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Abstract—Intrusion Response Systems (IRSs) have been a
major research topic in the last decade. At the core of an IRS is
the response selection algorithm, which selects the best response
action to counter the currently detected attack. Most of the IRSs
proposed so far, statically or dynamically evaluate the mapping
between response actions and specific attacks, ignoring the actual
system state, thus providing only short-term decisions. In this
paper we propose a controller based on Markov Decision Process
(MDP) for an autonomic IRS. The proposed controller is able
to compose atomic response actions to create optimal long-term
response policies to protect a system. Experimental results show
that long-term policies are always more effective than short-term
policies and that they can reduce the threat resolution time up
to 56% in the considered scenario.

I. INTRODUCTION

The frequency of the attacks directed to computer systems

and their complexity is increasing day by day. According to

the Akamai’s state of the Internet 2015 Q2 Report [1], the

number of recorded attacks is more than doubled compared

with a year ago. The complexity of the systems and the

number of alerts raised by Intrusion Detection Systems (IDSs)

makes it infeasible for a human being to timely address all the

threats, therefore increasing the probability of attack success

and the consequent damage to the system [7]. The need of

automatic responses to the attacks motivated the research and

development of Intrusion Response Systems (IRSs). The core

of an IRS is its response selection algorithm which, according

to the currently ongoing attack and a set of available response

actions, selects the best one as a countermeasure.

Since early 2000s, researchers assisted to the development

of mainly two kinds of IRSs: one based on a static mapping

between the detected attack and its best countermeasure (e.g.,

[23]), the other based on a dynamic evaluation of all the

response actions, according to the detected attack and to a

list of evaluation criteria (e.g., [5], [22], [20], [6], [11], [18],

[10]. The former immediately exhibited all the limit of a static

approach, mainly due to scalability problems: a static mapping

requires the system administrator to periodically update the

set of known attacks and to associate them to the proper

response. Given the limits of the static IRSs, the dynamic

ones have been the main subject of study during the last years.

Several approaches have been proposed to select the optimal

response action, usually based on countermeasure ranking

like in [20], [22], [5] or on a multi-objective optimization

problem as in [10]. Even if more scalable than the static

response selection approach, the dynamic one also exposes an

evident scalability problem, as the administrator must identify

a score (or the attributes scores) for all the considered response

actions with respect to all the considered attacks. None of

the considered works, with the exception of [18], take into

consideration the system state, which connects the attack with

the response actions. With a model composed by attack-related

events, system states and response actions, the administrator’s

focus shifts from the static attack-response mapping to the

appropriate attack response description based on the effects

on the system state. As a result, it is possible to identify

a set of target system states and the manual mapping done

by the system administrator can be replaced by an automatic

IRS, able to compose a set of atomic response actions into a

complex response policy or plan. The latter drives the system

towards the set of desired target states [3]. Response actions

composition also means response actions re-use: instead of

developing a single monolitic action for each attack typology,

different combinations of the same atomic actions can be

exploited to deal with different attacks, effectively, including

unknown attacks.

In this paper we introduce a Markov Decision Process

(MDP) based controller able to compose response policies

using atomic response actions. Such a controller is the core of

the proposed autonomic IRS.

A. System Overview

Generally, an autonomic system is composed of two dif-

ferent subsystems [24]: a controller that implements the self-

management algorithms and a controlled subsystem concerned

with the domain functionality. In the proposed IRS, the con-

troller subsystem is designed according to the MAPE-K loop

for autonomic systems [14], as shown in Figure 1. Specifically,

the Monitor phase relies on a set of Network IDSs which

analyze the network traffic of the controlled subsystem and

on Host IDSs properly deployed on the controlled systems

that analyze host attributes such as system loads and system

loggers. The event generated by the IDSs are then collected

and analyzed by the IDS Event Manager component, which

implements the Analyze phase of the MAPE-K loop. Its task is



Fig. 1. High-Level System Architecture

to correlate and merge the data flows coming from the IDSs

in order to produce a single, added value data flow to feed

to the Plan phase. This is implemented by a controller based

on a MDP. Given the inputs of the IDS Event Manager and

the current system state, its task is to compute the Response

Policy needed to drive the managed system towards the target

state. Specific actuators on the controlled system named Policy

Executors are in charge of applying the computed response

policy, implementing the Execute phase of the MAPE-K loop.

Finally, the Knowledge phase is contained into the MDP-

based Controller. The latter, in fact, starts its execution with an

initial parametrization provided by a domain expert, but then

it continuously improves its behaviour by learning from the

results of response actions applied on the managed system.

B. Contributions and Organization

In this paper we focus on the design, realization and evalu-

ation of the MDP-based controller introduced in Section I-A.

Its main characteristic is the ability to compose a sequence of

atomic response actions to form an optimal response policy

able to drive the system to the target state. Specifically, we

provide the complete model and methodology needed to build

MDP-based controllers for security planning. We show that,

when a small degradation of the reward is allowed, such

approach can be applied to large systems. Furthermore, we

experimentally show that the adoption of long-term response

policies can be more effective than the adoption of single

response actions: in the best execution scenario we were able

to reduce the threat resolution time by 56%, while in the

worst case the threat resolution time was the same. All the

experiments have been carried out using real-world attacks to

exploit real vulnerabilities (more details on Section V-A). Note

that the design and realization of the IDS Event Manager and

the system learning behaviour of the controller are out of the

scope of the present work.

The paper is structured as follows: in Section II we describe

several related works. The complete model design and method-

ology of the MDP-based controller is described in Section III;

in Section IV we compare the performances of an optimal

and a sub-optimal MDP solvers; in Section V we describe the

realized testbed and we provide detailed experimental results.

Finally, in Section VI we draw the conclusions.

II. RELATED WORKS

In this section we describe relevant works in the field

of dynamic IRS. Specifically, we are interested in response

selection methodologies. All the considered works try to make

a balance between the positive and negative effects that a

response could have on a running system and most of them

try to model the system not by considering its internal status,

but only considering the services it delivers and the inter-

dependencies among them.

In [23] the authors represent a computer system by model-

ing: (i) the executed services; (ii) the system users; (iii) the

network topology; (iv) the firewall rules. The model is used

to find, given a dependency tree between the entities, the best

firewall rule to apply in case of a detected attack. The best

response is selected considering that very often the application

of an additional firewall rule may interfere with the normal

system operativeness. Therefore the response which provides

the lowest penalty to the normal operativeness is applied.

In [20] the authors extend [23] by evaluating benefits and

risks of a reaction, but also potential damages caused by the

attack in case of no reaction. Penalty costs are modeled as

Service Level Agreement costs related to the importance of

a provided service. The response selection strategy proposed

by REASSESS [20] considers both the positive and negative

effects that the execution of an action could have on a running

system. Such effects are included in a global index that is used

to evaluate all the response actions, possibly using historical

effectiveness data. Once all the actions are evaluated, an

ordered list of response actions is produced and the most

effective response action is selected to be applied to the

system. However, the proposed approach neither consider the

current system state, nor the explicit evaluation of different

criteria with subsequent specific optimization.

In [19] the authors propose to compute a response policy

rather than just a single response action to face an ongoing

attack. The proposed model accounts for statically defined

sequences of response actions which are statically mapped to

the managed attacks. A dynamic behavior of the IRS controller

is introduced in the run-time evaluation of the policies: while

executing a given policy, the controller uses a threshold in

order to decide whether to execute the next action in the policy

or to stop its execution.

In [22] the authors map the attack detected by the IDS to

an Attack Graph (AG), which is used to model multi-stage

attacks. Based on the AG, defense points are assigned to each

node and their negative impact is calculated independently of

other responses. Finally, a Pareto-set is generated based on the

response positive effect and negative impact values.

The work presented in [18] is the most similar to ours.

The authors use a Bayesian Direct Acyclic Graph (DAG)

to model a probabilistic attacker behavior. The DAG nodes

describe system assets and system asset dependencies, while

edges represent possible exploitation paths. System assets are

described by the means of binary attributes, that characterize

them as active or disabled. From the defense point of view, the

authors propose binary response actions, that is, actions that

are able to deactivate or activate a certain service or asset. The

actions are evaluated according to the Confidentiality Integrity

Availability (CIA) triad, but since all the considered actions



deal with services or machines deactivation, their evaluation

always increase confidentiality and integrity and always pe-

nalize the overall system availability. The response selection

problem is formulated by building a Partially Observable

MDP (POMDP) from the DAG and by selecting the optimal

single response action according to an evaluation with infinite

look-ahead, aimed at minimizing the overall execution cost.

The entire work is built on the assumption that a partial

shutdown is preferred to a scenario in which the attacker has

partial control of the system. Even if this is a big step ahead

towards dynamically building response policies to protect

computer systems, we believe that an IRS should also be able

to produce non-disruptive actions on the controlled system.

Non disruptive behavior can be achieved either by developing

specific and monolithic responses for every considered attack

or by cleverly composing and reusing a set of fine-grained

response actions.

III. SYSTEM MODEL

The system model is based on a MDP. A MDP is a

controlled stochastic process satisfying the Markov property

with rewards assigned to state transitions. A solution to a

MDP is a policy, mapping states to actions, that (perhaps

stochastically) determines state transitions to maximize the

reward according to a set of evaluation criteria [16].

Let S be the finite set of states; let A be the finite set of

actions available to the MDP agent.

Let Pa(s, s′) = P[St+1 = s′|St = s, At = a] be the

probability that the response action a ∈ A in state s ∈ S
at time t will lead to state s′ ∈ S at time t + 1.
Let Stgt ⊆ S be the set of target states. Formally, f ∈ Stgt

is a state where the controller does not take any action, i.e.,

P[At = a|St = f ] = 0 ∀a ∈ A, ∀f ∈ Stgt. We assume here

that there always exists a sequence of actions that can take the

system from any non-target state to a target state.

Let R be the reward function R : S × A → R. Rewards

are computed using the Simple Additive Weighting (SAW)

technique [12], that is: R(s, a) =
∑

c ws,ces,a,c, where es,a,c

is the normalized evaluation of response action a under

criterion c in state s and ws,c is the weight of criterion c
in state s.
Let γ be the discount factor, 0 ≤ γ < 1 and let Gt =∑K

k=0
γkRt+k be the discounted reward from time t + 1 to

time t + K . If K → ∞, Gt is the unbounded reward, that is,

the reward with infinite look-ahead.

M = 〈S, A, Pa, R, γ〉 is the MDP underlying the controller

of the IRS. The aim of the MDP is to find an optimal policy π,
that is, a sequence of actions that optimally drives the system

from the current state to the set of the target states Stgt.

We use a Object Oriented MDP representation (OO-MDP)

[8], and each state is characterized by a number attributes.

Specifically, states are composed by joining 2 macro-attributes:

(i) the attack vector P and (ii) the system variables V . The

former contains as many variables as the number of attacks

detectable by the IDSs and each variable Pi represents the

probability value computed by the Event Manager that the

system is currently under attack i. The latter represent the

current system status.

A. States Characterization

The system model presented in Section III is general and

can be specialized in different ways according to the specific

system that has to be protected. We implemented it considering

7 different attacks and 11 system attributes. The attacks are

modeled by the attributes Pscan, Pvsftpd, Psmbd, Pphpcgi,

Pircd, Pdistccd, Prmi, which represent the probability as

computed by the Event Manager that the controlled system is

being attacked, respectively by: a portscan, an exploit on the

vsftpd daemon, an exploit on the smbd daemon, an exploit

on the execution of PHP as a CGI application, an exploit on

the ircd daemon, an exploit on the distccd daemon and

finally and exploit on the rmi Java daemon. More details

about the considered attacks are described in Section V-A.

Furthermore, we consider the following system attributes:

• firewall ∈ {true, false} represents whether the system

firewall is active.

• {blocked ips} represents the set of currently blocked

source IP addresses from the firewall of the considered

system.

• {flowlimit ips} represents the set of currently

throughput-limited source IP addresses.

• alert ∈ {true, false} represents whether the system

administrator has been alerted about the ongoing attack.

• {honeypot ips} represents the set of IP addresses whose

traffic is currently being redirected to an honeypot.

• logV erb ∈ {0, 1, 2, 3, 4, 5} represents the currently con-

figured logging verbosity of the applications installed on

the considered system.

• active ∈ {true, false} represents whether the consid-

ered system is currently active and serving requests or if

it has been shut down.

• quarantined ∈ {true, false} represents whether the

considered system is currently active and serving requests

or if it has been quarantined (i.e., it has been isolated from

the network).

• rebooted ∈ {true, false} represents whether the consid-
ered system has ever been rebooted during the execution

of the current policy.

• backup ∈ {true, false} represents whether the consid-

ered system has ever been backed up during the execution

of the current policy.

• updated ∈ {true, false} represents whether the soft-

ware installed on the controlled system is updated.

B. Reward Function

We define the reward function as a penalty score on the

considered actions. The reward function evaluates the response

actions according to the following criteria:

• Response Time R(x) ∈ R. This criteria represents the

time needed to apply the response x.
• Cost C(x) ∈ R. This criteria represents the economic

cost of applying the response x.



• Impact index I(x) ∈ [0, 1]. This criteria represents the

impact index of the response x on the normal system

operativeness. The lower its value is, the lower is the

impact on the system.

We define the following reward function:

R = −wr

R(x)

Rmax

− wc

C(x)

Cmax

− wiI(x) (1)

where wr, wc, wi ∈ [0, 1] are custom weights used to balance

the importance of the criteria in the multicriteria optimization

problem.Rmax and Cmax represent respectively the maximum

response and the maximum cost over all the considered

response actions and are used to normalize their values.

C. Response Actions

In order to avoid activating potentially disruptive response

actions when the system is not under severe attack, we

introduce two thresholds on the attack probability attributes,

namely T1 and T2. Thus, given an attack probability p, it can
belong to one of the following 4 stages:

• p < T1. At this stage the IDSs have detected an insignif-

icant anomaly that should be considered as noise and no

response actions should be triggered;

• T1 ≤ p < T2. At this stage the IDSs have detected

a significant anomaly, which cannot be classified as an

attack. However, the system can start planning some

response action in order to prevent possible attacks;

• T2 ≤ p < 1. At this stage the anomaly detected by the

IDSs is considered to be an unidentified attack (p < 1),
therefore the response plan generated by the IRS can only

contain generic responses;

• p = 1. The attack has been identified and a specific

response plan can be computed.

In the following we describe, for space reasons, only some

of the response actions that our IRS prototype is able to apply

on the controlled system. For each of them, we will provide

a description of its behavior and of the response time R, cost

C and impact I attributes, needed to compute the expected

reward when planning the optimal policy. These attributes are

configurable by the system administrator to reflect the actual

defended system. Each response will also be characterized by

pre-conditions and post-conditions. The former are conditions

that identify a subset of the states in which the actions can be

executed; the latter are used instead to compute the state in

which the system will be after the execution of the considered

action. Eventual dependencies between response actions are

not directly modelled: indeed, using pre-conditions, we are

able to model the eventual dependency of a response action on

a given subset of states, which in turn could imply that some

dependent actions have been executed prior to the execution

of the current action. Table I summarizes response time, cost

and impact attributes for all of the considered actions.
a) Firewall Activation: The response aim is to start the

system’s firewall in case it was not started previously. Its
characteristics are:

• Reward Attributes: R = 2, C = 1, I = 0

• Pre-Conditions: (Pscan ≥ T1 ∨ Pvsftpd ≥ T1 ∨ Psmbd ≥ T1 ∨
Pphpcgid ≥ T1 ∨ Pdistccd ≥ T1 ∨ Prmi ≥ T1 ∨ Pircd ≥ T1) ∧
¬firewall ∧ ¬quarantined ∧ active ∧ logV erb > 0

• Post-Conditions: Prob = 1, firewall = 1

This action can be executed when at least one entry of the

attack probability vector P is greater than T1, the firewall

itself has not been activated yet, the system is active and it

has not been quarantined and the log verbosity is at least equal

to 1. The resulting state after the execution of the action is

identical to the current state, but with the firewall attribute
set to 1. The reason why a firewall could be inactive is that, as

described in Section V, we are modeling an HPC system. In

such systems usually the personal firewall is disabled to avoid

any possible overhead.
b) Block Source IP badIP: This response configures

the system’s personal firewall in order to drop IP packets
originated by the IP badIP. Its characteristics are:

• Reward Attributes: R = 1, C = 3, I = 0.3
• Pre-Conditions: Pscan ≥ T2∧firewall∧¬quarantined∧active∧

badIP 6∈ blocked ips ∧ alert ∧ logV erb > 1
• Post-Conditions: Prob = 1, blocked ips = blocked ips ∪

{badIP}, Pscan = 0

This action can be executed when the probability of having

detected a port-scan attack is greater than or equal to T2 and

the firewall has been previously activated. Furthermore, it is

required that the system is active and that it has not been

quarantined and that its log verbosity is at least equal to 2.

Finally, the system administrator must have been previously

alerted and the IP address of the attacker must not yet belong

to the blocked IPs set. The resulting state after the execution

of the action is identical to the current state, but with the

badIP included into the set of the blocked IPs and with Pscan

attribute set to 0. Setting the probability of an attack to zero for

the next state means that the expected result in executing the

given action is to certainly stop the attack. We set the impact

to 0.3 because we consider that the observed source IP could

be a router executing a source NAT. Therefore, blocking the

IP would result in blocking the attacker as well as potentially

non-malicious clients masqueraded by the source NAT.
c) Flow Rate Limit badIP: This response configures the

system’s personal firewall in order to limit the traffic rate of
IP packets originated by the IP badIP. Its characteristics are:

• Reward Attributes: R = 3, C = 1, I = 0.2
• Pre-Conditions: Pscan ≥ T1∧firewall∧badIp 6∈ flowlimit ips∧

¬quarantined ∧ active ∧ logV erb > 0
• Post-Conditions:

8

>

<

>

:

Prob = 0.5, limited ips = limited ips ∪ {badIP},

Pscan = 0

Prob = 0.5, limited ips = limited ips ∪ {badIP}

This action can be executed when the probability of having

identified a port-scan attack is greater than or equal to T1 and

the firewall has been previously activated. Furthermore, it is

required that the system is active and that it has not been

quarantined and that its log verbosity is at least equal to 1.

Finally, the IP address of the prospective attacker must not

belong to the set of the flow rate limited IPs. This action

can drive the system to two different resulting states, with

probability 0.5 each: in one case the action is able to stop the

prospective attacker and therefore we have Pscan = 0 together



with the attacker IP address included in the set of flow rate

limited IPs. In the other case the action is unable to stop the

attacker and therefore we only obtain to limit the flow rate of

the attacker’s IP by adding it to the set of the flow rate limited

IPs.
d) Close Network Connection: This response closes an

unauthorized TCP connection or UDP flow between any pair
(lhost:lport, rhost:rport). Its characteristics are:

• Reward Attributes: R = 1, C = 1, I = 0.2
• Pre-Conditions: ((Pvsftpd = 1 ∨ Psmbd = 1 ∨ Pphpcgid = 1 ∨

Pdistccd = 1 ∨ Prmi = 1 ∨ Pircd = 1) ∨ rebooted ∧ (Pvsftpd ≥
T2 ∨ Psmbd ≥ T2 ∨ Pphpcgid ≥ T2 ∨ Pircd ≥ T2 ∨ Pdistccd ≥
T2 ∨ Prmi ≥ T2)) ∧ ¬quarantined ∧ active ∧ alert ∧ rhost 6∈
blocked ips ∧ rhost 6∈ honeypotted ips ∧ logV erb > 2

• Post-Conditions:
8

>

<

>

:

Prob = 0.1, Pvsftpd = 0, Psmbd = 0, Pphpcgid = 0,

Pircd = 0, Pdistccd = 0, Prmi = 0

Prob = 0.9, no changes

This action can be executed immediately when at least one

of the vulnerability has been exploited or it can be executed

after a system reboot when at least one of the vulnerability has

a probability greater than T2 of being exploited. The system

is required to be active and the remote host must not belong

neither to the set of the blocked IPs nor to the set of the

honeypotted IPs. Finally, the administrator must be alerted and

the log verbosity must be greater than 2.

The Close Network Connection response action is very

greedy for the MDP model because it is characterized by very

low response time, cost and impact attributes, yet without pro-

viding good chances of successfully dealing with the ongoing

attack. Therefore it could happen that in finding an optimal

response policy the Close Network Connection response action

could be selected tens of times, without having a positive

effect on the system. For this reason, we generally introduce a

dynamic reward computation based on an exponential increase

of the penalty score of the considered response action every

time that the action is actually executed. This dynamic reward

computation is optional and can be activated on selected

response actions. In our case it has been activated only on

Close Network Connection.

D. Termination Function

We identify the set Stgt of target states by defining a

termination function T : S → {true, false}. We allow the

policy plan to terminate when the system has reached either

a state of controlled anomaly or a state of fully clean system.

We define a controlled anomaly state Sano as:

Sano = {s ∈ S|(Pscan < T2∧Pvsftpd < T2∧Psmbd < T2∧Pphpcgi <

T2∧Pirc < T2∧Pdistcc < T2∧Prmi < T2)∧(Pscan ≥ T1∨Pvsftpd ≥

T1 ∨ Psmbd ≥ T1 ∨ Pphpcgi ≥ T1 ∨ Pirc ≥ T1 ∨ Pdistcc ≥

T1 ∨ Prmi ≥ T1) ∧ (firewall ∧ blocked ips = ∅ ∧ flowlimited ips 6=

∅∧honeypot ips = ∅ ∧ logV erb > 0∧ active∧¬quarantined)}. We

consider a system to be in a controlled anomaly state when

the threshold T2 is never hit by any of the considered attack

probabilities and there is at least one attack probability greater

than or equal to the threshold T1. The anomaly is controlled

because we impose as a requirement that there must be at least

one entry in the set of the flow limited IPs.

Action Name Response Time (sec) Cost Impact

Generate Alert 1 1 0

Firewall Activation 2 1 0

Block Source IP 1 3 0.3

Unblock Source IP 1 3 0

Flow Rate Limit 3 1 0.2

Unlimit Flow Rate 3 1 0

Redirect to Honeypot 3 3 0.1

Un-honeypot 3 3 0

Increase Log Verbosity 2 1 0.05

Decrease Log Verbosity 1 1 0

Quarantine Host 5 5 1

Manual Resolution 3600 200 0

System Reboot 60 6 0.7

System Shutdown 30 6 1

Backup Host 3600 10 0.1

Close Network Connection 1 1 0.2

Software Update 600 300 0.1
TABLE I

ACTION PARAMETER SUMMARY

We define a fully clean system state Sclean as:

Sclean = {s ∈ S|Pscan < T1∧Pvsftpd < T1∧Psmbd < T1∧Pphpcgi <

T1 ∧ Pirc < T1 ∧ Pdistcc < T1 ∧ Prmi < T1 ∧ blocked ips =

∅ ∧ flowlimited ips = ∅ ∧ honeypot ips = ∅ ∧ logV erb = 0 ∧

active ∧ ¬quarantined}. A clean system state is represented

by an attack probability vector whose values are all under the

T1 threshold and there are no firewall limitation configured.

We have therefore: Stgt = Sano ∪ Sclean. We propose this

specific termination function to provide an example of the

entire lifecycle of the IRS, including both defense actions

(e.g., Block Source IP, Software Update) and release actions

(e.g., Unblock Source IP, Decrease Log Verbosity): in a real

environment constraints such as no firewall rules configured

are unlikely to appear.

IV. PERFORMANCE EVALUATION

The typical methods used to find the optimal policy π
that maximizes the total reward of an MDP require the

manipulation of a value function. A value function represents

the expected objective value obtained following policy π from

an initial state s ∈ S. One of the most used algorithm

to compute the value function is the Value Iteration (VI)

[4], which produces successive approximations of the optimal

value function until the expected objective value is stable for

all the MDP states. Unfortunately, even if each iteration can

be performed in O(|A||S|2) steps [13], the number of states

composing the MDP grows exponentially with the number of

the defined attributes, thus limiting the applicability of the

approach only to small systems. For this reason, in order

to show the applicability of our model to large systems,

we compare the performances (planning time and obtained

reward) of the VI algorithm with the performances of the

sub-optimal rollout-based Monte-Carlo algorithm named UCT

introduced in [15]. The comparison will show that, for systems

where a small reward degradation is acceptable, the planning

time can be improved by more than 3 orders of magnitude.

The algorithms were applied in order to find a policy for a

system composed by up to 1000 boolean state attributes and up



Fig. 2. Planning Time Comparison

Fig. 3. Rewards comparison

to 1000 response actions. Each action is bound to one attribute

and it changes its boolean value when executed, in order

to generate the full state space. The termination condition

is based on an additional termination attribute that can be

set to true by any action with probability 1/10. The reward

function assigns the reward −1 to the actions with an even

index and −2 to the actions with an odd index. All the tests

have been executed on a single compute node of the Shadow

supercomputer at Mississippi State University, characterized

by 20 cores and 512 GB of RAM. Anyway, the number of

cores does not affect the overall planning time because both

the algorithms have a single-thread implementation.

Figure 2 compares the planning time of the VI algorithm

configured with γ = 0.9 with the UCT algorithm configured

to perform 10, 20 or 30 rollouts and with a look-ahead of 10.

Results highlight that VI’s planning time quickly becomes high

even for systems with only 50 state attributes and 50 response

actions. By contrast, the UCT with 10 rollouts algorithm is

able to plan a policy in less than 2 seconds for a system with

1000 state attributes and 1000 response actions.

Figure 3 compares the obtained rewards. As expected, the

average reward obtained by VI is close to −10, specifically
−10.07 because it always choose the best response actions.

By contrast, the UCT algorithm with 30 rollouts produces an

average reward of −10.86.

V. EXPERIMENTAL RESULTS

In this section we describe the experiments we carried out

to validate the effectiveness of the proposed approach. We set

up a system composed by: an HPC cluster based on Rocks

[2], a Snort Intrusion Detection System (IDS) [21] and the

Fig. 4. Testbed Architecture

IRS controller described in Section III. The output of Snort

is therefore considered as if it was the output of the Event

Manager component described in Section I-A.

Figure 4 represents the architecture of the testbed, which

is composed by a single physical machine which hosts two

separate virtual networks, namely: (i) Cluster Internal Virtual

Network and (ii) IRS Virtual Network. The former is attached

to all the compute nodes of the Rocks cluster, while the latter

is attached to Snort and to the IRS. The two networks are

constituted by two different layer-2 segments and, while the

first is also bridged to physical WAN interface eth0, the IRS

Virtual Network is instead completely isolated.

We run on the physical host two instances of the tool

daemonlogger, which is used to mirror the traffic from the

Cluster Internal Virtual Network and from eth0 to the IRS

Virtual Network. Traffic mirroring is accomplished at layer 2

and it is one-way, that is, frames captured on eth0 or on

the Cluster Internal Virtual Network are forwarded to the IRS

Virtual Network but not vice-versa.

We simulate a scenario in which an attacker already

compromised one compute node in the cluster and he is

trying to exploit vulnerabilities exposed by another com-

pute node. To this end, we set up 5 compute nodes:

compute-0-0-1 to compute-0-0-3 are healthy VMs;

compute-0-0-0 is the VM compromised by the attacker

and finally metasploitable is a vulnerable, but not yet

compromised compute node. The compromised compute node

is a VM in which we installed the Metasploit software [17]. We

use this VM to scan the internal network and to launch attacks

towards the vulnerable VM metasploitable. The latter is

a publicly downloadable VM that exposes 6 vulnerabilities, as

described in Section V-A.

A. Vulnerabilities

In this section we describe the six vulnerabilities that we

consider in the experiments. We chose these vulnerabilities

among the others because the software exposing them is

freely available and ready to be exploited by downloading the

metasploitable VM from the Metasploit web site 1.

1) OSVBD-73753. vsftpd on vsftpd.beasts.org Trojaned

Distribution. The backdoor payload is constituted by a

1https://information.rapid7.com/metasploitable-download.html



”:)” smiley face in the FTP username and the result is

a TCP callback shell.

2) CVE-2007-2447. There is a command execution vulera-

bility in Samba versions 3.0.20 through 3.0.25rc3 when

using the non-default ”username map script” config-

uration option. By specifying a username containing

shell meta characters, attackers can execute arbitrary

commands.

3) CVE-2012-1823.When run as a CGI, PHP up to version

5.3.12 and 5.4.2 is vulnerable to an argument injection

vulnerability: in case an unescaped ’=’ is passed in the

HTTP query string, the string is split on ’+’ (encoded

space) characters, urldecoded, passed to a function that

escapes shell metacharacters (the ”encoded in a system-

defined manner” from the RFC) and then passes them

to the CGI binary.

4) CVE-2010-2075. UnrealIRCd 3.2.8.1, as distributed on

certain mirror sites from November 2009 through June

2010, contains an externally introduced modification

(Trojan Horse) in the DEBUG3 DOLOG SYSTEM

macro, which allows remote attackers to execute arbi-

trary commands.

5) CVE-2004-2687. distcc 2.x, when not configured to

restrict access to the server port, allows remote attackers

to execute arbitrary commands via compilation jobs,

which are executed by the server without authorization

checks.

6) CVE-2011-3556. The vulnerability is due to the default

configuration of the RMI Registry and RMI Activation

services allowing the loading of classes from a remote

URL. A remote unauthenticated attacker can leverage

this vulnerability by sending a crafted RMI message to a

target server. In an attack scenario where code execution

is successful the injected code will be executed within

the security context of the target service.

All these vulnerabilities can be exploited by using already

developed exploits available in the Metasploit DB.

B. Snort Configuration

Given the architecture of the testbed, Snort will work as an

asynchronous IDS. That is, it will be able to detect malicious

traffic, but not to stop it. Snort provides three rules sets, named

respectively: Community Rules, Registered Rules, Subscribed

Rules. Community rules are publicly available; registered rules

are freely available upon registration; subscribed rules are

instead available buying a specific Cisco subscription plan.

We configured it to use both the Community and Registered

rules and it was able to detect out-of-the-box only one of

the six exploits that we launched from compute-0-0-0

to metasploitable, specifically CVE-2012-2335. In order

to create new Snort rules to handle unidentified attacks, we

analyzed with the tool Wireshark the network traffic between

compute-0-0-0 and metasploitable during the at-

tacks to find characteristic signatures. For space reasons, in

the following we describe only one representative rule among

the five rules added to Snort.

• OSVBD-73753 Exploit Analysis. As described in OS-

VDB, the exploit tries to log into the FTP server by

using a username ending with the string ”:)”. We therefore

added the following rule in the Snort DB:

alert tcp any any -> any 21 (msg:"vsFTPd

backdoor detected"; sid:80000000;rev:1;

classtype:suspicious-login; content:"|3a 29|";)

This rule generates an alert when the payload of TCP

segments coming from any source IP and any source

port and directed to any destination IP and port 21

contain the hexadecimal string: ”3a 29”, corresponding

to the ASCII characters: ”:)”.

Please note that the added rules are not intended to be used

in a production environment: specifically, the presented rule

would trigger a suspicious login alert every time a ”:)” string

is found in the payload of any analysed packet, thus generating

a lot of false positives.

C. Simulation of the Controller Behavior

We ran three different sets of simulations: the first set was

carried out in order to show how the controller is able to

compute optimal policies to respond to a portscan attack; in

the second set the system is subject to a vulnerability exploit;

finally, in the third set, we show the controller behavior when

used to face multiple concurrent attacks. All the simulations

have been repeated 10000 times, with the controller configured

to use the VI algorithm and the reward function configured to

optimize the response policy exclusively either on response

time, or cost or impact. For each experiment we report the

overall average resolution time, cost and impact attributes,

each one computed, respectively, as average sum of the

response times, costs and impacts of the actions included in the

response policy. Since the produced policies are probabilistic,

we also provide the confidence intervals of each attribute. It

is important to note that, given the probabilistic nature of the

planned policies, they represent different possible evolutions

of the system. For space reason, we limit our discussion only

to the most likely system evolution scenarios and we will

show results only for the resolution time metric, but the same

considerations apply for the other cases. Furthermore, we show

how the γ discount factor, which dictates the short- or long-

term nature of the policy, impacts the obtained results.

1) Portscan Attack: a portscan attack is usually one of

the first steps an attacker carries out in order to discover

the vulnerabilities of a system. It is a really common attack

and it does not necessarily imply that the system has been

compromised. Rather it must be considered as a first alarm in

order to prepare the system to a prospective future attack. For

this reason, the model has been designed so that not all the

response actions are available to counter the portscan attacks:

disruptive actions such as System Reboot, Quarantine Host

and so on are only applied when there is the evidence of an

exploited vulnerability, as specified in the action preconditions

described in Section III-C.

Figure 5 compares the average resolution times obtained

with the different optimization methods. The lowest resolution



Fig. 5. Average Portscan Resolution Time

time has been achieved when the controller was set to optimize

on response time and with γ = 0.9. Generally speaking,

the results obtained with γ = 0.9 are always better than

the results obtained with γ = 0. This means that when

the controller is configured to produce long-term policies, it

always provides better results. Specifically, when the controller

was set to optimize on response time and γ = 0.9, it

produced 6 equivalent policies, and the most likely was:

generateAlert, increaseLogVerb, activateFirewall, increaseLogVerb,

blockSrcIP, unblockSrcip, decreaseLogVerb, decreaseLogVerb. We

can split such a policy in three blocks: (i) preparation, (ii)

response and (iii) conclusion. The preparation phase regarded

the alert generation, the increase of the verbosity of the logging

system and the firewall activation. The core response action

is blockSrcIp, which configures the firewall to drop incoming

packets from the IP that is generating the malicious traffic.

Finally, conclusion actions are carried out to restore the system

to normal conditions by unblocking the source IP address and

by decreasing the log verbosity. The action increaseLogVerb,

as well as the action decreaseLogVerb, have been added twice

to the response policy because the action blockSrcIp needs a

log verbosity at least equal to 2. The other 5 generated policies

in this case only differ in the order of the actions planned for

the preparation and conclusion phases.

When the controller was configured to optimize on response

time, but with γ = 0, it produced 20 different policies.

Even if the most likely was the same that was computed

in the γ = 0.9 case, in this case a lot of locally optimal,

but globally sub-optimal policies have been planned. In fact,

setting γ = 0 results in a greedy approach, which is not

necessarily optimal in a long-term perspective. Indeed, besides

the most likely policy, the controller planned a lot of policies

similar to: generateAlert, increaseLogVerb, increaseLogVerb, in-

creaseLogVerb, increaseLogVerb, increaseLogVerb, activateFirewall,

blockSrcIP, unblockSrcip, decreaseLogVerb, decreaseLogVerb, de-

creaseLogVerb, decreaseLogVerb, decreaseLogVerb. As described

in Table I, the Firewall Activation and Increase Log Verbosity

actions have both the same response time. Therefore, after

having selected the fastest action (Generate Alert), since in

the resulting state the action Block Source IP is unavailable

because it first needs the firewall to be activated, the greedy

approach is not able to distinguish between the Firewall

Activation and Increase Log Verbosity because they both have

a response time equal to 2. The choice between them is

therefore probabilistic with 1/2 probability each and it might

Fig. 6. Average Vulnerability Exploit Resolution Time

happen that the controller chooses five times in sequence to

increase the log verbosity, even if a log verbosity equal to 2

is sufficient for the execution of the main action blockSrcIP.

2) Vulnerability Exploit: a vulnerability exploit happens

when an attacker successfully manages to breach a system by

exploiting an exposed vulnerability. Contrarily to the portscan

attack, most of times it implies that the system has been

compromised. In this case we try to respond to the attack

with all the set of actions. However, the Block Source IP,

Flow Rate Limit and Redirect to Honeypot are not able to

solve the problem because the exploitation of the considered

vulnerabilities opens a reverse shell in which the compromised

host directly connects, as a client, to the machine of the

attacker. Since most firewalls are stateful, we modeled such

actions so that they are not able to solve the problem because

in the real system they would not affect already established

connections. However, it is possible to tailor the controller

behavior by just modifying the pre-conditions and the post-

conditions of the aforementioned actions in the model.

Figure 6 compares the average resolution times and con-

fidence intervals obtained with the different optimization

methods. The lowest resolution time, along with the smallest

confidence interval, has been achieved with the controller set

to optimize on response time and with γ = 0.9. Specifically,
when the controller was set to optimize on response time

with γ = 0.9, the most likely policy was: increaseLogVerb,

generateAlert, activateFirewall, increaseLogVerb, increaseLogVerb,

increaseLogVerb, increaseLogVerb, systemReboot, backup, software-

Update, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, de-

creaseLogVerb, decreaseLogVerb. We can split such a policy in

five blocks: (i) first preparation; (ii) first response attempt; (iii)

second preparation; (iv) second response attempt; (v) conclu-

sion. It is worth noting how the failure in solving the problem

with the first attempt leaded to a countermeasure escalation

for the second attempt. Specifically, the first preparation phase

increased the log verbosity to the maximum level (required to

issue a system reboot) and activated the firewall. The first

response attempt is the system reboot which, according to

the model, has a 0.3 probability of successfully countering

the currently ongoing attack. In this case the system reboot

was not able to successfully face the attack and therefore

the controller planned a software update in order to remove

the vulnerability at its roots. The second preparation phase is

therefore the execution of a backup before the software update.

Finally the software update solved the problem and conclusion



Fig. 7. Average Combined Attack Resolution Time

actions have been selected to complete the policy.

When the controller was set to optimize on response time,

but with γ = 0, the most likely policy was: generateAlert, in-

creaseLogVerb, activateFirewall, increaseLogVerb, increaseLogVerb,

increaseLogVerb, increaseLogVerb, systemReboot, quarantineSystem,

backup, manualResolution, decreaseLogVerb, decreaseLogVerb, de-

creaseLogVerb, decreaseLogVerb, decreaseLogVerb. The first steps

are the same as in the case with γ = 0.9. Even if from the

first selected response actions it could seem that the controller

is doing a good job, this merely is a coincidence: the first

preparation actions are the same only because those are the

actions with the lowest possible response time. After the sys-

tem reboot, following the greedy approach, the action with the

lowest response time has been selected (quarantineSystem).

This action has not been taken before because it first requires

a system reboot. After the system has been quarantined, the

only available choices were Backup or manualResolution, both

of them with the same response time. The former was wrongly

selected (it does not actually solve the problem and it is only a

prerequisite for the softwareUpdate action) and only as a last

resort the manualResolution action has been chosen.

3) Combined Vulnerability and Portscan Attack: in this

section we will describe the policies planned by the controller

when the controlled system was subject to a combined flow of

portscan and vulnerability attacks. In this test all the response

actions have been used to counter the ongoing attack.

Figure 7 compares the average resolution times and con-

fidence intervals obtained with the different optimization

methods. The lowest resolution time, along with the smallest

confidence interval, has been registered when the controller

was set to optimize on response time and with γ = 0.9. Specif-
ically, when the controller was set to optimize on response

time, with γ = 0.9, the most likely policy was: generateAl-

ert, increaseLogVerb, activateFirewall, increaseLogVerb, blockSrcIP,

increaseLogVerb, increaseLogVerb, increaseLogVerb, systemReboot,

backup, softwareUpdate, unblockSrcip, decreaseLogVerb, decreaseL-

ogVerb, decreaseLogVerb, decreaseLogVerb, decreaseLogVerb. We

can split such a policy in seven blocks: (i) first preparation;

(ii) first response attempt; (iii) second preparation; (iv) second

response attempt; (v) third preparation; (vi) third response

attempt; (vii) conclusion. It is worth noting how this time the

countermeasure escalation occurred twice. In fact, this policy

contains three response attempts for the ongoing attacks. In

detail, the first preparation phase activated the firewall and

increased the log verbosity to the minimum level required to

block the source IP address. The first response attempt is the

configuration of the firewall to block the IP address originating

the malicious traffic. Even if this response, according to the

model, is able to effectively protect the system from the

portscan attack, it does not address the ongoing vulnerability

exploit. The second defence attempt begins by increasing the

log verbosity to its maximum level, required for the system

reboot. Unfortunately, as in the previous case, the system

reboot has a low probability of successfully countering the

vulnerability exploit attack, therefore a third response attempt,

consisting in a software update preceded by a system backup,

has been planned by the controller. This last response attempt

was actually able to face the ongoing attack and, finally, the

controller selected the response actions needed to restore its

standard functionality level.

When the controller was set to optimize on response

time, but with γ = 0, the most likely policy was: gener-

ateAlert, increaseLogVerb, activateFirewall, increaseLogVerb, block-

SrcIP, increaseLogVerb, increaseLogVerb, increaseLogVerb, system-

Reboot, quarantineSystem, backup, manualResolution, unblockSrcip,

decreaseLogVerb, decreaseLogVerb, decreaseLogVerb, decreaseL-

ogVerb, decreaseLogVerb. Comparing this policy to the most

computed one in the γ = 0.9 case, it is easy to note the

greedy behavior: the first four blocks of the policy are exactly

the same because the globally optimal path matches with

the greedy path. However, after the system reboot, instead

of executing the most time consuming backup and then the

less time consuming software update, the policy preferred to

take immediately the less time consuming action, that is, to

quarantine the system. Unfortunately, at that point, the only

further action that it could take was the manual resolution.

VI. CONCLUSIONS AND FUTURE WORKS

During the last decade a number of IRSs have been

proposed in order to face the ever growing frequency and

complexity of attacks directed to computer systems. All the

proposed approaches, however, only considered either a static

mapping of the best response action to the currently detected

attack or the dynamic evaluation of the available response

actions according to a set of pre-defined attributes. As a con-

sequence, they were only able to produce optimal short-term

response policies composed by a single response action. Since

this single action had to be resolutive for the ongoing attack,

all the response actions had to be designed and developed

as monolithic applications or functions, therefore becoming

hardly reusable to counter attacks different from the one they

have been designed for.

In this paper we introduced a MDP-based controller for an

autonomic IRS. Its novelty resides in the planning of long-term

response policies by composing atomic response actions. This

long-term planning exploits the concept of system state, which

decouples the attacks from the responses. This decouplement

makes it possible for the system administrator to focus on the

description of the attacks and of the responses as effects on the

system state, rather than on the attack-response bindings. As

a consequence, there is no more need for monolithic response



actions expressly thought to face specific attacks, but the

already existing atomic actions can be composed in order to

face known and, possibly, unknown attacks.

We provided a complete overview of the model and of

the methodology of the proposed controller, together with a

detailed description of the testbed used to test its features. We

showed that, when a small reward degradation is acceptable,

the proposed approach can be applied to large systems. We

experimentally proved its effectiveness using real-world attack

scenarios. Specifically, experimental results show that long-

term planned policies always provide better results than the

short-term ones and the threat resolution time can be reduced

up to 56% in the considered scenario.

The main limitation about the applicability of the proposed

approach in practice still remains the initial work that has to

be carried out by the system administrator in (i) capturing

the minimal set of system attributes required, (ii) describing

the effects of the attacks on the system attributes and (iii)

describe the effects of the responses on the system attributes.

Even if the amount of work is reduced in comparison to

the attack-response mapping (it is O(|Att| + |A|) instead of

O(|Att| × |A|), where |Att| is the number of considered

attacks), it probably requires a more skilled system admin-

istrator. For this reason, as a future work, we plan to realize a

meta-model in which we will define standard components and

connections that could be used by the system administrators

to visually design the model of their system. Having such a

meta-model will enable the development of standard attacks

and response libraries that, integrated with the personalized

system model, will allow the IRS to provide response policies

tailored for the specific system.

At this time the optimal response policies are computed

by maximizing a reward function based on a weighted sum

of normalized criteria. However, we plan to introduce a

constraint-based optimization problem, useful to model for

instance thresholds on the maximum resolution time or on

the maximum allowed cost. Furthermore, since the produced

policies are based on a probabilistic evolution of the system,

it is important to establish a feedback loop between the

controller and the managed system, in order to check whether

the current system state corresponds to the planned one and

eventually to update the action’s post-condition probabilities

according to the real system evolution. The current work is

aimed at producing reactive policies, that is, policies that

defend the system after the attack has been detected. We

plan to introduce proactive response policies using Multi-

Agent competitive MDPs modeling an attacker-IRS game to

predict the future attacker’s behavior. Moreover, we plan to

consider non-deterministic MDPs [9] in order to produce a

set of near-optimal decision policies from which the system

administrator could pick the best one according to his/her

personal knowledge.
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