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Abstract: While it is well known that rain may influence the performance of automotive LIDAR
sensors commonly used in ADAS applications, there is a lack of quantitative analysis of this effect.
In particular, there is very little published work on physically-based simulation of the influence of
rain on terrestrial LIDAR performance. Additionally, there have been few quantitative studies on
how rain-rate influences ADAS performance. In this work, we develop a mathematical model for
the performance degradation of LIDAR as a function of rain-rate and incorporate this model into
a simulation of an obstacle-detection system to show how it can be used to quantitatively predict the
influence of rain on ADAS that use LIDAR.

Keywords: perception in challenging conditions; obstacle detection and classification; dynamic
path-planning algorithms

1. Introduction

Among the many challenges involved in the development of safe, reliable advanced driver assist
systems (ADAS), sensing and perception in adverse weather remains one of the most difficult problems.
In fact, a recent article in Bloomberg magazine entitled “Self-Driving Cars Can Handle Neither Rain
nor Sleet nor Snow” claimed that “The ultimate hurdle to the next phase of driver-less technology
might not come from algorithms and artificial intelligence—it might be fog and rain [1]”.

The primary technical challenges associated with automated and autonomous driving in rain
come from the influence of rain on the vehicles sensors such as cameras and LIDAR. Although the
qualitative impacts of weather on these sensors has been studied for quite some time [2], there has
been surprisingly little progress in quantitatively predicting the impact of rain on LIDAR sensors
typically used in ADAS systems.

Such a model would be useful in both defining a performance envelope for ADAS systems and in
the development of weather-aware ADAS algorithms. Ideally, the model would depend on simple
environment parameters such as rain rate and simple sensor parameters such as laser power. While
recent measurements and a resulting empirical model of the influence of heavy rain on a Hokuyo
UTM-30LX-EW were published by [3], their work measured rain rates of 40.5–95.4 mm/h, whereas
naturally occurring rain rarely exceeds 25 mm/h. Therefore, the empirical model is not directly
applicable to other sensors at lower rain rates. It is more useful to have a physically-based model that
is relevant for a variety of realistic sensors and rain-rates.

More recently, ref. [4] published experimental results quantifying the influence of rain on the
reflected intensity of a Velodyne VLP-16 sensor. Even though the empirical results are again not
generally applicable to all rain rates and sensors, the results are useful in constraining the analytical
model developed in this work.

Perhaps the most detailed work on the influence of rain on LIDAR sensors is [5], which gave
quantitative predictions for the LIDAR range reduction as a function of rain rate and compared
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these to laboratory measurements. However, this model requires a detailed measurement of LIDAR
specifications and in fact used a LIDAR sensor which is not currently commercially available. Because
it is not often possible to easily acquire detailed internal specifications of a LIDAR sensor, a model is
developed in this work that uses a simple parametrization of the LIDAR sensor to make predictions of
the reflected intensity and range reduction caused by rain. The model is integrated into a physics-based
simulator for autonomous driving and several simulated experiments are performed. An ADAS
algorithm for obstacle detection is used to evaluate the performance reduction caused by rain in
a realistic test environment.

The following sections will discuss the materials and methods used for the experiments, including
a detailed description of the software (Section 2), followed by a presentation of the results of several
simulated experiments (Section 3). Finally, the consequences of the results will be discussed (Section 4)
followed by a brief conclusion to the paper (Section 5).

2. Materials and Methods

In the context of ADAS, light detection and ranging (LIDAR) refers to a broad category of sensors
that use reflected light to measure the geometry of the environment near the vehicle. While operating
principles can range from structured light [6] to amplitude modulation [7], the most commonly used
type of LIDAR sensors in automotive ADAS are time-of-flight (TOF) systems [8], which calculate
distance by accurately measuring the time it takes a reflected signal to return to the sensor. These
TOF LIDAR sensors have greater range than other types of LIDAR, which is of critical importance in
automotive ADAS. Therefore, in this work the influence of rain on TOF sensors will be modeled.

Operation of LIDAR in rain may have two consequences. First, the intensity of the signal reflected
from the target may be reduced due to scattering from rain droplets. Secondly, back-scatter from the
rain may result in a false positive detection from a rain droplet. Regarding false-positives, several
studies have found that given geometrical considerations [9] and scattering properties of rain [10],
false positives are very unlikely for modern automotive LIDAR sensors that are commonly used on
ADAS systems. Therefore, in this work a model of the intensity reduction, and corresponding range
reduction, caused by rain is developed.

2.1. Lidar Theory

The LIDAR equation for a target at a distance z from the sensor is [11]

Pr(z) = El
cρ(z)Ar

2R2 τTτR exp
(
− 2

∫ z

0
α(z′)dz′

)
(1)

where Pr [W] is the power received by the LIDAR sensor, El [J] is the laser pulse energy, c [m/s] is
the speed of light, ρ(z) is the back-scattering coefficient of the target, α(z′) is the scattering coefficient
of the rain along the path to the target, Ar [m2] is the effective receiver area, and τT and τR are the
transmitter and receiver efficiencies, respectively. This equation can be simplified by considering the
rainy atmosphere to be a homogenous uniformly scattering medium such that the integral in the
exponent is reduced to a constant. Additionally, neglecting the spatial variation of the hard target
and letting the sensor parameters be reduced to a single coefficient Cs = cEl ArτTτR/2, the simplified
LIDAR equation is then

Pr(z) =
Csρ

z2 e−2αz (2)

Finally, because Cs is a constant for a particular sensor, the relative sensor power Pn = Pr/Cs is
given by

Pn(z) =
ρ

z2 e−2αz (3)
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Most LIDAR specification sheets list the maximum range, zmax, of the LIDAR sensor in clear
conditions (α = 0.0) for a 90% diffusely reflecting surface (ρ = 0.9/π). In this case, the minimum
detectable relative power is estimated as

Pmin
n =

0.9
πz2

max
(4)

Equations (3) and (4) can be used to predict the intensity and range reduction for a TOF automotive
LIDAR sensor with only two parameters, the rain scattering coefficient, α, and the maximum range
of the LIDAR sensor for a 90% reflective target in clear conditions, zmax. The zmax parameter is
typically listed in LIDAR sensor specification sheets, but the rain scattering coefficient is not as easily
measurable. Therefore, the relationship between rainfall rate and the scattering coefficient is preferable.
Lewandowski et al. derive this relationship for optical and near-infrared (NIR) wavelengths (most
automotive LIDAR operate at NIR) and find it should follow a power law [12].

α = aRb (5)

where R is the rainfall rate in mm/h, α is the extinction coefficient, and a and b are empirical coefficients.
While [12] find values for a and b by fitting measurements from an aerial LIDAR sensor, for this work
it is more appropriate to use the measurements from terrestrial automotive LIDAR in the work of
[4] to estimate the values of a and b. In particular, Filgueira et al. quantified the influence of rain
on a VLP-16 sensor by measuring the reduction in reflected intensity as a function of rain rate. The
fractional reduction, δ, can be defined in terms of the relative intensity of the reflection as

δ = (P− P0)/P0 (6)

where P0 is the reflected intensity in the absence of rain. Substituting the model from Equations (3)
and (5), the fractional reduction for a given surface at a distance z can then be modeled as

δ = e−2aRbz − 1 (7)

Comparing this model to the intensity reduction values provided in [4], values of a = 0.01 and
b = 0.6 are found to give the best fit to the reported data. Therefore, the final model for the relative
intensity returned by the LIDAR as a function of rainfall rate is.

Pn(z) =
ρ

z2 e−0.02R0.6z (8)

The work of [4] also showed that in addition to reducing the intensity of the LIDAR return, the
presence of rain also introduces noise to the range measurement. Their measurements indicate that
there is not a strong dependence on the rain rate, and that almost all the errors are less than 2%.
Therefore, range errors are modeled by sampling from a normal distribution (N ) around the true range
with a standard deviation of σ = 0.02z(1− e−R)2 to determine the modified range, z′.

z′ = z +N (0, 0.02z(1− e−R)2) (9)

This noise equation has the property that the noise introduced by rain is zero when the rain rate
is zero, and the variance increases to a maximum of 2% of the measured range as rain rate increases.

2.2. Integration into a 3D Simulator

The goal of this work is to provide a predictive tool for evaluating the influence of rain on LIDAR
sensors in ADAS. In order to achieve this, the model developed in the previous section is integrated
into a 3D autonomous vehicle simulator that includes a detailed physics-based LIDAR simulation.
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This simulator is known as the Mississippi State University (MSU) Autonomous Vehicle Simulator
(MAVS), and previous work has shown that it accurately captures the physics of automotive LIDAR by
using ray-tracing in geometrically detailed environments and oversampling the laser beam to capture
divergence effects [13].

The rain attenuation model was integrated into MAVS using the following procedure (Figure 1):

1. The MAVS LIDAR simulation is used to calculate the returned range and intensity in the absence
of rain.

2. Equation (9) is used to calculate the new range rain-induced with error.
3. Equation (7) is used to calculate the reduced intensity value.
4. If the reduced intensity falls below the threshold value defined by Equation (4), the point is

removed from the point cloud.

Figure 1. Procedure for modifying LIDAR distances and intensities based on rain rate.

The MAVS was used to evaluate the LIDAR-rain interaction model in both simple test scenarios
and in more detailed outdoor environments, both of which are discussed in Section 3.

2.3. Maximum Range Experiments

In order to evaluate the validity of the proposed model in a controlled experiment, a simulated
test scene was created with large cylinders placed in an arc of increasing radius around the vehicle.
This setup provided near-continuous coverage of distance values from 10 m to 80 m, increasing in the
clockwise direction around the sensor. In the range experiment, a single scan of a Velodyne VLP-16 [14]
sensor was simulated, and the maximum returned range was recorded. The rain rate was increased
in the simulation and the experiment was repeated, developing a correlation between rain rate and
maximum range for this sensor. The results are presented in Section 3.

2.4. Obstacle Detection in a Realistic Scenario

Simulating the maximum returned range of a LIDAR sensor in a rainy environment provides
valuable information, but this information alone is not sufficient to predict the influence of rain on
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ADAS. Many environmental factors such as the reflectance properties of surfaces in the scene and the
geometric complexity of the scene also influence the performance of ADAS, and all of these factors
must be considered simultaneously in order to estimate how rain will affect the performance of ADAS
for a given environment and safety function.

A common safety function of ADAS is to provide obstacle detection and avoidance (ODOA), and
LIDAR sensors have proved to be a commonly used sensor in ODOA algorithms [15]. In order to
evaluate the influence of rain on LIDAR-based ODOA, a simple scenario was created in which an
obstacle was placed on a paved rural road. The obstacle was a concrete barrier about 1 m tall and 2 m
wide. The scenario is depicted in Figure 2. Note that the rendering method of the rain in MAVS is
similar to the method described in [16].

(a) (b)
Figure 2. (a) The ODOA test scenario in clear weather, rendered by MAVS (b) When raining
(R = 17 mm/h).

In this scenario, a vehicle with a top-mounted Velodyne HDL-64E [17] sensor drove toward the
obstacle, and a segmentation algorithm was used to calculate the location of all detected obstacles in
each scan. The segmentation algorithm was the Euclidean cluster extraction algorithm [18] provided
with the Point Cloud Library [19]. In the algorithm, the leaf size was set to 0.1 m, the cluster tolerance
was set to 1.0 m, and the minimum cluster size was set to two points. While this parametrization
tended to create a high number of small clusters, it also gave the highest likelihood of detecting the
obstacle at longer ranges.

The farthest distance in which the obstacle could be detected was recorded, and the experiment
was repeated with increasing rain rates. The results of this experiment are shown in Section 3.

3. Results

3.1. Maximum Range Experiments

The results of the maximum range experiments are shown in Figures 3 and 4. Two different target
reflectanc valus were measured for several different rain rates in a manner similar to the experiment
presented in [5]. Although the Velodyne VLP-16 sensor used in the simulations does not exactly match
the specifications of the sensor used in [5], comparison of Figure 4 to Figure 9 from [5] shows very
good qualitative agreement, demonstrating that the model derived in the previous section accurately
captures the salient aspects of LIDAR performance in rain as a function of rain rate. In particular,
the power-law reduction in reflected intensity (and corresponding reduction in range) is accurately
predicted by the model, as well as the overall magnitude of the measured range.
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(a) (b)
Figure 3. (a) Top down view of the LIDAR point cloud in the range test in clear conditions (b) When
raining (R = 17 mm/h).
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Figure 4. Decrease in max range for a simulated LIDAR as a function of rain rate.

3.2. Obstacle Detection in a Realistic Scenario

The results of the ODOA scenario are shown in Figures 5–7. Figure 5 shows the expected result
that the number of points returned for a scan decreases as the rain rate increases, and Figure 7 gives
a visualization of how the decreasing range of the LIDAR with increased rain rate results in an overall
reduction in the number of points in the scan. Clearly, the resulting point cloud is drastically affected
by the increasing rain rate. However, as Figure 6 shows, the LIDAR range reduction does not have as
strong of an impact on the detection range for the obstacle.

The capability of the sensor to detect the obstacle is clearly dependent on factors other than the
rain. This includes the resolution of the sensor in the horizontal and vertical directions, the ability of
the Euclidean cluster extraction algorithm to distinguish the obstacle returns from the ground, and the
reflectance properties of the obstacle. It is only when rain rates become quite heavy (21 mm/h) that
the range reduction caused by the rain becomes an important limiting factor in the ADAS algorithm.

Figure 6 shows that the ADAS algorithm is only affected after the rain rate reaches 17 mm/h, which
is a rather heavy rain that would not frequently be encountered in most environments. Additionally,
the variation with rain rate is small, with only a 6-m reduction at a rain rate of 45 mm/h. To put this
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range reduction in more operational terms, a typical passenger vehicle operating on wet pavement has
braking distance, db, that varies as the square root of the vehicle speed, vs [20].

db = 3
√

vs (10)
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Figure 5. Number of points in a single scan of the LIDAR as a function of rain rate.
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Figure 6. Obstacle detection range as a function of rain rate.

Figure 7. LIDAR range decrease with increasing rain rate from 0 mm/h on the far left, 9 mm/h in the
middle, and 17 mm/h on the right.
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This equation indicates that the maximum safe operating speed on wet pavement is about 14 m/s
in clear conditions and about 12 m/s in the heaviest rain (45 mm/h). Therefore, for this simple ADAS
algorithm using roof mounted LIDAR, heavy rain does not prove to be a particularly important factor
in the system performance.

4. Discussion

The previous sections focused on obstacle detection with LIDAR. However, most ADAS systems
use a combination of complimentary sensors including cameras, stereo vision, and automotive
RADAR to detect obstacles in the vehicles environment [21]. In particular, many vision systems
use convolutional neural networks to detect and classify obstacles and other features of the
environment [22]. Nevertheless, because ODOA requires accurate estimation of the obstacle position,
some studies have concluded that LIDAR is of primary importance in ODOA algorithms [21,23].

Because the rain model presented in previous sections is applicable to cameras, LIDAR, and
RADAR, future studies examining the influence of rain on multi-sensor ADAS algorithms are possible.
However, it is also highly desirable to perform single-sensor analyses like the one presented in this
work in order to understand the relative error contributions of the different sensor modalities.

5. Conclusions

There are several important conclusions that may be drawn from this work. First, quantitative
predictions of LIDAR performance in rain, and the impact of the sensor performance on ADAS, can
be made using a simplified version of the LIDAR equation derived in this work. This model uses
only the LIDAR maximum range and rain rate as parameters, allowing the user to determine the
quantitative relationship between rain rate and ADAS algorithm performance for a given sensor and
environment. Most importantly, using simulation allows the rain-rate to be easily controlled in order
develop a quantitative relationship between rain-rate and ADAS performance.

Second, although the degradation in LIDAR performance caused by rain is well known, the
actual impact to ADAS algorithm performance may not be clear cut, and integrated, closed-loop
simulations like the one presented in this work are necessary to determine how rain may or may not
limit the ADAS.

Finally, even for multi-sensor systems, analyzing the performance of each sensor in a rainy
environment, as well as the performance of the combined sensor package, is necessary to fully
understand the influence of rain on the ADAS performance.
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