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HIGHLIGHTS

e A nonlinear phase-field model was developed for the dendritic growth.

e The model accounts for the Butler—Volmer electrochemical reaction kinetics.

e The model was verified by the Nernst equation.
e Three different dendritic patterns were discovered.
e A design map was proposed to avoid undesired dendritic patterns.
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A nonlinear phase-field model, accounting for the Butler—Volmer electrochemical reaction kinetics, is
developed to investigate the dendritic patterns during an electrodeposition process. Using lithium
electrodeposition as an example, the proposed model is first verified by comparison with the Nernst
equation in a 1D equilibrium system. The nonlinear electrochemical kinetics is also confirmed at non-
equilibrium condition. The dendritic patterns are examined as a function of applied voltage and initial

electrode surface morphology. A design map is proposed to tailor the electrode surface morphology and
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the applied voltage to avoid undesired dendritic patterns.
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1. Introduction

Electrodeposition has been widely observed in numbers of ap-
plications such as electroplating, electroforming, electrocorrosion
and battery charging. However, dendrites characterized as multi-
level branching usually occur at the electrode-electrolyte interface
during electrodeposition processes if they are not carefully
controlled [1—4]. Such dendrites generated far from equilibrium
have also fascinated scientists for decades due to their important
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effects on physical and chemical properties of the electrodeposition
systems and the performance of electrochemical devices. For
example, Lithium (Li) electrodeposition on a Li-metal electrode
often takes place in high capacity Li—0> (lithium-oxygen) and Li—S
(lithium-sulfur) batteries [5—7]. These newly developed high ca-
pacity lithium batteries, however, still suffer from unexpectedly
failure by short-circuiting via the dendrites that grow even across
electrodes upon recharging [8].

The important role of dendrites in electrodeposition systems
has stimulated numerous efforts on modulating the dendritic pat-
terns. These works were mostly based on the modification of
electrode materials [9], electrode surface morphology [10,11], sol-
vent and electrolyte composition [12,13] and operational current
density or voltage [ 14,15]. The basic idea behind these treatments is
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to control the kinetics and the instability of interface that are
intricately combined.

The present paper aims to formulate a thermodynamically
consistent model to predict the dendritic patterns during an
electrochemical process using Li-electrodepostion as an example.
The first attempt to model the electrochemical dendrite growth
was made by Monroe and Newman [16]. They presented a
comprehensive mathematical model for temporal evolution of
dendrite tip height and growth velocity in Li-polymer cells.
Recently, Akolkar [17,18] extended this model by incorporating a
concentration-dependent diffusion coefficient, with application to
liquid electrolytes. More recently, Aryanfar et al. [19] proposed a
coarse-grained Monte Carlo calculation to uncover the Li-dendrite
mechanism, by dealing explicitly with Li* migration in time-
dependent non-uniform electric fields. However, they did not
explicitly simulate the temporal evolution of electrode-electrolyte
interface.

Phase-field method has been applied to a vast range of phe-
nomena in materials processes, e.g., solidification, solid-state phase
transformation, recrystallization, and grain growth [20,21]. Phase-
field method is formulated based on the theory of irreversible
thermodynamics, and is advantageous in addressing the time-
dependent evolving morphologies process, which is hard to
implement in traditional sharp-interface model [16]. The early
attempt along this line was made by Guyer et al. [22,23] who
developed a 1-D phase-field model to investigate the equilibrium
state and kinetic behavior of electrochemistry. Later, Okajima et al.
[24] simulated the 2-D electrodeposition process by linking a
Cahn—Hilliard equation with a Butler—Volmer type equation.
Recently, Liang et al. [25] proposed a 1-D formulation that captures
the Butler—Volmer kinetics of electrodeposition. More recently Ely
et al. [26] conducted a phase-field study on the kinetics of Li elec-
trodeposits by extending the asymptotic analysis of the phase field
theory. However, all these models either are assuming a linear
electrochemical reaction kinetics that breaks down when the sys-
tem is highly out of equilibrium [25,27], e.g., under high charging
voltage, or do not capture an apparent dendritic growth of elec-
trodeposits, or are not derived within a thermodynamic framework
based on the electrochemical potential, thus leading to the loss of
thermodynamic consistency.

In this article, we solve these discrepancies by formulating a
thermodynamically consistent phase-field model. In the model, the
phase-field evolves nonlinearly with the variational electro-
chemical overpotential that is a function of electrostatic potential
and ion concentration. Such treatment allows us to capture the
Butler—Volmer electrochemical reaction kinetics naturally. The
mass and current conservation equations are further formulated to
solve the ion transport and the local electrostatic potential varia-
tion, respectively. Anisotropic surface energy at the interface, evi-
denced by first principles calculations [28], is incorporated in the
model. The present phase-field model is generally applicable to any
non-equilibrium electrodeposition system exhibiting the dendritic
growth.

2. Phase-field model

Consider a simple and general electrodeposition, M"* cations in
a binary dilute electrolyte M"*A™ react with electrons e~ at the
surface of the electrode, and are reduced to M-atom. This process
can be illustrated by Ref. M™" 4+ ne~ — M. For simplicity, we assume
a dilute electrolyte solution. Further, the electrons are assumed to
be always supplied on the surface of the electrode. The shape of
protuberant at the electrode surface represents the initial
morphology of electrode-electrolyte interface as shown in Fig. 1. As
detailed in Appendix A, the Gibbs free energy of the system can be

Solution M™

M metal

Fig. 1. Schematic-diagram showing a representative electrodeposition system. A pro-
tuberant of size a x b is present on the electrode surface.

expressed by
6= [ [fn(®) + fyaa(V€) + fete €. 9)] OV, (1)
Vv

where © = {c,c,,c_} is the set of concentrations for M-atom, M"*
cation and A" anion respectively, fch@ ) is the Helmholtz free
energy density and fy,q = 1/2VC-«kV C is the gradient energy
density associated with surface energy. The surface energy
anisotropy, i.e., its dependence on the orientation of the electrode-
electrolyte interface, is introduced in the system by expanding the
gradient coefficient as k(6)=ko[1 + dcos(wf)], where § and w are the
strength and mode of the anisotropy, kg is related to the surface
energy v, 0 is the angle between the normal vector of interface and
the reference axis. ¢ is the set of dimensionless concentrations as
{¢=c/cs, ¢4 =cy/cy, C- =c_/cg}, Where c; is the site density of
M-metal and cg the standard bulk concentration of electrolyte so-
lution. felec=pe® is the electrostatic energy density where ¢ is the
electrostatic potential, and p, is the charge density that is expressed
as p. = F > zjc; where z; is the valence of species i and F is Faraday's
constant. A continuous phase-field variable, £, with a physical cor-
respondence to the dimensionless concentration of M-atom, as
£ =, is introduced to separate the metal and the electrolyte so-
lution during the interface migration. The value of & varies
continuously from 1 to 0 in the interfacial region, i.e., correspond-
ing to a diffuse-interface description with a finite thickness. The
free energy density is then given by

fch(?) =g(0) + fion(C4,€-) + Zciﬂi@’ (2)

where g(¢) = We*(1 —¢)2 = W£2(1 —£)? is an arbitrary double
well function to describe the two equilibrium states for the elec-
trode (¢ = 1) and the electrolyte (¢ = 0) respectively. W/16 repre-
sents the Dbarrier heightt For a dilute electrolyte,
fion = coRT (¢, Incy + ¢_ Inc_), without phase separation. The last
term in Eq. (2) stands for the free energy density at the standard
(reference) state, with u®? defined as the reference chemical po-
tential of species i, which could be M"" cations, or electrons e, or
M-atom.

Having these definitions, the electrochemical reaction rate, R,
takes the variational form of
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where kg is the reaction rate constant. The anodic and cathodic
charge-transfer coefficients o, and a. satisfy ag=1—«a and o = «
with asymmetry factor O < « < 1. In addition, the overpotential, 7, is
defined as

Re = fkodfaa,‘\*,,{exp

eq _
n=A80 A9 nF ~nF Zéc, )

This total overpotential is further defined as the sum of the
activation overpotential 7, and the concentration overpotential 7
(see Appendix C for more details). In Eq. (3), the activity for M-
atom, ay, is expressed by

CsRT In apy = g/ (€) — kV2E = g/ (§) — kV?¢ (5)

based on the definition of activity [27], e.g., for species i, which is
given by

(6)

b =exp (RT aﬁ?)
1

where finix = fon + faraa — > ciu? is the mixing free energy density
i

relative to the standard state. The details on the derivation of Eq. (3)
is referred to Appendix B.

In the present model, we consider the phase-field evolves by the
electrochemical reaction, R, thus

oc _ —kocl™ aM{exp[%}*eXpraI;nTFn”' )

ot

Next, let's analyze the driving force deeply in the electrodepo-
sition system, which is contributed by two parts: interfacial free
energy and the electrode reaction affinity. The interfacial energy
related to the thermal energy (kT = 0.0257 eV) is usually small
relative to the electrode reaction affinity when a certain large
electrostatic potential (e.g., > 0.5 V) is applied to the real electro-
deposition systems. Therefore, as detailed in Appendix C, the
temporal evolution of phase-field is considered linearly propor-
tional to the interfacial free energy and exponentially to the ther-
modynamics driving force related electrode reaction, that is

& = ~Lo(g©) - v%) - Lo {exp | 1= 2]

ot
)

where h(§)=£3(6§2-156+10) is an interpolating function,
na:Aqbe@ is the activation overpotential, and E9 is the standard
half-cell potential. L, and L, are, respectively, the interface mobility
and the reaction-related constant. All of these variables are defined
in Appendix C.

For the species diffusion in the electrodepostion system, M-
atom is regarded as immobile without diffusion process, while the
electrochemical reaction provides a source term for the evolution of
M™ cation. Ignoring the effect of A" anion transport, it can be
described by

— Cy exp

eff ~
=V Deffv6++D Ct

nEVG| - (9)

where the effective diffusion coefficient is interpolated by

Refs. D= Dh(¢) + D¥(1 — h(£)), where D¢ and D° are the M™*
diffusion coefficients in the electrode (which is almost zero) and
the electrolyte solution respectively. The first two terms duplicate
the classical Nernst—Planck equation. The last term is to describe
the accumulation/consuming of M"* cation due to the electro-
chemical reaction on the electrode surface. It is related to the
electrochemical reaction rate R,, which is detailed in Appendix D.

For the electrostatic potential distribution, assuming the charge
neutrality in the system, we consider the current density is
conserved described by Poisson equation including a source term to
represent the charge that enters or leaves due to the electro-
chemical reaction, as

TV (p(r,t))| = I, (10)

where the effective conductivity depends on the phase parameter
o f=ah(&) + 051 — h(£)), ¢° and ¢° are the conductivities of elec-
trode and electrolyte solution, respectively, This source term Iy is
again related to the reaction rate, R, described in Eq. (3) having a
form of Iz = nFc;0¢/at. Note that non-zero Iy is only produced at the
electrode-electrolyte interface when the system deviates from its
equilibrium state.

3. Numerical results

We apply the present nonlinear phase-field model to a realistic,
Lit + e~ — Li, electrodeposition system, where the electrode is
composed of pure Li-metal, while the electrolyte solution includes
cation (Li") and anion (PFg~) species. Such reaction is a typical
electrode reaction in half cell of Li-ion batteries and the corre-
sponding parameters characterized from experimental studies or
modelling references [16,29,30] are detailed in Table 1. The phase-
field model is simulated using a finite element method on the
platform of COMSOL Multiphysics 4.4, under an adaptive grid. Only
the protuberant is initially considered for the electrode in the
model to reduce the computational cost, with the size of electrolyte
solution set to 500 x 500 pum. On the mesh sensitive study, the
system mesh size is set as 140 x 140 with a minimum grid spacing
of dimin = 2 pm. We use an implicit time integration, with a time step
of At = 0.2 s. The Li* bulk concentration is employed as
co = 1.0 x 10% mol/m?>. The site density of Li-metal is inverse of the
volume of 1 mol Li-atom that is given by Refs. ¢; = 1/V = pyj/
myj=7.64 x 10* mol/m>3, where my; and py; are molar mass and
density of Li, respectively. All the parameters are normalized a
characteristic energy density Eg=1.5 x 10° J/m?, a characteristic
length [p = 100 um, and a characteristic time step 4to = 4000 s. The
symmetric factor ¢ = 0.5 is speculated in this work [31], unless
otherwise specified.

3.1. One-dimensional phase-field model

First, we investigate the equilibrium electrode-electrolyte po-
tential difference, i.e., the activation overpotential at the electrode-
electrolyte interface in a 1D system without an applied voltage, for
the purpose of validation of the proposed phase-field model. An
adiabatic boundary condition is employed to calculate three gov-
erning equations by fixing the fluxes of Li-atom dendity, Li* con-
centration and potential at the boundaries to zero. The equilibrium
activation overpotential at the electrode-electrolyte interface is
examined for various Li" concentrations of the electrolyte solution:
¢, =0.001,0.01,0.1,0.5,1.0,2.0,5.0,10.0. Fig. 2 shows the calcu-
lated activation overpotential, na:Aqbe@, as a function of the
logarithmic concentration at equilibrium. The standard half-cell
potential E9 is set as 0, which is similar to set Li/Li + equilibrium
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Table 1
Phase-field simulation parameters and their normalized values.
Parameter Real value Normalized value
Symbol Value Symbol Value
Interfacial mobility Ly 25 x 1075 m3/(J x s) L, = L, x (Ey x Atp) 2000
Reaction constant. L, 1.0/s L, =L, x Aty 4000
Gradient energy coeff. K 5 x 107°J/m k=«/(Eg x I3) 0.01
Interfacial energy v 0.6 J/m? ¥ =7/(Ey x lp) 0.004
Barrier height w 3.75 x 10° J/m? W =W/Ey 0.25
System size l 500 pm I=1/ly 5.0
Time step At 02s Af = At/AL 5x107°
Diffusion coeff. in electrode D° 7.5 x 1072 m?/s D° = D /(13 /Aty) 0.03
. . . . —10 42 =~
Diffusion coeff. in solution D 7.5 x 107" m“[s S DS/(12/Atp) 30
Conductivity in electrode ¢ 1.0 x 107 S/m PR 10°
5 = g€ / r?o ckf_;
Conductivity in solution 7 1.0 S/m P ) 100
&=/ 25 %
10°
0.051 Nernst equation B
= @ Phase-field model N 105-\ Deposition
—_— (2 |
S 0.001 b= -
= Eﬁ 10°3 \—
© > \,ﬁ
% -0.05 ‘E O
3
3 % L B
g -0.104 e 5"
= : § 10° Analytical solution for a=0.5 .
% < @ Phase-field model for a=0.5 u&
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Fig. 2. Equilibrium electrode-electrolyte potential difference, i.e., the activation over-
potential at the interface as a function of logarithmic concentration in a 1D system.

potential as zero for Li-ion battery applications. The activation
overpotential decreases with decreasing Li™ concentration. The
gradient of the fitted line is 0.058 that satisfies perfectly the
analytical Nernst equation n, = 2.303RT/F logq(C+/apy), where
the activity ay for Li-atom at equilibrium is 1.

Further, the Butler—Volmer relation between the rate of elec-
trode reaction and the electrochemical overpotential is examined
using the 1D system with an applied voltage. Dirichlet boundary
condition is used to solve the Li* diffusion and Poisson equations. In
order to remove the effect of Li* concentration on such Butler-
—Volmer Kinetics, we set the Li* concentration in the electrolyte
solution as ¢; = 1.0. The electrode-electrolyte potential difference
is set to A¢p = —0.2—-0 V, giving rise to a range of overpotential
values as 7 = —0.2—0 V. Cases with the reaction rate constant, Ly,
equal to 1.0/s are calculated. The growth velocity of the electrode-
electrolyte interface is examined for various overpotential values
when a=1.0 and 0.5, and the results are plotted in Fig. 3. For the
purpose of comparison, the analytical solution derived for the
sharp-interface limit of phase-field model [25,32]

e R |

is also drawn as a solid line in Fig. 3, where v is the interfacial
energy per unit area. The numerical results obtained using the
phase-field model agree well with the analytical solution for both

Overpotential n (V)

Fig. 3. Absolute value of the growth velocity of interface as a function of the over-
potential in the cases of @ = 1.0and 0.5. Symbols represent the numerical results and
the solid lines represent the analytical solutions from the Butler—Volmer equation. The
dotted line is a plot of a linear reaction—overpotential relation for reference.

values of a. The linear relationship between the interface velocity v
and the overpotential 7 is found to satisfied when 7 is small,
whereas at larger n values, the interface velocity v appears expo-
nentially dependent on 7.

3.2. Two-dimensional phase-field model

In order to model the electrochemical dendrite growth, the
addition of anisotropy is implemented in the 2D system. The
strength of interfacial anisotropy is set as 0.05 (consistent with the
slight anisotropic surface energy in Li metal) [28], and the Li*
concentration of the electrolyte solution as ¢ = 1.0. As before,
Dirichlet boundary condition is applied to solve the Li™ diffusion
and electrostatic Poisson equations.

3.2.1. The distributions of fields

We start with a case where an artificial nucleation occurs at the
center of electrode-electrolyte interface to illustrate the distribu-
tions of different fields. Fig. 4 shows the snapshots of the phase-
field order parameter, Li* concentration and electric potential
distributions as a function of evolution time by solving Eqgs. 8—10.
The local variations of Li* concentration and electric potential are
both clearly seen. During the charging operation, the growth of
phase-field (i.e., electrodeposit) can be related to the Li*
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Fig. 4. The snapshots of order parameter £, Li* concentration ¢, and electric potential ¢ at various evolution times.

concentration and electric potential by reaction kinetics in which
surface tension (i.e., interfacial energy) also appears. This in turn
results in a concentration gradient as well in an electric potential
gradient at the neighborhood of the electrode and/or the deposit.
The tips of deposits have larger concentration and electric potential
gradients which give larger overpotential and force their faster
growth. We should note that the overpotential, as a function of Li™
concentration and electric potential, is taken as a field in our
simulation which is different from the mathematical model that
always taken as a single value. The overpotential across the inter-
face is automatically taken as the thermodynamic driving force
based on Eq. (8). The lithium deposition begins when the over-
potential is less than zero.

3.2.2. Dendritic patterns

In order to statistically characterize the dendritic pattern, we
simulate the dendrite growth with a range of applied voltages and
protuberant morphologies, which are quantified by the ratio of b/a
shown in Fig. 1. The distance between each protuberant is 80 um.
For all the cases examined, Fig. 5(a) shows a typical fiber-like
pattern with small branches under a small applied voltage
of —0.45 V and a relatively large b/a value of 8.0, which agrees with
the experimental observations [4,11,33,34]. The fibers grow parallel
to the direction of the applied electric field. Lowering the value of b/
a and increasing the applied voltage give rise to the pattern of
dendrites with side branches, for which the truck follows along the
direction of the applied electric field too. Fig. 5(b) shows a typical
dendritic pattern with a applied voltage of —1.5V and a b/a value of
4.0, similar to the experimental data in Ref. [35]. Further lowering
bla to 2.0 and increasing the applied voltage to —-3.0 V,

corresponding to a large driving force, even promotes the tendency
of tip to split (see Fig. 5(c)) that is in agreement with the finding in
experimental reports in Refs. [4,36]. For the comparison purpose,
we also plot the in situ experimentally observed results in Fig. 5(d)
using the apparatus described [37], in which charging and dis-
charging were carried out in an optical half-cell. A brushed piece of
Li foil acted as the negative electrode, while a porous graphite
electrode cut from an LR1865AH 18650* laptop battery made by
Tianjin Lishen Battery Co. served as the positive electrode. The
electrode material coated both sides of a copper current collector.
Similar to the phase-field model, a 1 M solution of LiPFs was
deposited on the Li electrode. Cells were placed under either cur-
rent or voltage control using a high precision source/measure unit
(Keithley 237) in an external circuit. At an current density of 5 mA/
cm?, two dendrite branches grow into a mossy region on the lower
right corner in Fig. 5(d), which is apparently consistent with the
simulated tip-splitting dendritic pattern in Fig. 5(c).

To unravel the underlying mechanism of the transition from the
fiber-like, fully dendritic to tip-splitting dendritic patterns, we track
the temporal evolution of the average dendritic tip radius for these
representative cases, and plot the results in Fig. 6. We found that
the tip radius of fiber-like pattern begins to decrease rapidly after
charging, and then is kept at a small constant value. For the fully
dendritic pattern, the tip radius still decreases at the initial state in
despite of a relatively small amplitude, thereafter, stays at an
almost constant value with a fraction of oscillation. For the third
case, the tip radius exhibits an obvious oscillatory evolution which
is attributed to the unstable tip splitting. In principle, the smaller
tip radius, the larger concentration and overpotential gradients in
the neighborhood which give larger electrodeposition rate and
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(a) 1=1400s
b b/la=80, Ag=-0.45V

(b) 1=800s
b/la=40, Ag=—1.5V

(c) t=800s
bla=2.0, A¢g=-3.0V

(d) Experimental
observation

Fig. 5. Three representative simulated deposits with (a) fiber-like, (b) fully dendritic and (c) tip-splitting dendritic patterns, and (d) the experimentally observed dendritic pattern,
in which an optical microscope was utilized to monitor in situ growth of dendrites using the apparatus described [37]. Two dendrite branches grow into a mossy region on the lower
right corner, which is apparently consistent with the simulated tip-splitting dendritic pattern in (c).

Tip radius (um)

20+ —o— Tip-spliting dendritic pattern
—x— Fully dendritic pattern
—o— Fiber-like pattern
154
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u| s’&" l{* et
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5 mﬁ:@ﬁﬂmﬂ I
T T T : T ¥ T ¥ T
0 200 400 600 800 1000
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Fig. 6. Temporal variation of the dendritic tip radius for different cases.

force their faster growth. Therefore, the front of Li-deposit grows
much faster than the behind once its initiallisation for the fibre-like
case. As the tip radius increases, the distributions of concentration
and overpotential become relatively homogenous, the side
branthes start to emerge at the points where sufficient driving force
can be achieved if some noises are somehow provided. Once the
driving force (e.g., with high applied voltage) is large enough, the
tip radius tends to increase more, and the tip appears to split in a
random manner which in turn decreases the rip radius. These
interaction contributes to the vibration of tip radius during the
electrodeposition (Fig. 5(c) and (d)).

3.2.3. Design map

Next, we characterize the transition discussed above, by noting
that the length A of branching array tilted at an angle to the truck (x-
axis) must satisfy the selection criterion A> ylr, where x is the
proportionality constant. Here, we set x = 0.03 as reference [38]
did. Using this selection criterion on more simulation cases with
different applied voltages and protuberant morphologies, we
define a phase-like diagram to identity the dendritic patterns with
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Fig. 7. Diagram showing the effect of applied voltage and initial protuberant
morphology on the transition of electrodeposition patterns. Two fitted boundary lines,
red and purple, divide the transition area into three different zones, i.e., fiber-like, fully
dendritic and tip-splitting dendritic patterns. The red line is the boundary for transi-
tion from fiber-like to fully dendritic patterns, while the purple line is for the transition
from fully dendritic to tip-splitting dendritic patterns. Symbols represent the calcu-
lated points by the proposed nonlinear phase-field model. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

x-axis of applied voltage, as well as y-axis of the size ratio of pro-
tuberant b/a as shown in Fig. 7. Examination of the 4¢(b/a) phase
diagram also predicts that there will be a transition from the fiber-
like to tip-splitting dendritic patterns, as the applied voltage is
increased or the protuberant is relatively flat with a small b/a value.
We also note that at sufficiently large applied voltage, the unstable
tip-splitting always appears regardless of the morphology of pro-
tuberant at the electrode-electrolyte interface.

4. Conclusions

In summary, a thermodynamically consistent phase-field
model, accounting for the nonlinear reaction kinetics, has been
proposed to investigate the dendritic patterns during an electro-
deposition process. The model has been validated by comparing
the equilibrium electrode-electrolyte potential difference with the
Nernst equation, taking an example of Li- electrodeposition on Li-
metal. Then we have reproduced the Butler—Volmer nonlinear
electrochemical kinetics in a 1D non-equilibrium system. Three
different dendritic patterns have been discovered depending on
the applied voltage and the interface morphology. A phase dia-
gram was proposed, which could potentially be used as the
guidance to experimentally control of Li-dendrite patterns. Anal-
ysis on the dendritic patterns demonstrates that the large applied
voltage or the flat protuberant at the interface contributes to the
side branches of dendrites, and even promotes an unstable tip-
splitting.

Finally, we would like to emphasize that electrodeposition is a
versatile technique but having a complex process. Controlling the
dendrites that occur at the electrode-electrolyte interface relies on
a number of external or internal factors. In the present article, we
focus on the effects of applied voltage and initial electrode
morphology on the dendritic patterns during charging. Besides
such two factors, the deposit patterns could also be attributed to,
such as interfacial properties [10,11], electrode material properties
[9], electrolyte solution composition and properties [12,13], evo-
lution time [39,40], applied voltage type (e.g., pulse) [9,13,15,16],

etc. The solid-electrolyte-interface (SEI) layer [41,42], recognized
acting as significant role during electrodeposition, has also not been
explicitly considered. The inclusion of such SEI layer in the phase-
field model is under way, in order to investigate the role of SEI
layer in the locations of dendritic nucleation as well as the mor-
phologies of dendritic growth. A robust model that is capable of
simulating the dendrite growth during electrodeposition, is not
only interesting from the fundamental aspect, but also important
for the design of electrochemical systems in practice. The present
nonlinear phase-fiend model established herein gives us a new
pathway for the further study of these issues.
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Appendix A. Gibbs free energy functional

Here we provide the detailed procedure to obtain the expression
for Gibbs free energy functional of the electrodeposition system

G- /f<?,¢>dv, (A1)
1%

where f(C, ¢) is the Gibbs free energy density. ¢ is the electrostatic
potential and ¢ = {c,cy,c_} is the set of concentrations for M-
atom, M"* cation and A™ anion respectively. Further, ¢ is defined
as  the set of  dimensionless concentrations as
{¢ =c/cs,C+ =i /cy,C— = Cc_/co}, Where c; is the site density of M-
metal and cg the bulk concentration of electrolyte solution.

It is convenient to identify the classical chemical potential

i = RT In a; + uf = RT Ing; + uf, (A2)
and the classical electrochemical potential
& = RT In a; + uf + Fz;p = RT In¢; + ™, (A3)

where RT is the product of the molar gas constant, R, and the
temperature, T. F is the Faraday's constant. z; and a; are the valence
and the activity of component i respectively. F‘i@ denotes the
reference chemical potential of species i. u{* and @* are respec-
tively the excess chemical potential and the excess electrochemical
potential. The activity coefficient y; expressed by

vi = exp[(uf* — uf’) /RT], (A4)
or
vi = exp[(af* — uf’ — Fzi¢) /RT]. (A5)

is a measure of non-ideality (a; = v;C;)

Assuming the M-metal and electrolyte solution are added into
the system without any interaction, it is convenient to introduce
the electrochemical free energy density in a homogenous system

feren =Y cimi =Y _ci(RTIn a; + uf + Fzi¢p). (AG)
i i

Further considering a dilute electrolyte solution with g; = ¢;, it
can be written as
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fericn =RTY i Ini+ Y ciuf + > Fzici¢
i i i
=RTY ¢ InG+ > ciuf + ped
i i

= GRTEINC + coRT(Cy InCy + ¢ InCo) + > cind + pe¢p,
i

(A7)

where the term ¢;RT¢Inc¢ corresponds to the contribution of M-
atom, of which the dimensionless concentration ¢ =1 in the M-
metal and ¢ = 0 in the electrolyte solution. We accordingly have
csRTcInc = 0 if the sharp interface between the M-metal and the
electrolyte solution is assumed.

In order to describe the diffuse interface in the present phase-
field model, a continuous phase-field variable, £, with a physical
correspondence to the dimensionless concentration of M-atom, as
£=¢, is introduced. An arbitrary double well function
2@ =wWet(1-6)? =we2(1-¢£)? is used to describe the two
equilibrium states for the electrode (¢ = 1) and the electrolyte
(¢ =0). W/16 represents the barrier height. Thus, the electro-
chemical free energy density reads

fotrch = WE(1 = &) + oRT (€4 In¢y + - Ine_) + > ciuf + pesp,
i

(A8)

or
fotvch =WE*(1 —£)? + GoRT (€, In¢; + ¢ It ) + >~ i + pegp.
i

(A9)

In addition, the free energy density associated with the gradient
is routinely given by

farad = 1/29C 1V T, (A10)

where « is the gradient coefficient.
Combining Eqs. (A6—A8) yields the Gibbs free energy density

fCC,6) = fetich + fgraa

= W& (1 -6 + oRT(Ey Iné. + - Iné_) + > ciuf
i
+petp+1/2VE kY E.
(A11)

Therefore, we have

fn(€) = WE(1 = &) + coRT(C4 In¢y + & Inc_) + > ciuf
i

(A12)
farad(VC) =1/2VC kY T (A13)
Setec = ped = Fzzici¢ (A14)

i

Appendix B. Electrochemical reaction Kkinetics

In a consistent formulation of electrochemical reaction kinetics
[27,43], the reaction (S1—S-) rate, R, is expressed by the excess
electrochemical potential at the different states, as

—(m Ay

_ (€X _ —ex
Re = —koCq €xp RT )} +koCy exp M} (A15)

RT

where ko is the reaction constant. Local minima of z$* and z§*
corresponds to the excess electrochemical potential at state 1 and
state 2 respectively, with transition over an activation barrier uf* as
shown in Fig. A1l. Enforcing detailed balance (R, = 0) in equilibrium
i.e., the electrochemical potential given in Eq. (A15) equals at two
states, uy = iy, yields the reaction rate that is consistent with the
following non-equilibrium expression

ex “ ./

Yz A
7
,' #u_\azm;

M"™ +ne”

| | | »

X X, X, X

Fig. A1. Landscape of excess chemical potential along the reaction coordinate explored
by the electrodeposition reaction, M"* +ne~ — Mat equilibrium (black) and during
the reduction reaction (red) under a negative overpotential 5 < 0. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

76X

Re = —ko{exp [_ (MtRT_ ﬁl)} —exp [_(ﬁf;;]__ ﬁz)} }

Having the definition of the electrochemical potential, it is
convenient to write the expressions for different components in the
electrodeposition reaction, M"" + ne™—M

(A16)

Byre = RT Inayns + e + nFobs, (A17)
Te = RT In ae + u& — Fo, (A18)
v = RT Inay + 1, (A19)

where ¢s and ¢, are, respectively, the electrostatic potential in the
electrolyte solution and the electrode. The electrode-electrolyte
interfacial potential difference is 4¢=¢.—¢s. Applying Eq. (A16) to
the present electrodeposition reaction with @y = uypm: + nge,
Iy = my and Ap = fip — 4, the electrode-electrolyte potential dif-
ference at equilibrium with Au=0, is given by the Nernst equation

n
Apl = E® + % n—a’vgl;ae : (A20)
where
O L nu® — u®
E@:'u’M + He HMm (AZ])

nF

is the standard half-cell potential or is standard potential difference
between reactants and products. Assuming a dilute electrolyte
solution and the activity for electron is unity, Eq. (A20) is further
written as
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Al = E° + ln—*. (A22)

nF

Out of equilibrium, the reaction rate, Re, or the current, I = neRe,
is controlled by the overpotential, n, which is defined as [44].

RT, ¢
_ _ eq _ _ O _ Mt
n=0¢ 49 Ae—E nF naM nF anc,
(A23)
Thus, we have
_ (1 —a)Au] —aAp
Re = Ro{exp —RT exp RT
= _Ro{exp %} — exp |:7OI;';_,F7]:| } (A24)
and
_ (1 -a)Au] —alAp
I= lo{exp [7RT exp RT
= _]O{exp {%} — exp |:foI;r'IlﬂFn] } (A25)

where Ry and Ip are the exchange reaction rate and current
respectively. The anodic and cathodic charge-transfer coefficients
ag and o, satisfy ay=1-a and o=« with asymmetry factor
0 <a< 1.Ifn<0, Re>0 corresponds to the reduction of the elec-
trolyte; whereas if n > 0, the electrode is being oxidized with R, <O,
which is easily illustrated by the landscape of the excess electro-
chemical potential along the reaction coordinate as schematically
shown in Fig. Al.

In order to model the Butler—Volmer kinetics, the excess elec-
trochemical potential for transition state is defined as [27,44].

ag* = RTIn v, + (1 — ) (NFps — nFe + e + M) + aupy,
(A26)

which yields

Rg = koél’“aﬁﬂ/yt and Iy = nekoﬁl’“af{,,/y[. (A27)
where the activity coefficient at the transition state v; is obtained

based on the double well function describing the diffuse interface,
ie, g(6)=WE*(1-£)* as

RTIn vy, = g'(£) — kV?¢ —RT In g, (A28)
Appendix C. Phase-field equation

Combining Eqs. (A23—26) leads to the reaction rate

_ (1 — a)nFn —anFn
Re = —Ro{exp R |~ exp RT , (A29)

where the total overpotential n=n4 + 7 is the sum of the activation
overpotential and the concentration overpotential. The activation
overpotential is defined as

Na = A¢ — E®. (A30)

Subtracting Eq. (A28) from Eq. (A22), the concentration over-
potential is expressed by

RT, c. RT
ne= o ay ~ nF (lncJr In ay). (A31)
In Eq. (A27), the activity for M-atom, ay, is expressed by
CsRT In apy = g'(€) — kV2C = g/ (§) — kV2¢ (A32)

based on the definition of activity [27], e.g., for species i, which is
given by

_ 1 afmlx
- p(RT ac;

where fix = fon +fgral:l -

(A33)

> ciu? is the mixing free energy density
i

relative to the standard state.
Substituting the concentration overpotential, 7, into Eq. (A29),
we have

Re = —Ro{exp[(1 - ) (”RT

— exp[f a(nRT —Inc; +1In a,v,)”

Considering the electrodeposition system physically, the driving
force is generally contributed by two parts: interfacial free energy
and the electrode reaction affinity. Thus, we write the reaction rate,
Re, as the accumulation of these two parts

—Inc; +1In aM)} (A34)

Re = R; + Ry, (A35)
where R, corresponds to the driving force for interfacial energy and
Ry is the driving force for the electrochemical reaction. Since ay
involves the gradient energy density term from Eq. (A30), Ry, is
considered to be expressed by the term Inay; within parentheses in
Eq. (A32).In order to illustrate such separation, we further write Eq.
(A32) as

(A36)

Re = —Ro{exp[(1 — a)(x +y)] — exp[—a(x +¥)]},

where x = "Z« — In¢, corresponding to R, and y = Inay for R,.

When the system is far from equ111br1um R, is usually much
smaller than Ry, therefore, y<x. Performing Taylor expansion on Eq.
(A34), we have

Re = —Ro{exp[(1 — a)(x + )] — exp[-
= —Ro{exp[(1 — a)x] +
+ o exp(—ax)y},
= —Ro{exp[(1 — a)x] — exp(—ax)}
— Roy{(1 — a)exp|[(1 — a)x] + a exp(—ax)}

a(x + )}
(1 a)exp[(1 — a)xly — exp(—ax)

(A37)
with
R, = —Ro{(1 — a)exp[(1 — «)X] + « exp(—ax)}y, (A38)
and
R, = —Ro{exp[(1 — a)x] — exp(—ax)}. (A39)

where R; is linearly proportional to y and R, is non-linearly pro-
portional to x with a Butler—Volmer relation. Ignoring the depen-
dence of R; on x or the dependence of R, on y, letting
Ly, = Ro{(1 — a)exp[(1 — a)x] + a exp(—ax)}/csRT (A40)

as the interfacial mobility having a constant value, and substituting
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Eq. (A30) into Ry, we then have

Ry = —Ly (g'(5) = 1¥%). (A41)

In addition, substituting x = "« —
into Eq. (A37), Ry is expressed as

1—
+ aax/l/"/t

Inc, and Ry = koC
R, = —ko(i'}:aaxl/l/’Yt{exP [(1 )( RT )]
—exp [ - a(n;?y - 1H5+)] }
_ _koai'\é/l/yt{exp [(1 —a) (nFna)] — ¢, exp [ _ a(";?a)] }

(A42)

In addition, for Ry, Eq. (A40) only represents the driving force
from reactants to products in the form of sharp interface limit. In
order to describe such electrochemical reaction at the electrode-

electrolyte  diffuse interface, an interpolating function
h(€) = 30821 — £)? is introduced for R,. Thus, the phase-field
evolves by
3 _ / 2 ’ (1 — a)nFnq
e —La(g () —«V E) —Lyh (5){37(13 [T
- —anF
— Cy exp [Tna] }, (A43)

where L, = koaj},; /v, that is also regarded as a constant in this work.
Appendix D. Diffusion equation

For the species diffusion in the electrodepostion system, the
electrochemical reaction provides a source term for the evolution of
species which can be described by the set of following equations

o¢; Djc;_oG nFn
Hi_v. [ e vécj CRe (ﬁ) (A44)
where signal “—” corresponds to the reactant (M™" cation), while
signal “+” for the product (M-atom). It is worth noting that Eq.
(A44) implies the total amount of M™* elimination in the electrolyte
solution is equivalent to the total amount of M deposition on the
surface of metal electrode. Further, the M-atom is regarded as
immobile, accordingly, D;=0, thus, the diffusion of M-atom is
governed by

ac nFn oc nFn
Fri CsRe (ﬁ) or &= Re <ﬁ) (A45)
The M"" cation diffuses following
o g [peryc | Dy an¢_ _ R (MEn (A46)
ot * ST\ RT )
Combining Eqs. (A43—44) yields
C g [prve, 4 DT | G X (A47)
ot +TRT co ot
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