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ABSTRACT 

Earthen levees have a significant role in protecting large areas of inhabited and cultivated 

land in the US from flooding. Failure of the levees can result in loss of life and property. 

Slough slides are among the problems which can lead to complete levee failure during a 

high water event. In this paper, we develop a method to detect such slides using X-band 

SAR data. Our proposed methodology includes; 1) Radiometric normalization of the 

TerraSAR image using Digital Elevation Map (DEM) data, 2) extraction of features 

including backscatter and texture features from the levee, 3) training a support vector 

machine classifier; and 4) testing on the area of interest. Ground-truth data are collected 

from slides and healthy areas of the levee. The study area is part of the levee system 

along the lower Mississippi River in the United States. The output classification shows 

the two classes of healthy and slide areas. The results show classification accuracies of 

approximately 92% for detecting the slide pixels when more than 100 training samples 

are used. 

Index Terms - Hazards, synthetic aperture radar, feature extraction, support vector 

machine 
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1. INTRODUCTION 

There are more than 150,000 kilometers of levee structure with different designs 

and conditions over the entire US which have a significant role in protecting large areas 

of populated and cultivated land from flooding. Since a failure of the levees can threaten 

the loss of life and property, levee system monitoring to detect failures and damage is 

important. Such detection using algorithms and techniques based on remote sensing 

images can help levee managers and federal agencies to identify vulnerable levee sections 

and repair them rapidly with lower costs [1]. Using remote sensing imagery is a more 

efficient and cost effective way to detect failures than traditional methods of frequent site 

visits. Different types of damage occur to the levee system that can trigger a complete 

failure especially during a high water event [2]. Slough slides occurring along levees 

leave sections vulnerable to seepage and failure during high water events. Hossain et al. 

[3] have discussed the cause of slides over a levee. Since the roughness and the texture of 

a slide are different from the healthy area, the corresponding radar backscatter is 

different, and therefore can be used to distinguish between slide and healthy pixels.  Any 

early detection of slide events can assist levee managers to find and fix them and prevent 

costlier damage in the future. In addition to roughness and texture, other features such as 

soil moisture patterns and differences in the type of vegetation (over a slide area and the 

surrounding) can be used to detect the slide [3], [4]. Soil moisture monitoring can be an 

effective way to identify any leakage or anomaly occurring along a levee system [4]. 

 

Synthetic Aperture Radar (SAR) is able to provide valuable information which 

can be used in quantitative monitoring of the earth’s surface [5]. Polarimetric SAR has 
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been recently utilized for many applications in order to measure various geophysical 

parameters. Most studies on polarimetric SAR have been carried out to extract 

information on the earth’s surface characteristics such as surface roughness and soil 

moisture content in bare soil and vegetated areas. In soil moisture assessment, different 

regression models based on the relationship between backscatter coefficients and soil 

moisture content have been developed [6], [7]. 

In this paper, an algorithm based on TerraSAR-X [8] data is developed to detect 

landslides on levees. The paper is organized as follows:  The data used in this study is 

explained in section 2. In section 3, the method and a block diagram of the algorithm are 

described. The results of applying the algorithm are discussed in the results and 

validation section, and finally a conclusion and summary of this study are provided in 

section 5.   

2. DATA SET 

Our area of study is part of the levee system along the lower Mississippi River 

and the western boundary of the state of Mississippi. Radar imagery from the German 

TerraSAR-X satellite was acquired over the study area. TerraSAR-X is a SAR sensor 

imaging at 9.65 GHz with a variable incidence angle and ground resolution. It acquires 

images in stripmap (SM), high resolution spotlight (HS), spotlight (SL), and scanSAR 

(SC) modes [8]. In this research, we use dual polarized HH/VV images from the HS 

mode acquired on September 15, 2010 with a 1.5 m spatial resolution. The images were 

ellipsoid corrected (EEC) and spatially enhanced detected products provided by the 

German Space Agency (DLR©2010).  A satellite such as TerraSAR-X has an advantage 
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for monitoring levees versus an airborne platform since it has a better temporal resolution 

with a lower cost of data acquisitions. 

We also used a 1.5 m per pixel DEM produced from Lidar data collected in 2009-

2010 at a 1 m ground resolution. This DEM helps in obtaining the local incidence angle 

which is used for calibration of the raw data. 

Fig. 1(a) shows an example of a typical levee slough slide. Fig. 1(b) shows a 

buffered HH-SAR image of the levee area where a slide occurred. The corresponding 

brightness of the slide is higher than the healthy area. This high brightness results from 

the greater surface roughness over the slide area. 

3. METHODOLOGY 

 In this study we are developing a methodology to detect slides from background 

using a Support Vector Machine (SVM) and TerraSAR-X data. A block diagram of the 

methodology is depicted in Fig. 2. First the Single Look Slant Complex (SSC) 

TerraSAR-X images product [9] representing the reflectivity from the earth’s surface is 

calibrated and normalized using the following formula [9], [10], [11]. 

                                 (   |  |
      )                                         (1) 

 In this equation,    is the calibration and processor scaling factor. NEBN is the 

Noise Equivalent Beta naught which provides the influence of different noise 

contributions to the signal. Both    and NEBN are given in the TerraSARX product. DN 

is the digital number giving the value of a pixel in the products.      is the local incidence 

angle which is the angle between the radar beam and a line that is normal to the surface 

obtained by DEM. Since we are examining the slide detection only across the levee, after 

the radiometric normalization of TerraSAR images, a 30m wide study area on both sides 
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of the levee center line is extracted from the full SAR scene for further processing. In the 

next step, features are extracted from this area. These include radiometric features of HH, 

VV, HH/VV and texture features. The texture features include wavelet [12] and statistical 

features which are obtained by using a sliding window with length 7. The wavelet 

features are the mean and standard deviation (STD) of the coefficients in two levels of 

decomposition. Each of the decomposition levels includes the horizontal, vertical, and 

diagonal detail coefficients. Therefore, we have one approximate and 7 detail coefficients 

sections. The wavelet features are the mean and STD of each coefficient sections. Thus, 

14 wavelet features are obtained for each pixel. Note that the‘db2’ wavelet family is used 

as the wavelet filter for this work. Statistical features are the mean and STD of the sliding 

window for each pixel. Therefore, for every band HH and VV we have 2 radiometric and 

16 texture features (2 statistics and 14 wavelet features). Hence, the total number of 

features including radiometric features (HH, VV, and HH/VV) is 35. Fig. 3 shows some 

features computed over the levee buffer. Fig. 3(a) shows the VV-STD feature for each 

pixel which is the mean of STD over a sliding window centred in the pixel for VV 

polarization. It can be seen that the STD over the slide area is greater than over the 

healthy area. This shows that the change of the VV backscatter on the slide part is greater 

than that of the non-slide areas. Although we see some high brightness pixels on the non-

slide section, these are few in number compared with the slide section having a 

continuous cluster of high brightness pixels. Fig 3. (b, c, and d) show the horizontal, 

vertical, and diagonal wavelet features at level 1 or  2 for HH polarization. These figures 

show a good distinction between slide and non-slide pixels. As we can see, the slide 
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pixels have higher values in these wavelet features. This also shows that slides have 

higher frequency changes at different orientation. 

In the next step, the SVM classifier is utilized to categorize the pixels into slide 

and healthy classes. SVM is a powerful supervised learning method for analyzing and 

recognizing the pattern and data. It tries to find a separating hyperplane in the feature 

space. In the SVM method, the input data are first transformed to a feature space 

(possibly with a higher dimension) either linearly or non-linearly based on a kernel 

function; then a hyperplane which separates the classes is computed by applying an 

optimization method [13]. In this work a polynomial kernel function with order 3 is used 

to map the training data into the kernel space. Also the Sequential Minimal Optimization 

(SMO) [14] is used to find the separating hyperplane. The parameters of the SVM such as 

the vector of weights and bias [13] are obtained in the training mode. Finally, in order to 

evaluate this methodology, the slide detection method is validated using a leave out cross 

validation technique.. 

4. VERIFICATION OF RESULTS 

Fig. 4 shows a part of the levee where a slide occurred. The masks of the slide 

(blue) and healthy area (green) for training of the classifier are depicted in this figure.  

Using the method outlined in Fig. 2 and by computing the features from the data in the 

two masked areas, the algorithm is trained and the SVM parameters are obtained. Fig.5 

shows the accuracy of classification versus different numbers of training samples. This 

accuracy is obtained using leave-one-out cross validation in which a single observation is 

used for validation and the remaining data for training. 
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As seen in Fig. 5, after around 80 training samples a 90% accuracy can be 

reached. It can be also seen that after 150 training samples, a steady accuracy of 92% is 

achieved. Table 1 depicts a confusion matrix based on the leave-one-out cross validation 

with 200 training samples (200 for both slide and healthy). The corresponding overall 

accuracy is around 92%. Out of the 200 pixels of slide and healthy, 23 pixels are false 

positive (classified healthy but they are slide pixels) and 8 are false negative (classified 

slide but they are healthy pixels) 

Fig. 6 shows the testing of the whole area of study. As it is seen by the arrow, 

most of the slide pixels are detected. However, we see that detection of some non-slide 

pixels, which are false positives, occurs. It seems some small variation on the roughness 

or change on the vegetation type and height can cause the misclassification.  

The results show that the foregoing method can provide good detection of 

landslides on an earthen levee. Although some false positive pixels are identified by the 

classification, these misclassified pixels are scattered and in most case they do not cluster 

in large segments as they do in the actual slide area. 

5.  SUMMARY 

A method based on TerraSAR-X images and SVM was developed to detect slough slides 

along earthen levees. This method includes: radiometric normalization of the TerraSAR 

image using a high resolution DEM; feature extraction including backscatter and texture 

features from the levee area of interest; obtaining the SVM parameters in training mode; 

and classifying the pixels using the SVM in the testing mode. The roughness and 

corresponding textural characteristics of the soil in a slide are different from the healthy 

levee. Therefore, texture features along with the backscattering coefficients of the HH 
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and VV polarization channels are extracted. The results show a classification accuracy of 

92% is reached when the number of training samples is more than 150. This remote-

sensing based detection of slide pixels is expected to be significantly helpful in managing 

and maintaining levee systems. 
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Table Legends 

 

Table 1.  Slide/no-slide detection confusion matrix with 200 samples 

 

 

Figure Legends 

 

Fig. 1. (a) An example of a land slide on the levee; (b) a buffered HH-SAR image 

overlaid on a levee with a slide on Sept 15, 2010 

 

Fig. 2. Block diagram of the slide detection algorithm 

 

Fig. 3. Some feature values in the area of study: (a) VV-STD; (b) HH  horizontal wavelet 

detail coefficients at level 1; (c) HH vertical wavelet detail coefficients at level 2; (d) HH 

diagonal wavelet detail coefficients at level 2 

 

Fig. 4.  TerraSAR-X radar data (HH polarization) overlaid with masks of slide (blue) and 

no-slide (green) 

 

Fig. 5. Accuracy of slide classification using SVM versus different sampling sizes 

 

Fig. 6. Slide classification over the levee using the slide detection algorithm  
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Table 1.  Slide/no-slide detection confusion matrix with 200 samples  
 

 

Classification/ 

Target 
Slide 

Healthy 

Area 
Accuracy 

Slide 177 23 0.88 

Healthy Area 8 192 0.96 

Accuracy 0.95 0.89 0.92 
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FIGURES 
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Fig. 1. (a) An example of a land slide on the levee; (b) a buffered HH-SAR image 

overlaid on a levee with a slide on Sept 15, 2010 
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Fig. 2. Block diagram of the slide detection algorithm  
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Fig. 3. Some feature values in the area of study: (a) VV-STD; (b) HH  horizontal wavelet 

detail coefficients at level 1; (c) HH vertical wavelet detail coefficients at level 2; (d) HH 

diagonal wavelet detail coefficients at level 2.  
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Fig. 4.  TerraSAR-X radar data (HH polarization) overlaid with masks of slide (blue) and 

no-slide (green) 
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Fig. 5. Accuracy of slide classification using SVM versus different sampling  

sizes 
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Fig. 6. Slide classification over the levee using the slide detection algorithm  

 


