As Re ap-
proaches 10, the flow remains steady, but boundary layer separation be-
gins and evolves to form two symmetric vortices in the wake region. For 
Reynolds numbers in excess of 90 (but less than ~104), although it re-
mains laminar, the flow becomes unsteady and asymmetric. Von Karman 
vortex shedding is observed and distinguished by regular shear layer sepa-
ration from the upper and lower surfaces of the cylinder. Beyond Re = 
~104 the flow becomes turbulent.  

The geometry for this problem is shown in Figure 14. As shown, a cylinder 
of radius R (R=0.1m) is placed 6.6R from the inlet and 3R from the top 
and bottom of a channel of length 40R. For boundary conditions, a uni-
form inlet velocity is imposed at the inlet, and a standard outflow bounda-
ry at the exit. The upper and lower channel walls are designated as no-slip 
(zero velocity) conditions (implemented with standard bounce-back condi-
tions for the LBM simulation). 

While most LBM simulations commonly apply the standard bounce-back 
conditions to the wall of the circular cylinder, this action results (for a reg-
ular hexagonal lattice) in an irregular “stair-step” geometry. The effect on 
the flow field response is clearly non-ideal, as this irregular surface would 
(like the effect of dimples on a golf ball) delay boundary layer separation 
and result in atypical results. For this reason, the IMB method is invoked 
(Owen et al. 2011; as discussed in Chapter 6). In particular, the quantity 
(𝜀) that represents the area fraction (volume fraction in 3D) of the circular 
cylinder with an intersecting lattice cell is computed and then used to 
modify the collision operator. 
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Figure 13.  Illustration of velocity profiles as a function of Reynolds number 
(http;//en.wikipedia.org/wiki/Reynolds_number). 

 

 
Figure 14. Geometry corresponding to the flow over a stationary circular cylinder. 

 

For this work, three different Reynolds numbers were investigated: ReD=1, 
ReD=10, and ReD=120, where D corresponds to the cylinder diameter. The 
corresponding input parameters for both the NS method and LBM are 
shown in Table 4. A constant lattice/grid resolution of 2000x400 is main-
tained throughout. 

Lastly, for comparison purposes with our experiment, the Coefficient of 
Drag (Cd)* is computed in Eq. 66: 

                                                                 

* “Coefficient of Drag,” http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml, accessed 
24 April 2014. 

http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml
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 𝐶𝐷 = 𝐹𝑥
1/2𝜌𝑈2𝐴

   (66) 

where 𝐹𝑥 is the x component of the total fluid force acting on the cylinder, 
and A is the projected area. For the LBM, the total force (�⃗�) over the cylin-
der is computed via the momentum exchange method, as shown in Eq. 67 
(Owen et al. 2011): 

 �⃗� = 𝛿𝑥3

𝛿𝑡
∑ 𝐵𝑛(∑ Ω𝑖𝑠𝑒𝑖𝑖 )𝑛  (67) 

where 𝐵𝑛, Ω𝑖𝑠, 𝛿𝑡, 𝑒𝑖, and 𝛿𝑥 have been previously defined in Chapter 6. 

Table 4. Simulation parameters used for the back-step channel flow problem. 

Case Inlet Vel. (𝑼𝒊𝒏), 
Nav-Stokes [m/s] 

Inlet Vel. (𝑼𝒍𝒂𝒕) 
LB [�̂�/𝒕�] 

Kin. Visc. (𝝂), 
Nav-Stokes 
[m2/s] 

Kin. Visc. (𝝂�), LB 
[�̂�2/𝒕�] 

Re=1 0.000005 0.00167 1.0E-6 0.167 

Re=10 0.00005 0.0167 1.0E-6 0.167 

Re=120 0.0006 0.2 1.0E-6 0.167 

 

6.4.2 Results  

The velocity contours of both the LBM and NS method are shown in 
Figure 15 and correspond to Re = 1, Re = 10, and Re = 120. As shown, both 
sets of simulation results are qualitatively equivalent, reflecting the 
changes in velocity contours with respect to Reynolds number in 
accordance with the expected profiles shown in Figure 13.  

Quantitative comparisons of velocity between the LBM and NS method are 
shown in Figure 16 and correspond to Re = 1 and Re = 10. As indicated, in 
both cases the velocity distribution at the downstream location (X/L = 0.5) 
progressively evolves into a characteristic parabolic profile as the flow be-
comes fully developed. At an upstream location forward of the cylinder 
(X/L = 0.1), the presence of the stationary cylinder is clearly observed as 
the velocity profiles along Y/L = 0.5 gradually decrease towards the point 
of stagnation. The presence of the expanding wake region for Re=10 is also 
evident at X/L = 0.2, as indicated by the significant decrease in velocity at 
Y/H = 0.5.  
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For the case of Re=120, the average drag coefficient 〈𝐶𝑑〉 was computed in 
accordance with Eq. 66 and 67. As shown in Figure 17, a constant shedding 
frequency was observed after approximately 25,000 iterations (𝑈𝑜𝑡/𝐷 =
12.5). The computed drag coefficient of 0.97 compared favorably with the 
experimental results (~0.98 − ~0.99) found in the experimental literature 
(Aerospace.org). 

Figure 15.  Velocity contours for Re = 1, Re = 10, and Re =120 show results from 
both the LBM and NS method. The contours reveal the characteristic steady to 

unsteady flow behaviors associated with increasing Reynolds number, and show the 
presence of Von Karman vortex shedding for Re = 120. (Lattice/grid resolution: 

2000x400.) 

 
NS; Re =1 

 
LBM; Re = 1 

 
NS; Re=10 
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LBM: Re = 10 

 
(d) NS; Re = 120 

 
(e) LB: Re = 120 
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Figure 16. Velocity profiles comparing the results of the LB and NS methods 
corresponding to the flow over a stationary circular cylinder (Re = 1, and Re = 10). As 
indicated, the velocities were sampled at three downstream locations corresponding 
to X/L = 0.1, X/L = 0.2 and X/L = 0.5. (Note: lattice/grid resolution = 2,000x400).   

 

(a) Re = 10 

 

(b) Re = 1 
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Figure 17. Time history of the drag coefficient computed using Eq. 66. The results 
shown are from the LBM for Re=120. 
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7 Summary and Conclusions 

This report documented a comparison/validation effort accompanying the 
development of a standard Lattice Boltzmann solver which is to be coupled 
to an existing ERDC Discrete Element Model. The primary goal was to 
validate the Lattice Boltzmann model by comparing it with various 
laminar, incompressible flow cases simulated using a finite volume-based 
Navier-Stokes solver. Simulations involving four standard benchmark 
studies were analyzed: (1) the flow through a rectangular channel, (2) the 
flow through a lid-driven cavity, (3) the flow over a back-step, and (4) the 
flow over a stationary circular cylinder. For these specific applications and 
the Reynolds numbers simulated, the results showed excellent agreement 
between the two cases. Limitations in the LBM at some elevated Reynolds 
numbers were due primarily to compressibility effects. However, even 
these cases showed only marginal deviation from the finite volume Navier-
Stokes method.  
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Appendix A: Derivation of the Equilibrium 
Distribution Function 

The equilibrium distribution function can be derived from the Maxwell-
Boltzmann velocity distribution. As a function of energy (E), this can be 
written as Eq. A1: 

 𝑓(𝐸) = 𝐴𝑒𝑥𝑝(− 𝐸
𝑘𝐵𝑇

) (A1) 

Where 𝑘𝐵 is the Boltzmann constant, A is a constant, and T is the tempera-
ture.  

For a free gas (particle energy is solely kinetic), we can write the function 
in terms of the velocity of a particle as Eq. A2: 

 𝑓(�⃗�) = 𝐴𝑒𝑥𝑝(−0.5𝑚𝑣�⃗ 2

𝑘𝐵𝑇
) (A2) 

 
Using the normalization condition (i.e., ∫𝑓(�⃗�)𝑑3𝑣 = 1), we obtain the value for 
A, and 𝑓(�⃗�) becomes Eq. A3: 

 𝑓(�⃗�) = � 𝑚
2𝜋𝑘𝐵𝑇

� 𝑒𝑥𝑝 �− 𝑚𝑣�⃗ 2

2𝑘𝐵𝑇
� (A3) 

Rewriting the velocity in terms of its mean (𝑢�⃗ ) and deviation (𝑐𝑖) as: 
�⃗� = 𝑐𝑖 − 𝑢�⃗ , and using the isothermal ideal gas relation: 𝑐𝑠2 = 𝑘𝐵𝑇/𝑚, we 
have Eq. A4: 

 𝑓 ∝ 𝑒𝑥𝑝 �− (𝑐𝑖−𝑢��⃗ )2

2𝑐𝑠2
� ∝ 𝑒𝑥𝑝 �− 𝑐𝑖

2

2𝑐𝑠2
� 𝑒𝑥𝑝 �− 𝑢2−2𝑢∙𝑐𝑖

2𝑐𝑠2
� (A4) 

Using the Taylor series expansion (𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ ⋯) and dropping 

terms of order three and above, gives Eq. A5: 

 𝑒𝑥𝑝 �− 𝑢2−2𝑢∙𝑐𝑖
2𝑐𝑠2

� ≈ 1 + 𝑢∙𝑐𝑖
𝑐𝑠2

+ (𝑢∙𝑐𝑖)2

2𝑐𝑠4
− 𝑢2

2𝑐𝑠2
+ 𝒪(𝑢3) (A5) 
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Since along with the collision operator (Ω) the equilibrium function must 
preserve both mass and momentum, as shown in Eq. A6 and Eq. A7: 

 𝜌 = ∑ 𝑓𝑖
(0) = ∑ 𝑓𝑖𝑖𝑖  (A6) 

 𝜌𝑢�⃗ = ∑ 𝑐𝑖𝑓𝑖
(0) = ∑ 𝑐𝑖𝑓𝑖𝑖𝑖  (A7) 

It can be shown that the constant of proportionality (K) is simply 𝜌 
(Viggen 2009). This gives us the final generalize form of the equilibrium 
function as Eq. A8: 

 𝑓𝑖
(0) = 𝜌𝑡𝑖 �1 + 𝑢∙𝑐𝑖

𝑐𝑠2
+ (𝑢∙𝑐𝑖)2

2𝑐𝑠4
− 𝑢2

2𝑐𝑠2
� (A8) 
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