

Development of a Manufacturability Assessment Methodology and Metric

Manufacturability Assessment Knowledge-Based Evaluation

MAKE

Tonya G. McCall, Emily Salmon and Larry Dalton

ERDC

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE

Outline

- Intro and Background
- Methodology
- Case Study Overview
- Benefits to Customer

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Project Team "Working Group"

- Research team with 180 combined years of industry experience.
- Areas of Experience:

Aerospace Automotive

- all-terrain vehicles
- consumer road vehicles
- military vehicles
 Consumer & Personal

Care Products

Healthcare

Electronics

Electronic Test Equipment Elevators

Mission Context

Resilience

Lifecycle Cost

Tradespace

Industrial Parts

Logistics Medical Devices Musical Instruments Networks Office Furniture Plant Equipment Quality Assurance Residential Appliances Shipbuilding Transportation Utility

Big Data Manufacturability Reliability Affordability

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

IS = R

MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Connecting to the ERS Tradespace

What is MAKE?

- Manufacturability ease in which a component or product can be manufactured.
- Assessment detailed review of how the design impacts manufacturing.
- Knowledge-Based judgment based assessment by subject matter experts (SMEs).
- Evaluation identification of cost drivers and prescriptive measures to improve manufacturability.

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Big Data

Reliability

Affordability

Manufacturability

What is the need for MAKE?

Product Cost vs. Phase of Product Life, D.M. Anderson 2014

ERDC

Mission Context Resilience Lifecycle Cost Tradespace Improvements in cost, design, and manufacturability of the product

- Risk mitigation
- Reduction in time-to-market
- Provide mechanism for trade off analysis

6

"Potential" Metrics During the Product Life Cycle

(ref: Defense Acquisition Life Cycle Chart (DoD Directive 5000.02, 2015)

MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Framework for Manufacturability Assessment

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Judgment Based Assessment

- Proper execution of the MAKE assessment requires input by subject matter experts (SME) pertaining to the aspects of manufacturing specified in the matrix in relation to a particular engineering designed product.
- A SME is a person who is generally recognized as an authority in a particular field by peers/ colleagues who are also knowledgeable in that field.

A SME's Role

INPUTS

Evaluate:

- Bill of Materials
- Experience/Body of Knowledge
- Design Data and Characteristics

Diagnosis:

- Best Practices
- Body of Knowledge Prescription:
- Best Practices
- Body of Knowledge

OUTPUTS

Evaluate:

- What are the critical aspects of the design?
 Diagnosis:
- How do the critical aspects of design interact with the aspects of manufacturing?
 Prescription:
- What are the recommendations to improve manufacturability?

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Affinity Diagram Exercise

Grouped ideas were translated into the following:

Development of Key Elements

The assessor's intent would be to <u>understand the impact</u> of characteristics of the "design" on particular areas of "manufacturing"?

Evaluation Phase

Manufacturability Interaction Matrix

- Understand "impact of the design" on "particular aspects of manufacturing"
- ► Original matrix was 15 x 9 but was reduced after 1st case study due to overlap of the aspects of design and manufacturing
- ► Shows the interactions (X) between the "aspects of design" and the "aspects of manufacturing".

Aspect of Design Aspects of Mfg (AM)	Mate	ial product and	tuine on part cer	Inetry
Process	x	x	x	
Process Capability	Х	Х	Х	
Supply Chain	Х	Х	Х	
Equipment/Tools	Х	Х	Х	
Facility	Х	Х	Х	
Labor	Х	Х	Х	
Quality	X	Х	Х	
EHS	X	Х	Х	
Ergonomics	X	Х	Х	
Capacity and Scalability	x	x	х	
Maintainability	X	X	Х	

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Evaluation – Rating Scales

SME Rating system* (1 – 100) based on the following criteria:

Color	Rating	Description
Red	1 - 60	High concern significant issues, stop and evaluate
Yellow	61 - 85	Medium concern, some issues (additional build time, extra resources, and special tooling, etc. may be required), proceed with caution
Green	86 - 100	Low concern, very few issues, proceed

* Based on prior work with a large defense contractor – needs to be further validated with subsequent research

Evaluation Phase

MAKE Tool

+	Process Capability	+	Supply Chain/MHTP	+
	0 1	87 100 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 	88 100 90 100
+	Facility	+	Labor	+
88 100 50 50 100	0 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 80 90 100	0 0 0 10 20 20 20 20 20 20 20 20 20 2	91 100 90 100
+	EHS	+	Ergonomics	+
100 1 · · · · · · · · · · · · · · · · · · ·	0 0 10 20 30 40 50 60 70	84 100 T T T T 80 90 100	0 	98
		$ \begin{array}{c} $	$\begin{array}{c} \hline \\ \hline $	$ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

16

UNIVERSITY

Diagnosis Phase

Understand cost drivers and areas of risk.

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Diagnosis Phase

Investigate into specific part #s with lower scores ultimately pursuing root causes.

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Diagnosis Phase

Dive deeper into **PMI** to understand the impact of the design on particular aspects of manufacturing.

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Prescriptive Phase

Example of a typical recommendation

Concern	Recommendation		
Standardization of fasteners	 Various different fasteners used within the assembly requiring the operator to use multiple types of tools. Evaluate the fasteners and standardize across the assembly 		
Jse of a socket that touches the resistor.	 Adhere to design for manufacturability guidelines – design must account for tooling needed for manufacturing and assembly process. If design cannot be changed to accommodate tooling, specify tools in mfg that accommodate the 		

tooling, specify tools in mfg that accommodate the design concern. In this case, use thin walled sockets or specify the use sockets with protective coating.

ERDC

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Prescriptive Phase

- Recommendations to improve the manufacturability scores
- Qualify these based on effort and risk to the company

Effort

Mission Context Resilience Lifecycle Cost Tradespace

Case Study

- R&D company (contractor to DoD) preparing to enter lowrate production stage of product manufacturing
- Focus of the team was to review CAD drawings and physical prototype to provide client with a manufacturability assessment of the product
- Long term strategy for increased production rate and/or transition to commercial manufacturing
- Study conducted by SME's from the MAKE team.

Big Data Manufacturability Reliability Affordability

22

Evaluation

- Two products were evaluated: Product A (main product), and Product B (accessory to Product A)
- A total of 32 parts included in the assessment
- Consisted of injection molded parts, fabricated metal parts, MIL-SPEC hardware and connectors, wiring harnesses, circuit boards with modules

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

*only Product A will be discussed in this presentation

Mission Context Resilience Lifecycle Cost Tradespace

Diagnosis – Product A Part 1 deep dive

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Prescription Phase – Product A

Со

- Recommendation matrix (included in final client package) addresses 158 concerns
- SME team evaluated the effort associated with each recommendation.
- Prioritization of the recommendations was provided.

4	t	
	Priority 1: 18	Priority 3: 15
	High Concern Low Effort	High Concern High Effort
ncern		
	Priority 2: 26	Priority 4: 99
	Low Concern Low Effort	Low Concern High Effort

Effort

ERDC

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

Recommendation Summary

Product	Score	# of concerns	# of recommendations	Agreement*
А	74.7	158	80	67%
В	82.9	69	49	66%

* Based on feedback from case study client as results were presented. This information will be verified/updated after additional review of the assessment details by the client.

Benefits of Structured Manufacturing Assessments Throughout the Product Lifecycle

- Better determination and mitigation of risks
- More consideration of manufacturing issues earlier in the design phase and throughout the design review process
- Reduction of costs throughout the product lifecycle
- Better decision making (mfg processes, suppliers, etc.)
- More considered Make/Buy Supply Chain Decisions
- More concise determination of TRL & MRL Status

Mission Context

Lifecycle Cost

Tradespace

Resilience

- Provides approach for producibility analysis in support of AS6500
- Enhanced resilience of product

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.

Big Data

Reliability

Affordability

Manufacturability

Acknowledgements

- This material is based upon work supported by the U.S. Army TACOM Life Cycle Command under Contract No. W56HZV-08-C-0236, through a subcontract with Mississippi State University, and was performed for the Simulation Based Reliability and Safety (SimBRS) research program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Army TACOM Life Cycle Command.
- This research is also partially supported by Mississippi State University, the Center for Advanced Vehicular Systems Extension, and the Institute for Systems Engineering Research.

RDC

Mission Context Resilience Lifecycle Cost Tradespace

MISSISSIPPI STATE UNIVERSITY CENTER FOR ADVANCED VEHICULAR SYSTEMS EXTENSION

Thank you!!

Mission Context Resilience Lifecycle Cost Tradespace

Big Data Manufacturability Reliability Affordability

30