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H I G H L I G H T S

• An extended implementation of
the Inductive Design Exploration
Method for multilevel robust design
of hierarchical materials.

• The IDEM framework is scripted
via Python (pyDEM) to allow for
widespread adaption and further
alterations/modifications.

• Extended for disjoint and noncon-
vex feasible design spaces that satisfy
ranged sets of performance require-
ments.

• Two test cases demonstrate the
capability of pyDEM: (i) four-level
UHPC panel, and (ii) WEDM process
of titanium.
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A B S T R A C T

The emergence of multiscale design of materials and products has necessitated development of inductive
robust design methods to rapidly develop and deploy new material systems. In addition, practical appli-
cations require robust designs which ensure performance goals are satisfied while accounting for model,
noise, and control factor uncertainties. Recognizing the utility of a robust platform for design exploration,
the Python Design Exploration Module (pyDEM) has been developed. The purpose of this work is to present
this improved, generalized implementation of the Inductive Design Exploration Method (IDEM) to support
integrated multiscale materials, process, and product design. The capabilities of pyDEM are highlighted and
demonstrated via two test cases: (i) four-level Ultra High Performance Concrete (UHPC) panel and (ii) wire
electric discharge machining (WEDM) process of titanium.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As outlined by the Materials Genome Initiative (MGI) [1], new
and improved material deployment can take 20 years or more from
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discovery to commercial production. Materials development typically
employs trial-and-error strategies, along with empirical relation-
ships, and a sequential design and deployment protocol with limited
iteration due to a reliance on experiments. Olson [2] distinguished
inductive and deductive decision paths commonly employed in
materials development. The deductive path is referred to as a cause-
and-effect path (bottom-up experiments and/or models) and the
inductive path is the goals-means (top-down) path. Whereas scien-
tific experiments and modeling protocols seek to determine accurate
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deductive paths, these approaches are too “hit and miss” to effi-
ciently search inductive decision paths for process-structure and
structure-property relationships that satisfy multiple performance
requirements. A significant thrust of MGI seeks to utilize approximate
inverse methods with computational tools to produce concurrent and
iterative design processes.

One such computational tool is Dream.3D, which provides a
full featured environment for synthetic microstructure instantiation
based on information obtained from materials characterization. This
open-source tool provides a more comprehensive suite of tools than
most small research labs could maintain while allowing for cus-
tom functionality via a plugin architecture [3]. Free, open source
tools such as Dream.3D are invaluable to increasing the rate of sci-
entific and engineering advances by reducing redundant software
development and allowing for more rapid community adoption of
new problem-solving techniques. This paper introduces a new, open
source software package to improve a previously developed induc-
tive robust design approach [4] for materials that satisfy specified
ranged sets of performance requirements.

Robust designs should be considered more desirable than sin-
gle point, optimal solutions due to the uncertainties associated with
design variables, models, and propagation across multiple levels
of design. Three robust solution categories describe performance
obtained by minimizing variation of different elements of the solu-
tion space: (i) Type I robust solutions [5] seek minimization of
variation due to noise factors, (ii) Type II robust solutions [6] seek
minimization of variation due to control factors, and (iii) Type III
robust solutions [4] seek minimization of variation due to the uncer-
tainty inherent to the model. Each of these types of uncertainties
can occur in robust design of materials and processes, and must be
considered in providing decision support.

A multi-level, robust design method that considers uncertainty
propagation, such as that arising in material design problems incor-
porating process-structure-property relationships, is the Inductive
Design Exploration Method (IDEM) [4]. IDEM is a recursive process
that links multiple design levels to determine the combinations of
input parameters that provide robust solutions to the ranged set
of requirements specified for top-level performance parameters. As
illustrated in Fig. 1, the experimental or model-based mappings in
steps (i) and (ii) are performed in a bottom-up manner, while the
top-down, inductive compromise selection of solutions is under-
taken in step (iii). Accordingly, IDEM combines, in a practical way,
bottom-up projections with imposition of top-down design search
for feasible regions that satisfy ranged sets of performance require-
ments at the top level. This approach is compelling since process-
structure and structure-property relations are typically highly com-
plex, nonlinear, non-equilibrium, and high dimensional in nature and
therefore are not amenable to direct inversion. IDEM emphasizes
bottom-up mappings of process-structure and structure-property
relations, along with projection of uncertainty of these mappings.
Then, the top-down design search in step (iii) can be undertaken
in the context of robust multi-objective approach, presenting the
designer with a Pareto front of solutions. The concept is straight-
forward, and examples will be used as a means to clearly convey
the methodology later in this paper as well as the in-depth example
given by Ellis and McDowell [7].

For m objective functions, performance parameters may be con-
sidered as the feasible space in m-dimensions for the top design level
p = l. At each level p, a three-step process is performed to deter-
mine the feasible region at the p − 1 level: (i) the p − 1 level is
sampled at multiple nominal input configurations x̄, (ii) each x̄ is pro-
jected onto the p level as a range of outputs determined by the input
and mapping function uncertainties, and (iii) this output range (and
associated x̄) is either accepted or rejected based on an error mar-
gin defined with regard to the bounds of the feasible region at level
p [4,8,9]. The accepted nominal inputs are considered to be feasible

points, and the rejected inputs are infeasible with respect to robust
satisfaction of the performance requirements. The feasible space is
some minimum hypervolume of unknown shape (or multiple, dis-
joint shapes) which contains all feasible points and does not contain
any infeasible points. The newly determined feasible region of inputs
in level p − 1 may be used to repeat the aforementioned process to
determine the feasible region of the p − 2 level of design and so on,
until feasible regions are found for input variables associated with
mappings at all levels p ∈ [1, l]. It is entirely possible that no feasible
points exist to meet a given set of performance requirements (in this
case expressed as property targets). In such cases, we consider design
exploration as a feasibility study that facilitates either reframing of
the performance requirements or the need to assess and compare
competing design system alternatives.

The goal of this work is to contribute a Python-scripted frame-
work for IDEM and to document its underlying functionality. This
software package, pyDEM (Python Design Exploration Module) [10],
implements a fully general IDEM instantiation that allows for the
linkages of n input variables, m objective functions, and l levels
or mappings, where n, m, and l are positive integers. The specific
contributions from this work in developing pyDEM are threefold:
(i) development of an efficient, open-source implementation of
IDEM, (ii) improved feasible space representation relative to the
initial conception of IDEM [4], and (iii) generalized input defini-
tions. Each of these improvements will be discussed in detail and
the improved functionality of this implementation demonstrated
through the use of two test cases: (i) a four-level ultra-high per-
formance concrete design scenario [7] and (ii) optimization of wire
electric discharging machining (WEDM) of titanium [11]. The result-
ing software produced from this work is provided with an MIT
License on GitHub as part of the MATIN platform [10].

2. Methods

In IDEM, a mapping or projection step must be performed to
relate every nominal input in the p − 1 level to a region in the p out-
put level. The projection to the output space from a nominal input
x̄ to nominal output ȳ is represented by ȳ = 〈f1(x̄), f2(x̄), . . . , fm(x̄)〉,
where m is the number of output functions, i.e., the dimension of
the output space. For example, these mappings can consist of experi-
ments, data correlations, analytic theory forms, or surrogate models.
Each mapping function fi is bounded by a set of functions such
that fi,lower(x) ≤ fi(x) ≤ fi,upper(x), thus incorporating uncertainties
from the regression process. These bounds can be established, for
example, using Gaussian pseudolikelihood statistics or other means.
For m output functions, an m × 3 matrix Z can be constructed to
describe the nominal and bounding functions with components zij

being the jth bounding function of the ith output dimension. A hyper-
rectangle approximation of the boundary of the mapped output
region can thus be constructed using Eq. (1). Observed noise in data
used to produce bounding functions implicitly incorporates Type I
robustness. Type II robustness is incorporated into the variation of
the input parameters Dxk along each kth input dimension. Type III
robustness is incorporated via the inclusion of zij bounding functions.
Together these values describe the total assumed variability in the
ith dimension Dyi i.e.,

Dyi =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣max
j

(
zij (x̄) +

∣∣∣ ∂zij
∂xk

Dxk

∣∣∣
)

− ȳ
∣∣∣∣ , bi > ȳi∣∣∣∣min

j

(
zij (x̄) −

∣∣∣ ∂zij
∂xk

Dxk

∣∣∣
)

− ȳ
∣∣∣∣ , bi ≤ ȳi

(1)

The boundary point bi ∈ S where S is the (m − 1)-dimensional
boundary of the feasible space Y, is selected to minimize the dis-
tance required to reach the boundary along the ith dimension (Fig. 2).
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Fig. 1. Comparison of deductive and inductive design methods as applied multiple levels of design with associated uncertainties.

pyDEM selects bi using a binary search along the path
〈
ȳ, max (Si)

〉
.

This binary search is implemented as an improvement (and an addi-
tion) to the initial proposal of the IDEM by Choi et al. [4], which
utilized a gridded space with no explicit representation of the asso-
ciated hypervolume. In that work, computation of the distance to the
boundary was performed along the nearest neighbor points within
this discretized space. While this is sufficient in the case of a fine dis-
cretization of Y, expensive objective functions may limit the density
of points relative to the output uncertainty, Dyi. Note also how b∗

i
may be selected instead of the exact bi in the event that the bound-
ary is represented by a linear approximation, and how the nearest
boundary point projected along i = 1 would indicate the distance to
the boundary is less than the output deviation Dy1.

Fig. 2. Schematic of the Hyper-Dimensional Error Margin Index (HDEMI) showing the
range of outputs for a nominal input value and distance computations for the nominal
boundary S (solid) and discretized boundary (dashed).
Source: Adapted from [4].

The next step in IDEM is the computation of an error margin to
determine if the output range for x̄ satisfies the performance require-
ments, and thus may be considered a robust solution. The error
margin must have a consistent threshold for accepting or rejecting
a potential solution and be defined for all i dimensions (where i is
a positive integer) in the input and output spaces as explained by
Choi et al. [4]. Several error margins are currently implemented in
pyDEM, the first of which is the Hyper-Dimensional Error Margin
Index (HDEMI) which is defined by

HDEMI =

⎧⎨
⎩

min
i

[ ‖ȳ−bi‖
Dyi

]
, for ȳ ∈ Y

−1, for ȳ /∈ Y
(2)

HDEMI < 1 indicates that the distance to the boundary is less
than the output range in one or more dimensions, i.e., a portion
of the output range lies outside the feasible region. In the current
implementation, the distance computation is only performed from
the centroid of the predicted output space for each dimension in the
m-dimensional output space. This can lead to erroneous results for
feasible regions that contain sharp features near the nominal output,
e.g., Fig. 2. Eliminating this scenario requires parameterization of the
search for the closest bi over the range of outputs yj�=i, a potentially
costly procedure which must be repeated for all i ≤ m dimensions.

While HDEMI is useful in that it provides both a threshold for
accepting a robust solution, as well as a relative measure of robust-
ness, it also tends to be computationally expensive in implementa-
tion due to the necessity of computing the distance to the nearest
boundary within the feasible space. In addition, as previously men-
tioned, less complete implementations of HDEMI may mistakenly
quantify some infeasible regions as feasible. We propose the use
of two new, simpler metrics to determine the robustness of can-
didate solutions which address the aforementioned shortcomings
of HDEMI. Both metrics are Boolean in nature and evaluate to True
only if all provided points in a list are within the feasible space. The
first of these metrics, the Valid Output Region (VOR), examines the
vertices of the output region to see if all vertices are within the fea-
sible space. If yes, the solution may be considered robust; if not,
the solution is not considered robust. The second metric, the Max-
imum Independent Variation (MIV), is similar to the HDEMI in that
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only the perturbation of a single output parameter is considered at
a time, i.e., only the midpoint of each face of the output region is
examined. Both the MIV and VOR methods are significantly more
computationally efficient than the HDEMI. Boundary intersection for
distance computation will require ray tracing over the discretized
feasible space, thus runtime will depend on the number of samples
taken as discussed in the following section. By contrast, MIV is only a
single evaluation per face or 2m, while VOR will scale poorly at 2m but
still tend to result in fewer evaluations than HDEMI while m < 7. For
example, in the UHPC Level 1 test case, HDEMI takes 97 s, VOR 17 s and
MIV 16 s for a gridded exploration space of 13,600 points. As in HDEMI

computation, there is the potential for the finite number of samples
in both MIV and VOR to erroneously conclude that an output region
is robust. It should be verified that the output regions produced by
potential uncertainties will be smaller than any “holes” or interior
infeasible regions (for cases where Y is not simply connected) within
the feasible space prior to utilizing the design exploration methods
in pyDEM.

2.1. Hull of feasible points

When searching for a robust solution, it is often necessary to iden-
tify the boundary of the feasible space. In the case of linked scales,
the level of refinement for the feasible space in the m-dimensional
output space will impact the value of the HDEMI since computation
depends upon the boundary point bi located in each dimension. This
discretization error is inherent in multiscale design and is distinct
from the aforementioned Type I, II, and III robust design strate-
gies since it cannot be considered an input, noise, or modeling
uncertainty.

In a previous version of this algorithm [7], a Delaunay Triangu-
lation (convex hull) has been used to describe this feasible space
for further exploration at subsequent design levels. This approach
neglects potential concavities and multiple, disjoint domains which
may compose the multidimensional feasible space. A method of
determining a concave and/or disjoint volume from a supplied point
cloud is desired. Of particular note are a-shapes which may be used
to remove a simplex (generalization of triangle or tetrahedron to
n-dimensions) from the set of simplices defining a convex hull to
better represent the underlying concavity of a point-cloud [12]. This
method is predicated upon the ability to discern a threshold for the
a parameter (maximum edgelength of a simplex) where simplices
with a > athresh are not included in the a-shape. This threshold
is usually set via the assertion of human intuition, and thus, not
applicable to automated design algorithms.

Instead, the structured nature by which the feasible space is
explored in pyDEM may be used to develop an accurate definition
of the boundary surface. A potential feasible point is explored at
each unique combination of input variables. These points form the
vertices of hyperrectangular regions bounded in each dimension by
consecutive inputs for the corresponding input variable. For each
hyper-rectangular region, or “cell”, two possibilities exist: (i) all ver-
tices were found to be feasible points, in which case any point within
the cell is also within the feasible space; or (ii) at least one vertex
was found to be infeasible, in which case a convex hull adequately
describes the feasible and infeasible regions within the cell. It is triv-
ial to determine if a query point lies within the cell for the first case
since the cell boundaries are hyperplanes with normal vectors along
each orthogonal basis vector with known intervals. The second case
may be further subdivided into cases where a boundary point was
discovered between the infeasible and feasible vertices, or where
such exploration was not performed. In either case, a concave hyper-
volume cannot arise since all points are located along the cell edges.
Ultimately, this approach reduces, but does not eliminate, the dis-
cretization errors associated with the representation of the surface
S that encloses a feasible region Y. Fundamentally, this error is still

limited by the initial discretization of the feasible space and thus rep-
resents a classic computational efficiency trade-off of accuracy and
expense.

Runtime is reduced by use of a hashmap to look up the con-
stituent feasible and boundary points for a given cell index in O(1)
time. This requires O(k2d) storage for k points and d dimensions and
the local convex hulls may be dynamically computed in O(d2d) time
for d ≤ 3 and O([d2d]	d/2
) for d > 3 [13]. Interior, infeasible regions
are easily detected using ray-tracing within the discretized space.
Again, ordered structure allows for trivial traversal of the feasible
space. A feasible cell may be traversed with a single O(1) lookup and
the localized convex hull utilized to detect feasible boundary inter-
section for a cell with some non-feasible vertices as demonstrated in
Fig. 3. Finding the correct intersection is also O([d2d]	d/2
) [13]. Ray
tracing continues until the ray is stopped in the interior of a cell or
the edge of the explored space is reached. This ray-tracing allows for
easy computation of HDEMI and queries to determine if a region lies
within the feasible space. In addition, since only local information is
used to traverse the space, disjoint regions and holes are represented
within a single ConcaveBoundary object while providing the great-
est possible accuracy for a given discretization of the feasible space
exploration.

2.2. Generalized framework

To improve the overall utility of pyDEM, flexible inputs were
developed using the Object Oriented nature of Python. A summary
of the currently supported input features appears in Fig. 4. In this
work, functions and classnames from pyDEM will be referenced with
italicized text. Both discrete and continuous function inputs are sup-
ported via the AnonymousFunction class. AnonymousFunction objects
must be able to evaluate the nominal output ȳ and the output ranges
based on a nominal input x̄ and its uncertainty. Interpolation and
regression models can be directly applied by the use of a Numeric-
Function object. Partial derivatives for these numeric functions are
computed by the package numdifftools [14]. In addition, symbolic
equations are supported by a SymbolicFunction object which utilizes
the Sympy package [15]. Evaluation of the partial derivatives of a
symbolic function in Python is generally quicker than evaluating
numeric derivatives, and thus SymbolicFunction objects are generally
preferred over the NumericFunction objects. Discrete functions may
be defined using a custom AnonymousFunction which, e.g. use input

Fig. 3. Illustration of ray tracing to the nearest external boundary through two adja-
cent cells in the discretized feasible space with feasible query point �p and ray �r. Blue
circle points are feasible while black triangles represent the discovered boundary
between feasible and infeasible vertices whose x, y, and z points index the initially
provided vectors with i, j, and k respectively.



P. Kern et al. / Materials and Design 134 (2017) 293–300 297

Fig. 4. The various function types, feasible space boundary types, and input spaces available in pyDEM.

uncertainties and probability distributions to return an expected
outcome of the mapping function as Dyi.

Boundaries S of the feasible space Y and objective function
constraints are represented by Boundary objects. ConcaveBoundary
objects may represent simply connected, multiply connected, and
disconnected convex and concave hypervolumes as introduced in
the previous section. PrismaticBoundary objects represent a simple
hyperrectangle and are used in this text to provide the threshold
and ranged objective values for the examined test cases. Finally, Mul-
tipleBoundary objects represent combinations of boundary regions
via set operations: union, intersection, and difference. Recursive use
of these operations may define arbitrary feasible regions. Multiple-
Boundary objects are particularly useful in material design problems
because they can handle disjoint spaces. ConcaveBoundary objects
are created as the feasible space representation at each design
level in pyDEM and have functionality to identify and split dis-
continuous spaces. All Boundary classes implement the following
functions: (i) is_inner to determine if a queried point (or list of
points) lies within the represented hypervolume, (ii) bound_dist
to return the distance to the nearest boundary for both increas-
ing and decreasing directions along each dimension, as well as
(iii) find_boundary to the return the nearest boundary location
between two locations in the m-dimensional space.

In an effort to further reduce the total computation time, pyDEM
allows the user to define a sparse, n-dimensional input space based
on regions which are known a-priori to be infeasible. These points
should reflect realistic constraints on the range of input variables
(e.g., a machine will not run for specific combinations of input
parameters). A supplied Boundary object may be used to short cir-
cuit the error margin calculation by applying the is_inner function
of this input Boundary and not evaluating x̄ for which the result
is True. By not evaluating the robustness of x̄, computation of ȳ as
well as the creation of additional simplices (and potential evaluation
of additional simplices for concavity) are also not performed, thus
improving performance. Following boundary determination with the
reduced set of inputs, is_inner is computed for all simplex centroids,
as in the concavity check, and simplices intersecting the constraint
region are similarly excluded from the feasible region.

With the appropriate definition of the inputs, error margins,
boundary exploration, and volumetric representations, pyDEM logic
may be summarized in the following manner. The discretized input
space is explored for robust solutions based on the input feasible
region and error margin. Following the evaluation of this input space,

a binary search is used to determine the location of the feasible
region boundary located between pairs of satisfactory and unsatis-
factory (as determined by the robustness criteria) nominal inputs.
Finally, the volumetric representation of this feasible space is con-
structed as a ConcaveBoundary and returned for use in dependent
design levels.

Overall, codifying IDEM in Python resulted in an efficient, com-
pact code (approximately 700 lines excluding the substantial plot-
ting functionality) which should encourage rapid adoption of the
software and principles outlined in this work. The use of multi-
platform, free, open source software (FOSS) components has enabled
pyDEM to be a FOSS suitable for development and distribution on
multiple operating systems.

3. Test cases

Application of pyDEM is first demonstrated on the design of ultra-
high performance concrete (UHPC) material for a blast resistant panel
application. Design of specific attributes of material structure at vari-
ous length scales is pursued. These attributes include volume fraction
of porosity at the lm length scale, crack-bridging fibers at the mm
length scale, and panel geometry at the m length scale. Variables
that relate to material composition as inputs to the bottom level
process-structure mappings include volume fractions of silica fume,
cement, water to cementitious material ratio, and fibers. In addition,
the fiber pitch (twisted fibers) is a design variable. These design vari-
ables at various scales constitute a well-defined, 4-level test case.
Top level ranged sets of requirements are specified for quasi-static
tensile strength, energy dissipation density, and panel thickness. For
additional information on the material, design problem background,
and response surfaces used in this manuscript please refer to [7].

Blast panel resistance is computed as function of T◦, Edis, and the
design parameter tpanel (Table 1). Constraints on the performance
requirements specified at Level 4 are passed in as a PrismaticBound-
ary object with a minimum bound of 1.5 MPa-ms for the estimated
blast impulse loading survivable by the panel. The bounding matrix is
constructed from the estimated survivable loading z11 = −0.857 +
0.0262tpanel +6.51×10−4tpanelT◦+4.22×10−4tpanelEdis and the upper
and lower bounding functions from the fitting procedure z12 =
1.1z11 and z13 = 0.9z11. SymbolicFunction objects are used to define
these polynomial mappings. The resultant feasible space is convex;
thus, no differences in the boundary representation will occur due to
the concavity checks.
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Table 1
Input and output variables with limits for the UHPC case study.

Parameters Lower limit Upper limit Interval Units

Quasi-static tensile strength (T◦) 10 22 2 MPa
Energy dissipation density (Edis) 20 105 5 MPa-mm
Panel thickness (tpanel) 39 63 6 mm
Matrix tensile strength (ft) 5 12 0.5 MPa
Axial length per revolution (pitch) 6 36 3 mm
Fiber volume fraction (Vf) 0.5 2 n/a %
Water to cementitious material ratio (w/cm) 0.15 0.45 0.05 1
Volume fraction of pores (Vpore) 0.01 0.51 0.05 1
Mean pore radii (rpore) 0.1 30.1 5 nm
Curing temperature (Tcure) 20 90 n/a ◦C
Volume fraction cement (Vcem) 0.1 0.3 0.02 1
Volume fraction silica fume (VSF) 0.03 0.08 0.01 1

Panel design at Level 3 as function of the ft, tpanel, Vf, and pitch
is thus constrained by the selection of the Level 4 feasible space,
with Vf held at 0.019% to produce 3D (instead of 4D) plots and for
direct comparison with previous work [7]. The mapping functions
are z11 = Edis = 0.166 + 4320Vf − 62.4pitchVf, z21 = T◦ = 3.47 +
0.569(1 − Vf)ft + 4830 〈Vf − 8.66 × 10−3〉 pitch−0.937, and z31 = tpanel,
where 〈 〉 are Macaulay brackets signifying 〈x〉 = 0.5 (x + |x|). Fit-
ted functions were assumed to have a constant percentage of error
z12 = 0.9z11, z13 = 1.1z11, z22 = 0.75z21, and z23 = 1.25z21. Of par-
ticular interest, however, is the feasible space of Level 2. Since the
inputs to the Level 3 mostly represent the physical design parame-
ters, it is assumed that Vf and tpanel are selected such that the matrix
tensile strength ft ≥ 8MPa. This becomes the lone constraint on
the level 2 design space of rpore, Vpore, and w/cm with the bound-
ing functions z11 = ft = 0.177(99.3 (1 − Vpore) /

√
rpore (w/cm))

0.74,
z12 = 1.22z11, and z13 = 0.814z11. This design space is found to have
significant concavities, thus deviating from the convex representa-
tions employed in previous implementations of IDEM. The convex
representation will greatly overestimate the feasible space, as shown

in Fig. 5, which would lead to erroneous conclusions of robustness
for non-robust solutions in the dependent design level (Level 1).

The Level 1 design spac;e of VSF, Vcem, and w/cm is subject
to the objective functions z11 = w/cm, z21 = Vp = −3.98 ×
10−3 − 1.67 × 10−4Tcure + 0.201Vcem + 0.193VSF + 0.298w/cm −
7.61 × 10−4TcureVcem − 7.35 × 10−4TcureVSF − 1.98 ×
10−3Tcurew/cm − 0.315V2

cem − 0.558VcemVSF + 1.37Vcemw/cm +
1.08VSFw/cm − 0.165(w/cm)

2, and z31 = rpore = 70.9 − 0.76Tcure −
71.5Vcem − 91.1VSF − 16.8w/cm + 1.1TcureVcem + 1.33TcureVSF +
0.307Tcurew/cm − 31.9V2

cem − 309VcemVSF − 65.2Vcemw/cm −
64.5V2

SF − 78.3VSFw/cm. Functional uncertainties of 10% and 15%
were assumed, respectively. The robust outputs satisfying the
constraint of the Level 2 feasible for a matrix tensile strength of
ft = 8MPa and curing temperature (Tcure) = 90◦C are depicted for
two cases in Fig. 6. It is apparent that the Level 1 feasible space
as a function of these mappings is greatly restricted as the Level
2 bounds change from a convex to concave representation. Note
that both spaces share a common vertex in the far corner of Fig. 6,
however the translucent red surface (constrained by convex Level 2)

Fig. 5. Feasible space for Level 2 in terms of key material composition variables and pore size. Circles in blue are feasible, and black triangles lie on the boundary between the
feasible and infeasible spaces. The red squares would be erroneously included in a convex representation of this feasible space.
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Fig. 6. Level 1 UHPC feasible spaces as a function of concave and convex representations of the feasible space of Level 2. The results from the concave Level 2 representation are
a subset of the convex results, as indicated by the translucent blue surface being tinted magenta by the enclosing red translucent surface.

extends farther along all design variable axes, fully containing the
feasible space constrained by the concave Level 2 feasible space. The
magenta shading of this second surface is caused by the translucent
blue surface being interior to the translucent red surface.

To demonstrate design exploration and visualization of more than
three objective functions, a second test case of wire electronic dis-
charge machining (WEDM) process design was selected. Six input
variables and four response variables represent the design space of
WEDM of pure titanium [11]; the minimum and maximum values of
eachvariableusedfordesignexplorationareinTable2.Functionsrelat-
ingtheinputvariablestotheresponsevariablesmaybefoundinKumar
et al. [11]. Relatively conservative input and functional uncertainties
of 2.5% were used to reflect the best case regression errors.

Following pyDEM execution to determine the feasible space, visu-
alization is accomplished by displaying three-dimensional ‘slices’
holding the remaining parameters constant, as shown in Fig. 7.
Selected optimized solutions (40 and 43) from [11] are shown as a
green triangle and a red square along with the feasible input spaces
in Fig. 7a and b. The first such optimal solution is also robust, whereas
the second is not. Note how the visualization of the HDEMI values
yields insight to the 6D feasible space. For example, in Fig. 7a, the
majority of points are comfortably above the HDEMI = 1 bound-
ary threshold and no obvious pattern is formed. Contrast that with
the infeasible point in Fig. 7b which is clearly near two apparent
boundary faces formed by several points near HDEMI = 1. If such
a non-robust solution was to be selected by a simple optimiza-
tion the user may quickly find the machine to not satisfy one or
more of the performance constraints due to uncertainty of inputs
(machining parameters), inaccuracy of the fitted functions used for

Table 2
Input and output variables with limits for the WEDM case study.

Parameters Lower limit Upper limit Interval Units

Pulse on time (Ton) 112 120 2 ls
Pulse off time (Toff) 44 56 4 ls
Peak current (Ip) 120 200 20 A
Spark gap voltage (SV) 40 60 5 V
Wire feed (WF) 4 10 2 m/min
Wire tension (WT) 500 1400 300 g
Machining rate (MR) 0.395 1.28 n/a mm/min
Surface roughness (SR) 2.15 3.28 n/a lm
Dimensional deviation (DD) 140 165 n/a lm
Wire wear ratio (WWR) 0.048 0.107 n/a 1

optimization, or noise factors inherent in the system. For both of
these test cases with the listed intervals, it takes less than a minute
for the completion of the pyDEM algorithm.

(a)

(b)

Fig. 7. Illustration of two optimal points from [11] relative to the robust feasible space
for WEDM example problem. An optimal, robust solution (#40) is shown in a green
diamond (a), while an optimal, but non-robust, solution (#43) is shown as red square
(b). Design variables Ton = 112 ls, Toff = 44 ls, and Ip = 120 A for (a) and Ip = 180 A
for (b) are held constant for 3D visualization.
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4. Conclusion

This work introduced the Python Design Exploration Module
(pyDEM) as a generalized framework for exploring robust solutions
to problems involving materials and materials process design. The
contributions of pyDEM to the community include (i) open-sourcing
development of an efficient implementation of IDEM, (ii) improved
feasible space representation, and (iii) generalized input definitions
that allow for the use of a variety of datasets (Fig. 4). Documen-
tation of the programmatic implementation was provided to guide
potential users in determining if pyDEM is an appropriate tool for
their design exploration problems. A three step process for inductive
design was outlined in Section 2: (i) determine feasibility of gridded
input space, (ii) use iterative search methods to determine boundary
points between feasible and infeasible neighbors within the grid-
ded space, and (iii) represent the feasible space as a series of convex
hulls within the discretized space. Boundary objects (i.e., Concave-
Boundary, PrismaticBoundary, and MultiBoundary) were introduced
in Section 2.2 to handle generalities in the representation of hyper-
volume feasible spaces, while AnonymousFunction classes provide
generality to the objective functions for which a robust solution is
desired.

Finally, the utility of pyDEM has been demonstrated in Section 3
via two different design scenarios that encompass various aspects of
inductive design including the linkage of the multi-level UHPC mate-
rial model and the exploration of the high-dimensional input space
of WEDM.
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